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Abstract. As a characterization of chaotic order, we showed “If MI � B � mI > 0 , then
log A � log B is equivalent to

Mh(p)Ap � Bp

for all p > 0 , where h = M
m > 1 and Mh(p) =

h
p

hp−1

e log h
p

hp−1

” in [11].

In this paper, we shall show the following characterization of chaotic order as a parallel
result to the result mentioned above:

“If MI � B � mI > 0 , then log A � log B is equivalent to

Ap + L(mp, Mp) log Mh(p)I � Bp

for all p > 0 , where L(m,M) = M−m
log M−log m .” And we shall discuss the relations among this

result and some related results.

1. Introduction

We shall consider bounded linear operators on a complex Hilbert space H . An
operator T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0 for all x ∈ H . Also,
an operator T is strictly positive (denoted by T > 0 ) if T is positive and invertible.

For positive operators A and B , A � B � 0 ensures Ap � Bp for all p ∈ [0, 1]
by well-known Löwner-Heinz theorem. However, it is also well known that A � B � 0
does not always ensure Ap � Bp for any p > 1 . Related to this result, the following
result was shown in [7].

THEOREM A. ([7])Let A � B � 0 satisfying MI � B � mI > 0 with M > m > 0 .
Then K+(m, M, p)Ap � Bp holds for all p > 1 , where

K+(m, M, p) =
(p − 1)p−1

pp

(Mp − mp)p

(M − m)(mMp − Mmp)p−1
. (1.1)
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For positive invertible operators A and B , an order defined by logA � logB is
called “chaotic order.” Ando showed that logA � logB is equivalent to (B

p
2 ApB

p
2 )

1
2 �

Bp holds for all p � 0 in [1]. The following Theorem B is an extension of this result.

THEOREM B. ([5, 6, 9]) Let A and B be positive invertible operators. Then the
following assertions are mutually equivalent:

(i) logA � logB ,
(ii) (B

p
2 ApB

p
2 )

1
2 � Bp for all p � 0 ,

(iii) (B
r
2 ApB

r
2 )

r
p+r � Br for all p � 0 and r � 0 .

In [11], we showed parallel results to Theorem A on chaotic order by using Theorem
A and Theorem B as follows:

THEOREM C. ([11]) Let A and B be positive and invertible operators on a Hilbert
space H satisfying MI � B � mI > 0 with M > m > 0 . Then the following
assertions are mutually equivalent:

(i) logA � logB ,

(ii)
(mp + Mp)2

4mpMp
Ap � Bp holds for all p > 0 .

THEOREM D. ([11]) Let A and B be positive and invertible operators on a Hilbert
space H satisfying MI � B � mI > 0 with M > m > 0 . Then the following
assertions are mutually equivalent:

(i) logA � logB ,

(ii) Mh(p)Ap � Bp holds for all p > 0 , where h = M
m > 1 and

Mh(p) =
h

p
hp−1

e log h
p

hp−1

. (1.2)

We remark that Theorem D is a more precise estimation than Theorem C by
considering the following theorem in [11].

THEOREM E. ([11]) Let K+(m, M, p) be defined in (1.1). Then

F(p, r, m, M) = K+

(
mr, Mr,

p + r
r

)

is an increasing function of p , r and M , and also a decreasing function of m for
p > 0 , r > 0 and M > m > 0 , and lim

r→+0
K+

(
mr, Mr, p+r

r

)
= Mh(p) holds, where

h = M
m > 1 and Mh(p) is defined in (1.2). And the following inequalities hold:

hp =
(

M
m

)p

� K+

(
mr, Mr,

p + r
r

)
� Mh(p) � 1 (1.3)

for any p > 0 , r > 0 and M > m > 0 .
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In fact, Put r = p > 0 in (1.3) of Theorem E. Then K+(mp, Mp, 2) = (mp+Mp)2

4mpMp �

Mh(p) holds for p > 0 and M > m > 0 . Mh(1) = (h−1)h
1

h−1

e log h is called“Specht’s ratio.”
Related to Specht’s ratio, Specht [8] showed the following: Let M � x1, x2, · · · , xn �

m > 0 , h = M
m > 1 , A =

1
n

n∑
i=1

xi and G =
n∏

i=1

x
1
n
i . Then Mh(1)G � A � G holds.

Specht’s ratio has been studied in [3, 4]. A simplified proof of Theorem D was shown
in [2].

And in our previous paper [10], we showed the following Theorem F as a parallel
result to Theorem A.

THEOREM F. ([10]) Let A � B � 0 satisfying MI � B � mI > 0 with M > m >
0 . Then

Ap +
mMp − Mmp

M − m

{
K+(m, M, p)

1
p−1 − 1

}
I � Bp

holds for all p > 1 , where K+(m, M, p) is defined in (1.1).

In this paper, as parallel results to Theorem C and Theorem D, we shall show
other characterizations of chaotic order by using Theorem B and Theorem F which is a
parallel result to Theorem A.

2. Other characterizations of chaotic order

THEOREM 1. Let A and B be positive and invertible operators on a Hilbert space
H satisfying MI � B � mI > 0 with M > m > 0 . Then the following assertions are
mutually equivalent:

(i) logA � logB ,

(ii) Ap +
(Mp − mp)2

4mp
I � Bp holds for all p > 0 .

THEOREM 2. Let A and B be positive and invertible operators on a Hilbert space
H satisfying MI � B � mI > 0 with M > m > 0 . Then the following assertions are
mutually equivalent:

(i) logA � logB ,

(ii) Ap + L(mp, Mp) logMh(p)I � Bp for all p > 0 ,

where h = M
m > 1 , Mh(p) is defined in (1.2) and

L(m, M) =
M − m

logM − logm
. (2.1)

We remark that L(m, M) is called “logarithmic mean.” Related to L(m, M) , it is
well known that M+m

2 � L(m, M) �
√

mM hold for m > 0 and M > 0 .

Proof of Theorem 1. (i) ⇒ (ii) . logA � logB ensures (B
p
2 ApB

p
2 )

1
2 � Bp for all

p � 0 by Theorem B, and MpI � Bp � mpI > 0 hold for all p > 0 by the hypothesis
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MI � B � mI > 0 . Put A1 = (B
p
2 ApB

p
2 )

1
2 , B1 = Bp , M1 = Mp and m1 = mp , then

A1 � B1 and M1I � B1 � m1I > 0 hold. Applying Theorem F, we have

Ap1
1 +

m1M
p1
1 − M1m

p1
1

M1 − m1

{
K+(m1, M1, p1)

1
p1−1 − 1

}
I � Bp1

1 (2.2)

holds for p1 > 1 . Put p1 = 2 > 1 in (2.2), we have

B
p
2 ApB

p
2 +

mpM2p − Mpm2p

Mp − mp
{K+ (mp, Mp, 2) − 1} I � B2p. (2.3)

And (2.3) is equivalent to (2.4) as follows:

Ap +
mpM2p − Mpm2p

Mp − mp
{K+ (mp, Mp, 2) − 1}B−p � Bp. (2.4)

By using 1
mp I � B−p � 1

Mp I > 0 , then we have

Ap +
(Mp − mp)2

4mp
I

= Ap +
mpM2p − Mpm2p

Mp − mp

{
(mp + Mp)2

4mpMp
− 1

}
1
mp

I

= Ap +
mpM2p − Mpm2p

Mp − mp
{K+ (mp, Mp, 2) − 1} 1

mp
I

� Ap +
mpM2p − Mpm2p

Mp − mp
{K+ (mp, Mp, 2) − 1}B−p � Bp

hold since the last inequality holds by (2.4).

(ii) ⇒ (i) . (ii) ensures the following

Ap − 1
p

− Bp − 1
p

� −(Mp − mp)2

4pmp
I = −

(
Mp − mp

p

)2 p
4mp

I.

Let p → +0 . Then we have logA − logB � 0 because

lim
p→+0

Mp − mp

p
= lim

p→+0

(
Mp − 1

p
− mp − 1

p

)
= logM − logm = log

M
m

,

p
4mp

I → O as p → +0 and we recall that
Xp − I

p
→ logX as p → +0 for any

operator X > 0 .
�

To prove Theorem 2, we use the following results.
THEOREM G. ([11]) Let Mh(p) be defined in (1.2). Then for h > 1 ,

lim
p→+0

{Mh(p)} 1
p = 1.



FURTHER CHARACTERIZATIONS OF CHAOTIC ORDER 263

LEMMA 3. Let K+(m, M, p) be defined in (1.1), and f (r) be a positive continuous
function on r > 0 satisfying lim

r→+0
f (r) = 0 . Then for p > 0 and M > m > 0 ,

lim
r→+0

1
f (r)

{
K+

(
mr, Mr,

p + r
r

)f (r)

− 1

}
= logMh(p),

where h = M
m > 1 and Mh(p) is defined in (1.2).

Proof. By considering (1.3) of Theorem E and ar−1
r � log a holds for r > 0 and

a > 0 , we obtain

1
f (r)

{
Mh(p)−f (r) − 1

}
� 1

f (r)

{
K+

(
mr, Mr,

p + r
r

)−f (r)

− 1

}

� logK+

(
mr, Mr,

p + r
r

)−1

.

And
lim

r→+0

1
f (r)

{
Mh(p)−f (r) − 1

}
= − logMh(p)

holds since ar−1
r → log a as r → +0 for a > 0 , and

lim
r→+0

logK+

(
mr, Mr,

p + r
r

)−1

= − logMh(p)

holds by Theorem E. Then we have

lim
r→+0

1
f (r)

{
K+

(
mr, Mr,

p + r
r

)−f (r)

− 1

}
= − logMh(p). (2.5)

On the other hand,(
M
m

)pf (r)

� K+

(
mr, Mr,

p + r
r

)f (r)

� 1

hold by (1.3) of Theorem E. Then we have

lim
r→+0

K+

(
mr, Mr,

p + r
r

)f (r)

= 1. (2.6)

Hence
lim

r→+0

1
f (r)

{
K+

(
mr, Mr,

p + r
r

)f (r)

− 1

}

= lim
r→+0

K+

(
mr, Mr,

p + r
r

)f (r)

×
[
−1
f (r)

{
K+

(
mr, Mr,

p + r
r

)−f (r)

− 1

}]

= logMh(p)
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holds by (2.5) and (2.6).
�

Proof of Theorem 2. (i) ⇒ (ii) . logA � logB ensures (B
r
2 ApB

r
2 )

r
p+r � Br for

all p � 0 and r � 0 by Theorem B, and MrI � Br � mrI > 0 hold for all r > 0 by
the hypothesis MI � B � mI > 0 . Put A1 = (B

r
2 ApB

r
2 )

r
p+r , B1 = Br , M1 = Mr and

m1 = mr , then A1 � B1 and M1I � B1 � m1I > 0 hold. Applying Theorem F, we
have

Ap1
1 +

m1M
p1
1 − M1m

p1
1

M1 − m1

{
K+(m1, M1, p1)

1
p1−1 − 1

}
I � Bp1

1 (2.7)

holds for p1 > 1 . Put p1 = p+r
r > 1 in (2.7), we have

B
r
2 ApB

r
2 +

mrMp+r − Mrmp+r

Mr − mr

{
K+

(
mr, Mr,

p + r
r

) r
p

− 1

}
I � Bp+r. (2.8)

And (2.8) is equivalent to (2.9) as follows:

Ap +
mrMp+r − Mrmp+r

Mr − mr

{
K+

(
mr, Mr,

p + r
r

) r
p

− 1

}
B−r � Bp. (2.9)

By using 1
mr I � B−r � 1

Mr I > 0 , then we have

Ap +
mrMp+r − Mrmp+r

Mr − mr

{
K+

(
mr, Mr,

p + r
r

) r
p

− 1

}
1
mr

I

� Ap +
mrMp+r − Mrmp+r

Mr − mr

{
K+

(
mr, Mr,

p + r
r

) r
p

− 1

}
B−r � Bp

hold since the last inequality holds by (2.9). Moreover

lim
r→+0

mrMp+r − Mrmp+r

Mr − mr

{
K+

(
mr, Mr,

p + r
r

) r
p

− 1

}
1
mr

= lim
r→+0

Mr(Mp − mp)
(Mr−1

r − mr−1
r )p

· p
r

{
K+

(
mr, Mr,

p + r
r

) r
p

− 1

}

=
Mp − mp

p(logM − logm)
logMh(p) (2.10)

= L(mp, Mp) logMh(p) by (2.1)

holds since ar−1
r → log a as r → +0 for a > 0 , and by Lemma 3 in case f (r) = r

p .
Then we obtain (ii) .
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(ii) ⇒ (i) . (ii) ensures the following:

Ap − 1
p

− Bp − 1
p

� −L(mp, Mp)
p

logMh(p)I

=
−(Mp − mp)

logMp − logmp
log{Mh(p)} 1

p I

=
−(Mp−1

p − mp−1
p )

logM − logm
log{Mh(p)} 1

p I.

Let p → +0 , then we have logA − logB � 0 by Theorem G and Xp−I
p → logX as

p → +0 for any operator X > 0 .
�

3. Concluding remark

First of all, we show the following result.

PROPOSITION 4. Let Mh(p) and L(m, M) be defined in (1.2) and (2.1), respec-
tively. Then

(Mp − mp)2

4mp
�

(
Mp − mp

Mp + mp

)2

Mp

� Mh(p) − 1
Mh(p)

Mp � L(mp, Mp) logMh(p)

hold for p > 0 and M > m > 0 , where h = M
m > 1 .

Proof of Proposition 4.

(i) Proof of (Mp−mp)2

4mp �
(

Mp−mp

Mp+mp

)2
Mp .

(Mp − mp)2

4mp
−

(
Mp − mp

Mp + mp

)2

Mp

= Mp(Mp − mp)2

(
1

4mpMp
− 1

(Mp + mp)2

)

= Mp(Mp − mp)2 (Mp − mp)2

4mpMp(Mp + mp)2
� 0.

(ii) Proof of
(

Mp−mp

Mp+mp

)2
Mp � Mh(p)−1

Mh(p) Mp . Let f (t) = t−1
t = 1 − 1

t . Then f (t) is

increasing for t � 1 . Hence we obtain

K+(mp, Mp, 2) − 1
K+(mp, Mp, 2)

= f (K+(mp, Mp, 2)) � f (Mh(p)) =
Mh(p) − 1

Mh(p)
(3.1)
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holds by (1.3) of Theorem E in case r = p . By considering (3.1) and(
Mp − mp

Mp + mp

)2

=
(mp+Mp)2

4mpMp − 1
(mp+Mp)2

4mpMp

=
K+(mp, Mp, 2) − 1

K+(mp, Mp, 2)
,

we have (
Mp − mp

Mp + mp

)2

Mp � Mh(p) − 1
Mh(p)

Mp.

(iii) Proof of Mh(p)−1
Mh(p) Mp � L(mp, Mp) logMh(p) . Let g(t) = t−1

t log t . Then g(t) is
decreasing for t > 0 since

g′(t) =
t log t − (t − 1)(log t + 1)

(t log t)2
=

log t − (t − 1)
(t log t)2

� 0

holds for t > 0 . Hence we have

Mh(p) − 1
Mh(p) logMh(p)

= g(Mh(p)) � g(hp) =
hp − 1

hp log hp
(3.2)

holds by (1.3) of Theorem E. By considering (3.2), h = M
m > 1 and

hp − 1
hp log hp

=
Mp − mp

Mp(logMp − logmp)
=

L(mp, Mp)
Mp

,

we obtain
Mh(p) − 1

Mh(p)
Mp � L(mp, Mp) logMh(p).

Whence the proof of Proposition 4 is complete.
�

By using Theorem C and Theorem D, we can easily obtain the following other
characterizations of chaotic order which are the same type as Theorem 1 and Theorem
2 type.

PROPOSITION 5. Let A and B be positive and invertible operators on a Hilbert
space H satisfying MI � B � mI > 0 with M > m > 0 . Then the following
assertions are mutually equivalent:

(i) logA � logB ,

(ii) Ap +
(

Mp − mp

Mp + mp

)2

MpI � Bp holds for all p > 0 .

PROPOSITION 6. Let A and B be positive and invertible operators on a Hilbert
space H satisfying MI � B � mI > 0 with M > m > 0 . Then the following
assertions are mutually equivalent:

(i) logA � logB ,

(ii) Ap +
Mh(p) − 1

Mh(p)
MpI � Bp holds for all p > 0 ,

where h = M
m > 1 and Mh(p) is defined in (1.2).
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We remark that Theorem 2 is a more precise estimation than Proposition 5 and
Proposition 6 by considering Proposition 4.

Proof of Proposition 5. (i) =⇒ (ii) . By using Theorem C and MpI � Bp �
mpI > 0 , we obtain

Ap � 4mpMp

(mp + Mp)2
Bp

= Bp −
(

Mp − mp

Mp + mp

)2

Bp

� Bp −
(

Mp − mp

Mp + mp

)2

MpI by MpI � Bp � mpI > 0

for all p > 0 .
(ii) =⇒ (i) . By using Proposition 4, (ii) ensures (ii) of Theorem 1 as follows:

Ap +
(Mp − mp)2

4mp
I � Ap +

(
Mp − mp

Mp + mp

)2

MpI � Bp.

Hence we obtain logA � logB by Theorem 1.
�

Proof of Proposition 6. (i) =⇒ (ii) . By using Theorem D, we obtain

Ap � 1
Mh(p)

Bp

= Bp − Mh(p) − 1
Mh(p)

Bp

� Bp − Mh(p) − 1
Mh(p)

MpI

for all p > 0 , and the last inequality holds by MpI � Bp � mpI and Mh(p) � 1 which
is asserted in (1.3) of Theorem E.

(ii) =⇒ (i) . By using Proposition 4, (ii) ensures (ii) of Theorem 1 as follows:

Ap +
(Mp − mp)2

4mp
I � Ap +

Mh(p) − 1
Mh(p)

MpI � Bp.

Hence we obtain logA � logB by Theorem 1.
�

We remark that as parallel results to Theorem C and Theorem D, we showed
Theorem 1 and Theorem 2 respectively in the previous section. But the proof of
Theorem 2 is not easy and requires some lemmas. We remark that Proposition 5 and
Proposition 6 are easily obtained by only using Theorem C and Theorem D respectively.
However it is interesting to point out the following two facts. Firstly, Theorem 2 is a
more precise estimation than Proposition 5 and Proposition 6. Secondly, as a parallel
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result to Theorem 2, we showed Theorem 1 in the previous section. But Theorem 1 is
not a more precise estimation than Proposition 5 and Proposition 6.
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