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DESCRIPTION OF PSEUDOCHARACTERS’

SPACE ON FREE PRODUCT OF GROUPS

V. A. FAĬZIEV

(communicated by T. Rassias)

Abstract. Let G = A ∗ B be a free product of groups A and B . A description is given of the
space of real-valued functions ϕ on the group G satisfying the following conditions:

1) the set {ϕ(xy) − ϕ(x) − ϕ(y); x, y ∈ G} is bounded;
2) ϕ(xn) = nϕ(x) for any x ∈ G and any n ∈ Z

Introduction

In 1940 S.M.Ulamposed the following problem. Given a group G1 , ametric group
(G2, d) and a positive number ε , does there exist a δ > 0 such that if f : G1 → G2

satisfies d(f (xy), f (x)f (y)) < δ for all x, y ∈ G1 , then a homomorphism T : G1 → G2

exists with d(f (x), T(x)) < ε for all x, y ∈ G1 ?
See S. M. Ulam (1960) or (1974) for a discussion of such problems, as well as D.

H. Hyers (1941, 1983), D. H. Hyers and S. M. Ulam (1945, 1947),
Th. M. Rassias (1978, 1991), J. Aczèl and J. Dhombres (1989).

The first affirmative answer was given by D. H. Hyers [16] in 1941.

THEOREM OF HYERS. Let E1, E2 be Banach spaces and let f : E1 → E2 satisfies
to the following condition: there is ε > 0 such that

|| f (x + y) − f (x) − f (y) || < ε for all x, y ∈ E1. (1)

Then there exists T : E1 → E2 such that

T(x + y) − T(x) − T(y) = 0 for all x, y ∈ E1 (2)

and
|| f (x) − T(x) || < ε for all x ∈ E1. (3)

The subject rested there until Th. M. Rassias [30] considered a generalized version
of the previous result which permitted the Cauchy difference to become unbounded.
That is, he assumed that

|| f (x + y) − f (x) − f (y) || � ε · (||x||p + ||y||p) for all x, y ∈ E1 ,
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270 V. A. FAĬZIEV

where ε and p are constant with ε > 0 and 0 � p < 1.
By making use of a direct method, Th. M. Rassias proved in this case too, that

there is an additive function T from E1 into E2 given by the formula

T(x) = lim
n→∞

1
2n

f (2nx) ;

such that
||T(x) − f (x)|| � k · ε · ||x||p,

where k depends on p as well as ε .
Th. M. Rassias (1990) during the 27th International Symposium on Functional

Equations asked the question whether such a theorem can also be proved for p � 1 .
Z. Gajda [14], following the same approach as in [30], gave an affirmative solution

to this question for p > 1 .
For the generalization of these results several papers were published c.f. [20–24,

30–33].
In connection with these results the following question arises.
Let S be an arbitrary semigroup or group and let a mapping f : S → R satisfies

the following condition:

the set {f (xy) − f (x) − f (y) , x, y ∈ S} is bounded.

Is it true that there is T : S → R satisfying the following conditions:

T(xy) − T(x) − T(y) = 0 , x, y ∈ S, and

the set {T(x) − f (x) ; x ∈ S} is bounded.

A negative answer was given byG. L. Forti [13] bymeans of the following example.
Let F(α, β) be the free group generated by the two elements α, β . Let each word
x ∈ F(α, β) be written in reduced form , i.e., x does not contain pairs of the forms
αα−1 , α−1α , ββ−1 , β−1β and has no exponents different from 1 and −1 . Define
the function f : F(α, β) → R as follows. If r(x) is the number of pairs of the form αβ
in x and s(x) is the number of pairs of the form β−1α−1 in x , put f (x) = r(x)−s(x) .

It is easily seen that for all x, y ∈ F(α, β) we have f (xy) − f (x) − f (y) ∈
{−1, 0, 1} . Now, assume that there is T : F(α, β) → R such that the relations (2), (3)
hold.

However T is completely determined by its values T(α) and T(β) , while f is
identically zero on the subgroups A and B generated by α and β , respectively. For
α ∈ A we have T(αn) = nT(α) and f (αn) = 0 for n ∈ N . Since T(αn) − f (αn) =
nT(α) for n ∈ N , it follows that T(α) = 0 . Similarly we have T(β) = 0 , so that T
is identically zero on F(α, β) . Hence, f −T = f on F(α, β) where f is unbounded.
This contradiction proves that there is no homomorphism T : F(α, β) → R such that
the relation (3) holds.

It turns out that the existence of mappings that are “almost homomorphism” but
are not small perturbations of homomorphisms has an algebraic nature.

DEFINITION. A quasicharacter of a semigroup S is a real-valued function f on S
satisfying the condition: the set {f (xy) − f (x) − f (y)|x, y ∈ S} is bounded .
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DEFINITION. By a pseudocharacter on a semigroup S (group S ) we mean its
quasicharacter f that satisfies the following condition:

f (xn) = nf (x) , ∀x ∈ S and ∀n ∈ N (and ∀n ∈ Z , if S is group).

The set of quasicharacters of a semigroup S is a vector space (with respect to the
usual operations of addition of functions and their multiplication by numbers), which
will be denoted by KX(S) . The subspace of KX(S) consisting of pseudocharacters
will be denoted by PX(S) and the subspace consisting of real additive characters of the
semigroup S , will be denoted by X(S) .

We say that a pseudocharacter ϕ of the group G is nontrivial if ϕ /∈ X(G) .
In connection with the example of Forti note that his function is a quasicharacter

of the free group F(α, β) but not a pseudocharacter of F(α, β) . In [6, 10] the set of
all pseudocharacters of free groups was described.

In [5–7,9–11] a description of the spaces of pseudocharacters on free groups and
semigroups, semidirect and free products of semigroups was given. In [34] a pseu-
docharacter on the group SL(2, Z) was constructed. In [8] a description of the spaces
of all pseudocharacters on the group SL(2, Z) was given.

For a mapping f of the group G into the semigroup of linear transformations
of a vector space, in the papers [2–4] sufficient conditions for the coincidence of the
solution of the functional inequality ‖f (xy) − f (x) · f (y)‖ < c with the solution of
the corresponding functional equation f (xy) − f (x) · f (y) = 0 were studied. In the
papers [15,28], it was independently shown that if a continuousmapping f of a compact
group G into the algebra of endomorphisms of a Banach space satisfies the relation
‖f (xy) − f (x) · f (y)‖ � δ for all x, y ∈ G with a sufficiently small δ > 0 , then f is
ε -close to a continuous representation g of the same group in the same Banach space
(i.e., we have ‖f (x) − g(x)‖ < ε for all x ∈ G ).

Let H be a Hilbert space and let U(H) be the group of unitary operators of H
endowed by operator-norm topology. If H is n - dimensional n ∈ N the group U(H)
we denote by U(n) .

DEFINITION. Let 0 < ε < 2 . Let T be a mapping of a group G into U(H) . We
say that T is an ε –representation if for any x, y from group G the relation

‖T(xy) − T(x)T(y)‖ < ε

holds.

V. Milman raised the following question: Let ρ : G → U(H) be an ε – represen-
tation with small ε . Is it true that ρ is near to an actual representation π of the group
G in H , i.e., does there exist some small δ > 0 such that ‖ρ(x) − π(x)‖ < δ for all
x ∈ G ?

Answering this question Kazhdan in [28] obtained the following result.

THEOREM OF KAZHDAN. There is a group Γ with the following property. For any
0 < ε < 1 and any natural number n > 3

ε there exists an ε – representation ρ such
that for any homomorphism π : G → U(n) the relation

‖ρ − π‖ = sup{‖ρ(x) − π(x)‖; x ∈ Γ} >
1
10
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holds.

Note that the group Γ has the following presentation in terms of generations and
defining relations: Γ =< x, y, a, b ‖ x−1y−1xya−1b−1ab > .

In [12] by using pseudocharacters a strengthen of Kazhdan Theorem was estab-
lished as follows.

We say that a group G belongs to the class K if every nonunit quotient group of
G has an element of order two.

THEOREM FAĬZIEV. Let H be a Hilbert space and let U(H) be its group of unitary
operators. Suppose that a groups A and B belongs to the class K and the order of B
is more than two. Then the free product G = A ∗B has the following property. For any
ε > 0 there exists a mapping T : G → U(H) satisfying the following conditions :

1) ‖T(xy) − T(x) · T(y)‖ � ε, ∀x, ∀y ∈ G;
2) for any representation π : G → U(H) the relation

sup{‖T(x) − π(x)‖ , x ∈ G} = 2

holds.

There is a following connection of quasicharacters and pseudocharacters with the
theory of Banach algebra cohomology. The definition of quasicharacters coincides
with a bounded 2− cocycle on semigroup. Hence, if a semigroup S has nontrivial
pseudocharacter, i.e., PX(S) \ X(S) �= ∅ , then arguing as [25, Proposition 2.8] we
obtain H2(S, C) �= 0 .

The aim of the present paper is to give a description of the space PX(G) , where
the group G is the free product G = A ∗ B .

The paper contains two sections. In §1 a description of the space PX(G) in term
of pseudocharacters of free factors and some space of pseudocharacters PX(D,−1) of
free semigroup D is given.

In §2 a description of PX(D,−1) and PX(G) is given.

§1 Decomposition of the space PX(A ∗ B) into
direct sum of the spaces PX(A), PX(B), PX(D,−1)

DEFINITION. By a pseudocharacter on a semigroup S (group S ) we mean a
real-valued function f on S satisfies the following conditions:

1) the set {f (xy) − f (x) − f (y)|x, y ∈ S} is bounded ;
2) f (xn) = f (x) , ∀x ∈ S and ∀n ∈ N (and ∀n ∈ Z , if S is group).

Let G be an arbitrary group and τ : G → H its an epimorphism onto a group H .
Denote by τ∗ the mapping that takes each element ϕ ∈ PX(H) to ϕ ◦τ ∈ PX(G) .

It is evidently that τ∗ is an embedding PX(H) into PX(G) .
Let G = A ∗ B be the free product of nontrivial groups A and B , and let

τ∗A , τ∗B be embedding of the spaces PX(A) ,PX(B) into PX(G) respectively. Below we
shall identify the spaces PX(A) and PX(B) with their τ∗A and τ∗B isomorphic images
respectively.
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Set A0 = A \ 1, B0 = B \ 1 and M = {a · b | a ∈ A0, b ∈ B0} . It is clear that
subsemigroup D̃ of group G generated by the set M is free and M is the system of
free generators for D̃ . By D denote a semigroup generated by D̃ and 1 .

Let v ∈ D . By |v| denote the length of the word v in alphabet M . If v = 1 we
set |v| = 0.

DEFINITION. By canonical form of nonunit element g from G = A ∗ B we mean
its presentation in the form g = c1c2 · · · cn , where ci ∈ A0 ∪ B0 , and cici+1 /∈ A ∪ B .

Let v = a1b1 · · · anbn ∈ D̃. By v denote the element b1a2b2 · · · anbna1. Let
PX(D,−1) be the subspace of PX(D) consisting of the pseudocharacters ϕ of D
satisfying the following conditions:

1) the set ϕ(M) is bounded,
2) ϕ((v)−1) = −ϕ(v), ∀v ∈ D .

REMARK 1. We recall that by the Lemma 2 from [5] for any pseudocharacter ϕ of
arbitrary semigroup S the following relation ϕ(xy) = ϕ(yx), ∀x, y ∈ S holds.

Let ϕ ∈ PX(D,−1) . Denote by ϕ the function on the group G defining as
follows. If element v from G is conjugate to some element a ∈ A or some element
b ∈ B , then we set ϕ(v) = 0 . Otherwise we set ϕ(v) = ϕ(t) , where t ∈ D and
elements v and t are conjugate in G . Remark 1 implies that the function ϕ is well
defined . It is clear that the function ϕ is constant on the classes of conjugacy in G .

Denote by ∼ the relation of conjugacy in the group G .
Below in the statements of Lemmas 1–5 we shall assume that ϕ is an element

from PX(D,−1) and c > 0 such that

|ϕ(xy) − ϕ(x) − ϕ(y)| � c ∀x, y ∈ D; and |ϕ(x)| � c ∀x ∈ M.

LEMMA 1. For any g ∈ G and any n ∈ Z we have

ϕ(gn) = nϕ(g).

Proof. 1) Suppose that g is conjugate to some element z ∈ A
⋃

B . Then it is clear
that for any n ∈ Z element gn is conjugate to zn and the relation ϕ(gn) = ϕ(g) = 0
holds.

2) Now let g ∼ t, t ∈ D . It is clear that gn ∼ tn for any n ∈ Z . Therefore , if
n ∈ N , then ϕ(gn) = ϕ(tn) = ϕ(tn) = nϕ(t) = nϕ(g). It is obvious that g−1 ∼ t−1 .
And for any positive integer n we have ϕ(g−n) = ϕ(t−n) = ϕ(t−n) = ϕ((tn)−1) =
−ϕ(tn) = −nϕ(t) = −nϕ(g).

The Lemma is proved.

LEMMA 2. Let w = a1b1 · · · anbn, ai ∈ A0, bi ∈ B0. Then for any a ∈ A
such that aa1 �= 1 and for any b ∈ B such that bb1 �= 1 the following relations
|ϕ(wa) − ϕ(w)| � 4c ; |ϕ(b · w) − ϕ(w)| � 4c hold.

Proof. If n = 1 we have w = a1b1 , |ϕ(a·w)| � c . Hence |ϕ(a·w)−ϕ(w)| � 2c.
Now if n � 2 , then wa ∼ aw = aa1b1w1, a1 ·b1, w1 ∈ D , where w1 = a2b2 · · · anbn .
Hence

|ϕ(wa) − ϕ(aa1b1) − ϕ(w1)| � c. (1.1)
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Now assume that w = a1b1w1 .Then

|ϕ(w) − ϕ(a1b1) − ϕ(w1)| � c. (1.2)

From (1.1) and (1.2) we obtain |ϕ(wa)−ϕ(w)| = |ϕ(wa)−ϕ(aa1b1)−ϕ(w1)+
ϕ(aa1b1) + ϕ(w1) − ϕ(w) + ϕ(a1b1) − ϕ(a1b1)| � |ϕ(wa) − ϕ(aa1b1) − ϕ(w1)| +
|ϕ(w) − ϕ(a1b1) − ϕ(w1)| + |ϕ(aa1b1) − ϕ(a1b1)| � 2c + |ϕ(aa1b1) − ϕ(a1b1)| �
2c + |ϕ(aa1b1)| + |ϕ(a1b1)| � 4c.

Similarly,if bnb �= 1 , we get |ϕ(wb) − ϕ(w)| � 4c
The Lemma is proved.

REMARK 2. Let a, ai ∈ A0; b, bi ∈ B0; z = b1a1 · · · bmam ; then

|ϕ(azb) − ϕ(z)| � 6c.

Indeed, by definition we have ϕ(z) = ϕ(a1b2 · · · bmamb1) , hence,

|ϕ(z) − ϕ(a1b2 · · · am−1bm) − ϕ(amb1)| � c.

Furthermore, we obtain

|ϕ(azb) − ϕ(ab1) − ϕ(a1b2 · · · am−1bm) − ϕ(amb)| � 2c

and
|ϕ(azb) − ϕ(z)| � 2c + |ϕ(ab1)| + |ϕ(amb)| + |ϕ(amb1)| � 6c.

DEFINITION. If v = c1c2 · · · cn is canonical form, then we set v̇ = c1, v̈ = cn.

LEMMA 3. Let d ∈ A
⋃

B . Then for any v ∈ D the following relation |ϕ(d · v)−
ϕ(v)| � 20c holds.

Proof. Let v = a1b1 · · · anbn be canonical form of the element v . Suppose that
n = 1 . It is clear that either element dv is conjugate in G to some element from the
set A

⋃
B , or element dv is conjugate to some element from the set M .

Hence we have |ϕ(dv)| � c and |ϕ(dv) − ϕ(v)| � 2c.
Now suppose that n � 2 .
Consider two cases: the case I, when d = a ∈ A ; the case II, when d = b ∈ B .
I. If aa1 �= 1 , then from Lemma 2 it follows that conclusion of the lemma is true.

Now we assume aa1 = 1 . Let n = 2 , v = a1b1a2b2 . Then element av is conjugate to
some element from the set A

⋃
B

⋃
M . Hence, |ϕ(av)| � c . Furthermore, inequality

|ϕ(v) − ϕ(a1b1)− ϕ(a2b2)| � c implies |ϕ(v)| � 3c and |ϕ(av)− ϕ(v)| � 4c. Now
we can assume that n � 3 .

If bnb1 �= 1 ; then

ϕ(av) = ϕ(b1a2b2 · · · anbn) = ϕ(a2b2 · · · an−1bn−1anbnb1).

Hence, from Lemma 2 we obtain

|ϕ(av) − ϕ(a2b2 · · · anbn)| � 4c. (1.3)
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From |ϕ(v) − ϕ(a1b1) − ϕ(a2b2 · · · anbn)| � c we get

|ϕ(v) − ϕ(a2b2 · · · anbn)| � 2c.

Combining thiswith (1.3), we get |ϕ(av)−ϕ(v)| � 6c . Now let aa1 = 1, bnb1 = 1, . . .
Then the canonical form of w = av is

w = av = b1a2b2 · · · anbn = t−1ut, (1.4)

where the word u satisfyes the conditions: ü · u̇ �= 1 , ü · u̇ ∈ A0 ∪ B0 .
From (1.4) we have ϕ(av) = ϕ(u). It is clear that there are two cases:

a) u = u1γ , u1 ∈ D, γ ∈ A , or
b) u = βu2 u2 ∈ D, β ∈ B.

Note that the elements γ , β are different from 1 and the following relations ü2β �=
1, γ u̇1 �= 1 hold. Lemma 2 imply that in the case a) we have |ϕ(u) − ϕ(u1)| � 4c
and in the case b) we have |ϕ(u) − ϕ(u2)| � 4c.

Consider the case a).
The Canonical form of element v is v = a1b1 · · · anbn = a1t−1ut , where

t = β1α1 · · · βrαrβr+1; βi ∈ B, αi ∈ A. If r = 1 , then t = β1α1β2, w =
β−1

2 α−1
1 β−1

1 uβ1α1β2. Lemma 2 implies

|ϕ(av) − ϕ(u1)| � 4c. (1.5)

Let r > 1 . Since v = a1β−1
r+1α−1

r β−1
r · · ·α−1

1 β−1
1 u1γ β1α1 · · · βrαrβr+1 is the

canonical form of v we obtain

|ϕ(v) − ϕ(a1t
−1) − ϕ(u1) − ϕ(γ t)| � 2c. (1.6)

Furthermore, since t = β1α1 · · ·βrαrβr+1 = β1t1, t1 = α1 · · · βrαrβr+1 ∈ D , we get

|ϕ(a1t) − ϕ(a1β1) − ϕ(α1β2 · · · βrαrβr+1)| � c,

|ϕ(a1t) − ϕ(t1)| � 2c.

The latter inequality and Lemma 1 imply

|ϕ(t1) − ϕ(γ t)| = |ϕ(t1) − ϕ(γ β1t1)| � 2c. (1.7)

Furthermore, since a1t−1 = a1t
−1
1 β−1

1 , Remark 2 implies

|ϕ(a1t
−1) − ϕ(t−1

1 )| � 6c. (1.8)

Now from (1.7) and (1.8) we have

|ϕ(a1t
−1) + ϕ(γ t)| = |ϕ(a1t

−1) − ϕ(t−1
1 ) + ϕ(t−1

1 ) + ϕ(γ t)| �

|ϕ(a1t
−1) − ϕ(t−1

1 )| + |ϕ(t−1
1 ) + ϕ(γ t)| � 6c + 2c = 8c.

From (1.6) it follows that
|ϕ(v) − ϕ(u1)| � 10c. (1.9)

And from (1.5) , (1.9) we get |ϕ(av) − ϕ(v)| � 14c.
Now consider the case b) u = βu2 ; u2 ∈ D, β ∈ B.
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It is clear that av = t−1βu2t , a1t−1βu2t are canonical forms such that ṫ ∈ A0 ,
ẗ ∈ B0 . From Remark 1 we obtain

|ϕ(v) − ϕ(a1t
−1β) − ϕ(u2) − ϕ(t)| � 2c. (1.10)

Let t ∈ M ; then |ϕ(a1t−1β)| � 3c, |ϕ(t)| � c . By (1.10) we obtain

|ϕ(v) − ϕ(u2)| � 6c. (1.11)

From (1.11), ϕ(w) = ϕ(βu2) and Lemma 2 we get |ϕ(av) − ϕ(v)| � 10c . Now
suppose that the length of the word t in alphabet M is more than 1. Then there is element
τ in D such that t = ã2b̃2τ, ã2 ∈ A0, b̃2 ∈ B0. Hence , v = a1τ−1b̃−1

2 ã−1
2 βu2ã2b̃2τ

and

|ϕ(v) − ϕ(a1τ−1b̃2) − ϕ(ã−1
2 β) − ϕ(u2) − ϕ(ã2b̃2) − ϕ(τ)| � 4c. (1.12)

Suppose that τ = α1β1α2β2 · · ·αkβk, k � 1; then

a1τ−1b̃2 = a1β−1
k α−1

k · · ·β−1
2 α−1

2 β−1
1 α−1

1 b̃2.

If k = 1 , then |ϕ(a1τ−1b̃2) − ϕ(α1β−1
1 ) − ϕ(α−1

1 b̃2)| � c. If k > 1 , then

|ϕ(a1τ−1b̃2) − ϕ(α1β−1
k ) − ϕ(α−1

k · · · β−1
2 α−1

2 β−1
1 ) − ϕ(α−1

1 b̃2)| � 2c

Hence, for any k � 1 we have

|ϕ(a1τ−1b̃2) − ϕ(α−1
k β−1

k−1 · · ·β−1
2 α−1

2 β−1
1 )| � 4c.

Let δ = β1α2β2 · · ·βk−1αk .
Then the latter inequality implies

|ϕ(a1τ−1b̃2) − ϕ(δ−1)| � 4c. (1.13)

Since τ = α1δβk we get ϕ(τ) = ϕ(δβkα1) and

|ϕ(τ) − ϕ(α1β1) − ϕ(α2β2 · · ·αk−1βk−1) − ϕ(αkβk)| � 2c.

Hence,
|ϕ(τ) − ϕ(α2β2 · · ·αk−1βk−1| � 4c. (1.14)

By definition we have ϕ(δ) = ϕ(α2β2 · · ·αk−1βk−1αkβ1) . Therefore,

|ϕ(δ) − ϕ(α2β2 · · ·αk−1βk−1) − ϕ(αkβ1)| � c

and
|ϕ(δ) − ϕ(α2β2 · · ·αk−1βk−1)| � 2c. (1.15)

From (1.14) and (1.15) we obtain

|ϕ(τ) − ϕ(δ)| � 6c. (1.16)

Using lemma 1, (1.13),(1.16) and (1.12) we get

|ϕ(v) − ϕ(δ−1) − ϕ(ã−1
2 β) − ϕ(u2) − ϕ(ã2b̃2) − ϕ(δ)| � 14c, i.e.,

|ϕ(v) − ϕ(u2)| � 16c. (1.17)
Now from ϕ(av) = ϕ(βu2) and Lemma 2 we obtain |ϕ(av) − ϕ(u2)| � 4c. Hence,
from (1.17) it follows |ϕ(av) − ϕ(v)| � 20c.

The case II, when d = b ∈ B is considered similarly. The Lemma is proved.
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DEFINITION. Let v be a word in alphabet A ∪ B . By regular subdivision of v we
mean its presentation in the form v = v1v2 , where v1, v2 are canonical forms such that
v̈1 · v̇2 /∈ A0 ∪ B0 .

LEMMA 4. Let t = c1c2 · · · ck be the canonical form and z ∈ A0 ∪ B0 . Then

|ϕ(zt) − ϕ(t)| � 40c. (1.18)

Proof. If t ∈ D , then Lemma 3 implies the inequality (1.18).
A. Let t = ba1b1 · · · anbna , v = a1b1 · · · anbn .
Then

|ϕ(t) − ϕ(v)| � 2c. (1.19)

Consider two cases: 1) z ∈ A0 2)z ∈ B0 .
In the case 1) we have |ϕ(zbv) − ϕ(v)| � 2c . From the Lemma 3 we obtain

inequality |ϕ(zt)−ϕ(zbv)| � 20c . Hence, from (1.19) it follows that |ϕ(zt)−ϕ(t)| �
24c.

In the case 2) we have zt ∼ va · zb.
If zb = 1 , then zt ∼ va and by Lemma 3 we have |ϕ(zt) − ϕ(v)| � 20c .

Therefore, (1.19) implies |ϕ(zt) − ϕ(t)| � 22c .
If zb �= 1 , then |ϕ(zt) − ϕ(v)| � 2c . And from (1.19) it follows that |ϕ(zt) −

ϕ(t)| � 4c .
B. Let t = a1b1 · · · anbna , v = a1b1 · · · anbn .
Lemma 3 implies that

|ϕ(t) − ϕ(v)| � 20c. (1.20)

Consider two cases a) z ∈ A0, b) z ∈ B0 .
In the case a) we have zt = zv ∼ vaz , and by Lemma 3 we obtain

|ϕ(zt) − ϕ(v)| � 20c. (1.21)

From (1.20,1.21) it follows that |ϕ(zt) − ϕ(t)| � 40c .
In the case b) we have zt = zva ∼ vaz ∈ D , therefore |ϕ(zt)− ϕ(v)| � 2c. From

this inequality and (1.20) we get |ϕ(zt) − ϕ(t)| � 22c.
C. t = ba1b1 · · · anbn = bv.
The Lemma 3 implies

|ϕ(t) − ϕ(v)| � 20c. (1.22)

a) z ∈ A0 . It is clear that zt ∼ vzb. Hence, |ϕ(zt) − ϕ(v)| � 2c. From
(1.22) we have |ϕ(zt) − ϕ(t)| � 22c.

b) z ∈ B0 . Lemma 3 implies that |ϕ(zt) − ϕ(v)| � 20c. Hence, from (1.22)
we obtain |ϕ(zt) − ϕ(t)| � 40c. The Lemma is proved.

LEMMA 5. Let v = c1c2 · · · cn be canonical form of a word v in alphabet A ∪ B ,
and let v = v1v2 be its regular subdivision . Then the following inequality

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 47c

holds.

Proof. 1) Let c̈1 · ċn /∈ A ∪ B .
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Consider the case when c1 ∈ A, cn ∈ B.
We have v1 = c1c2 · · · ck, v2 = ck+1ck+2 · · · cn. By the Lemma 3 we can assume

that n � 2 and 2 � k � n − 1 .
a) If ck ∈ B , then from the relation ϕ ∈ PX(D,−1) , we have

|ϕ(v) − ϕ(v1) − ϕ(v2)| � c.

b) If ck ∈ A , then ck = a, ck+1 = b and

v1 = ṽa, v2 = bṽ2; ṽ1, ṽ2 ∈ D.

Hence, ϕ(v) = ϕ(ṽ1a · bṽ2). Since ϕ
∣∣
D
∈ PX(D) , we get

|ϕ(v) − ϕ(ṽ1) − ϕ(ab) − ϕ(ṽ2)| � 2c. (1.23.)

From Lemma 3 it follows that

|ϕ(v1) − ϕ(ṽ1)| � 20c, |ϕ(v2) − ϕ(ṽ2)| � 20c. (1.24)

Therefore from (1.23) and (1.24) we obtain

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 43c.

Now let c1 ∈ B , cn ∈ A , then v has the form v = ba1b1a2b2 · · · ambma .
In the case a) for some positive integer r we have

v1 = ba1b1a2b2 · · · arbr, v2 = ar+1br+1b1 · · · ambma.

It is clear that

|ϕ(v) − ϕ(a1b1a2b2 · · · ambm) − ϕ(ab)| � c,

and
|ϕ(v) − ϕ(a1b1a2b2 · · · ambm)| � 2c. (1.25)

Lemma 3 implies the following inequalities

|ϕ(v1) − ϕ(a1b1a2b2 · · · arbr)| � 20c

and
|ϕ(v2) − ϕ(ar+1br+1b1 · · · ambm)| � 20c.

From the relation ϕ ∈ PX(D,−1) we obtain

|ϕ(a1b1 · · · ambm) − ϕ(a1b1 · · · arbr) − ϕ(ar+1br+1b1 · · · ambm)| � c.

By the three latter inequalities and (1.25) we get

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 43c.

b) In this case we have

v1 = ba1b1a2b2 · · · arbrar+1, v2 = br+1ar+2br+2 · · · ambma.
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Therefore, the following relations

|ϕ(v) − ϕ(a1b1a2b2 · · · ambm) − ϕ(ab)| � c,

|ϕ(v) − ϕ(a1b1a2b2 · · · ambm)| � 2c

and

|ϕ(a1b1a2b2 · · · ambm) − ϕ(a1b1a2b2 · · · arbr)
− ϕ(ar+1br+1) − ϕ(ar+2br+2b1 · · · ambm)| � 2c.

hold. Hence,

|ϕ(a1b1a2b2 · · · ambm) − ϕ(a1b1a2b2 · · · arbr) − ϕ(ar+2br+2b1 · · · ambm)| � 3c.

Now, taking into account (1.25), we obtain

|ϕ(v) − ϕ(a1b1a2b2 · · · arbr) − ϕ(ar+2br+2b1 · · · ambm)| � 5c. (1.26)

By definition of ϕ we have

|ϕ(v1) − ϕ(a1b1a2b2 · · · arbr)| � 2c. (1.27)

Similarly,
|ϕ(v2) − ϕ(ar+2br+2b1 · · · ambm)| � 2c. (1.28)

Therefore, from (1.26),(1.27),(1.28) it follows that

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 9c.

2) c̈1 · ċn ∈ A ∪ B .
I. Let c1, cn ∈ A , v = a1b1a2b2 · · · ambma;
a) v1 = a1b1a2b2 · · · akbk, v2 = ak+1bk+1 · · · ambma .

Since the function ϕ is a pseudocharacter of D , we have

|ϕ(a1b1a2b2 · · · ambm) − ϕ(v1) − ϕ(ak+1bk+1 · · · ambm)| � c. (1.29)

The Lemma 3 implies the following relations

|ϕ(v) − ϕ(a1b1a2b2 · · · ambm)| � 20c, (1.30)

|ϕ(ak+1bk+1 · · · ambma) − ϕ(ak+1bk+1 · · · ambm)| � 20c. (1.31)

Now from (1.29),(1.30),(1.31) we obtain

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 41c.

Consider the case b). We have

v1 = a1b1a2b2 · · · akbkak+1, v2 = bk+1 · · · ambma.

From Lemma 3 we get

|ϕ(v) − ϕ(a1b1a2b2 · · · ambm)| � 20c (1.32)
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By (1.32) and inequality

|ϕ(a1b1a2b2 · · · ambm) − ϕ(a1b1a2b2 · · · akbk) − ϕ(ak+1bk+1 · · · ambm)| � c

we have

|ϕ(v) − ϕ(a1b1a2b2 · · · akbk) − ϕ(ak+1bk+1 · · · ambm)| � 21c. (1.33)

Lemma 3 implies that

|ϕ(v1) − ϕ(a1b1a2b2 · · · akbk)| � 20c. (1.34)

Furthermore, it is clear that

|ϕ(v2) − ϕ(abk+1) − ϕ(ak+2bk+2 · · · ambm)| � c,

hence
|ϕ(v2) − ϕ(ak+2bk+2 · · · ambm)| � 2c

and
ϕ(v2) − ϕ(ak+1bk+1 · · · ambm)| � 4c. (1.35)

From (1.33),(1.34),(1.35) it follows inequality

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 45c.

II. Let c1, cn ∈ B . Suppose that v = c1c2 · · · ckck+1 · · · cn is canonical form and
v1 = c1c2 · · · ck, v2 = ck+1 · · · cn.

Consider two cases : a) ck ∈ A and b) ck ∈ B.
In the case a) for some positive integers m and l we get

v1 = ba1b1a2b2 · · · ambmam+1, v2 = bm+1am+2 · · · bl−1albl, bl ∈ B.

From definition of ϕ we have

ϕ(v1) = ϕ(a1b1a2b2 · · · ambmam+1b).

Therefore
|ϕ(v1) − ϕ(a1b1a2b2 · · · ambm)| � 2c. (1.36)

By Lemma 3
|ϕ(v2) − ϕ(am+2bm+2 · · · al−1bl−1albl)| � 20c.

Therefore,
|ϕ(v2) − ϕ(am+2bm+2 · · · al−1bl−1)| � 22c. (1.37)

Since
v = ba1b1a2b2 · · · ambmam+1bm+1am+2 · · · bl−1albl,

Lemma 3 implies that

|ϕ(v) − ϕ(a1b1a2b2 · · · albl)| � 20c. (1.38)

Since ϕ ∈ PX(D,−1) , we obtain

|ϕ(a1b1a2b2 · · · albl) − ϕ(a1b1a2b2 · · · ambm)−
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ϕ(am+1bm+1am+2 · · · bl−1albl)| � c (1.39)

and

|ϕ(am+1bm+1am+2 · · · bl−1albl) − ϕ(am+2bm+2am+2 · · · bl−1albl)| � 2c. (1.40)

From (1.39),(1.40) we have

|ϕ(a1b1a2b2 · · · albl) − ϕ(a1b1a2b2 · · · ambm) − ϕ(am+2bm+2 · · · bl−1albl)| � 3c.

From this inequality by (1.36), (1.37) and (1.38) we get

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 47c.

The case b) ck ∈ B.
In this case for some positive integers m and l we have the following relations

v1 = ba1b1a2b2 · · · ambm and v2 = am+1bm+1 · · · bl−1albl.
By Lemma 3

|ϕ(v) − ϕ(a1b1a2b2 · · · albl)| � 20c, (1.41)

|ϕ(v1) − ϕ(a1b1a2b2 · · · ambm)| � 20c. (1.42)

Now from (1.39),(1.41),(1.42) we obtain

|ϕ(v) − ϕ(v1) − ϕ(v2)| � 41c.

The Lemma is proved.

THEOREM 1. Let ϕ ∈ PX(D,−1) and c > 0 such that |ϕ(xy) − ϕ(x) − ϕ(y)| �
c ∀x, y ∈ D. Then the function ϕ is a pseudocharacter of group G such that for any
u, v from G the following inequality

|ϕ(uv) − ϕ(u) − ϕ(v)| � 261c.

holds.

Proof. The canonical forms of elements u and v are u = u1γ1t and v = t−1γ2v1

respectively, where γ1 and γ2 belong to the same of free factor and γ1 γ2 �= 1 . The
cases when among elements t, γ1, γ2, u1, v1 there are equal to 1 are possible.

It is clear that uv = u1(γ1γ2)v1 is canonical form of element uv in free product
G = A ∗ B .

Hence,
|ϕ(uv) − ϕ(u1) − ϕ(γ1γ2v1)| � 47c, by Lemma 5

and
|ϕ(γ1γ2v1) − ϕ(γ1γ2) − ϕ(v1)| � 40c, by Lemma 4

Therefore,
|ϕ(uv) − ϕ(u1) − ϕ(v1)| � 87c. (1.43)

Furthermore,

|ϕ(u1γ1t) − ϕ(u1) − ϕ(γ1t)| � 45c, by Lemma 5;
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and
|ϕ(u1γ1t) − ϕ(γ1) − ϕ(t)| � 40c, by Lemma 4

Hence,
|ϕ(u1γ1t) − ϕ(u1) − ϕ(t)| � 87c. (1.44)

Similarly,
|ϕ(t−1γ2v1) − ϕ(t−1) − ϕ(v1)| � 87c. (1.45)

Now from (1.43), (1.44), (1.45) and Lemma 1 we obtain

|ϕ(uv) − ϕ(u) − ϕ(v)|
= |ϕ(uv) − ϕ(u1) − ϕ(v1) + ϕ(u1) + ϕ(v1) − ϕ(u) − ϕ(v)|
� |ϕ(uv) − ϕ(u1) − ϕ(v1)| + |ϕ(u1) + ϕ(t) − ϕ(u)| + |ϕ(v1)

+ ϕ(t−1) − ϕ(v)|
� 3 · 87c = 261c.

The Theorem is proved.

THEOREM 2. 1) The mapping λ : ϕ → ϕ is an embedding PX(D,−1) into
PX(G);

2) PX(G) = PX(A)+̇PX(B)+̇PX(D,−1)

Proof. It is obvious that that the map λ : ϕ → ϕ is linear. Let us check that
kerλ = 0 . Indeed, if ϕ ≡ 0 on group G , then ϕ = ϕ

∣∣
D
≡ 0 . Now we claim that

subspace of PX(G) generated by PX(A), PX(B), and PX(D,−1) is their direct sum.
From definition of the mappings τ∗A and τ∗B , we have that the subspace of PX(G)

generated by PX(A) and PX(B) is their direct sum.
Indeed, if ϕ ∈ PX(A)

⋂
PX(B) , then ϕ

∣∣
A∪B

≡ 0, on the other hand, if F is
cartesian subgroup of G = A ∗ B , then ϕ

∣∣
F
≡ 0 .

Each element g ∈ G is uniquely representable in the form

g = abv, a ∈ A, b ∈ B, v ∈ F.

Hence,if c > 0 such that for any x, y ∈ G the following inequality holds |ϕ(xy) −
ϕ(x)−ϕ(y)| � c, then |ϕ(g)−ϕ(a)−ϕ(b)−ϕ(v)| � 2c and |ϕ(g)| � 2c ∀g ∈ G .
Furthemore, ϕ ≡ 0 . Now let us show that (PX(A)+̇PX(B))

⋂
PX(D,−1) = 0 .

Indeed, if ψ ∈ (PX(A)+̇PX(B))
⋂

PX(D,−1) , then from the relation ψ ∈ PX(D,−1)
we obtain ψ

∣∣
A∪B

≡ 0 , and from the relation ψ ∈ PX(A)+̇PX(B) we get ψ
∣∣
F
≡ 0 .

Hence, as above we have the inequality |ϕ(g)| � 2c ∀g ∈ G . The latter implies
that ψ ≡ 0 . Thus, the subspace of PX(G) , generated by PX(A), PX(B), PX(D,−1)
is their direct sum. We claim that PX(G) = PX(A)+̇PX(B)+̇PX(D,−1) . Indeed,
suppose that f ∈ PX(G) , f

∣∣
A

= ϕ1 , f
∣∣
B

= ψ1 . Then ϕ = τ∗A ◦ ϕ1 ∈ PX(G) ,
ψ = τ∗B ◦ ϕ2 ∈ PX(G).

And we have γ = (f − ϕ − ψ)
∣∣
A∪B

≡ 0 . Let us check that γ ∈ PX(D,−1) . Let
η = γ

∣∣
D

be pseudocharacter from PX(D,−1) and let η be its λ -image. Then we
have (γ − η)

∣∣
A∪B∪D

≡ 0 . Hence, γ − η ≡ 0 and γ = η , f = ϕ + ψ + γ .
The Theorem is proved.



DESCRIPTION OF PSEUDOCHARACTERS’ SPACE ON FREE PRODUCT OF GROUPS 283

§2 Description of the space PX(D,−1)

Let A and B be a groups of order two generated by a and b respectively, then
M = {a ·b} and any pseudocharacter of D is a real additive character of D . Obviously,
in this case for any v ∈ D we have v = v−1 . This implies that if ϕ ∈ PX(D,−1) ,
then ϕ ≡ 0 .

Hence, we may assume that either the order of the group A or the order of the
group B is more than two.

Let D∗ be a free subsemigroup of the group G generated by the set M∗ = {ba | b ∈
B0, a ∈ A0}.

For any word v in alphabet M we introduce the set of “beginnings” H(v) and the
set of “ends” K(v) as follows. H(v) = K(v) = ∅ , if |v| � 1 and

H(v) = {xi1 , xi1xi2 , . . . , xi1xi2 . . . xin−1
},

K(v) = {xi2 . . . xin , xi3 . . . xin , . . . , xin−1
xin , xin},

if v = xi1 · . . . · xin , n > 1.
Denote by ∼D and ∼D∗ respectively the restrictions of the relation ∼ to D and

D∗ respectively.
It is evident that ∼D and ∼D∗ are an equivalence relations.
For any element w from D such that H(w) ∩ K(w) = ∅ in [10] the functions

ηw(v) and ew(v) were defined as follows. If v ∈ D , then ηw(v) is equal to the number
of occurrences of w in the word v ;

ew(v) = max{ηw(v′) | v′ ∼D v}.
An element v from the free semigroup D is called simple if it is not a nontrivial

power of another element u ∈ D .
The set of simple elements of semigroup D will be denoted by P . Obviously,

that if u ∼D v , then u ∈ P if and only if v ∈ P .
By Lemma 8 from [10] we have that in any class of ∼D conjugate elements

belonging to the set P there is representative w satisfies to the condition

H(w) ∩ K(w) = ∅. (2.1)

Let us fix some of a system P of representatives w of classes ∼D conjugate
elements belonging to the set P such that the relation (2.1) holds.

It is clear that if w is a word in alphabet M such that H(w) ∩K(w) = ∅ , then the
word w−1 in alphabet M∗ satisfies the condition H(w−1) ∩ K(w−1) = ∅. By Lemma
13 from [10] we have that for any w ∈ P the function ew is the pseudocharacter of
semigroup D such that for any u, v from D the relation

|ew(uv) − ew(u) − ew(v)| � 2

holds. A similar pseudocharacter of semigroup group D∗ which corresponds to the
word w−1 denote by ew−1 . Denote by P0 a subset of P consisting of elements w
such that w ∼ w−1 in the group G . Let Q = P \ P0. Let us check that Q �= ∅. Let
a ∈ A0 ; b1, b2 ∈ B0 and b1 �= b2 .
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Then the criterion of conjugacy in the free product of groups (see [29]) implies
that if a2 �= 1 , then element w = ab1 is not conjugate to w−1 = b−1

1 a−1.
Now assume that the group A and B satisfy to the identity relation x2 = 1 .
Since G is not infinite dihedral group we may assume that there are elements

b1, b2, b3 ∈ B such that bi �= bj , if i �= j . Consider a words of the form wi,j,k =
(ab1)i(ab2)j(ab3)k . Then w−1

i,j,k = (b3a)k(b2a)j(b1a)i ∼ (ab3)k(ab2)j(ab1)i . The
criterion of conjugacy in the free product of groups implies that for any positive integers
i, j, k the elements wi,j,k and w−1

i,j,k are not conjugate.
Note that H(wi,j,k) ∩ K(wi,j,k) = ∅ .
Let w ∈ Q ; then from definition of the set Q we obtain w �∼ w−1 in group G .

Therefore, there exists w1 ∈ Q such that w−1 ∼ w1 .
Obviously, w−1

1 ∼ w . Define a relation ∼1 on the set Q as follows. Set w1 ∼1 w2

if and only if either w1 = w2 or w−1
1 ∼ w2 .

It is clear that ∼1 is the relation of equivalence such that there are only two
elements in each class of ∼1 equivalency.

Let us choose in each of these classes a representative. Denote by Q+ the set of
these representatives.

By Q+
n denote subset of Q+ consisting of element of length n in alphabet M .

LEMMA 6. Let ϕ ∈ PX(D,−1) . Then ϕ by its restriction on the set Q+ com-
pletely defined.

Proof. Suppose that there is element ψ in PX(D,−1) such that ψ
∣∣
Q+ ≡ ϕ

∣∣
Q+ ;

then f = (ϕ − ψ)
∣∣
Q+ ≡ 0.

By Lemma 1 ϕ uniquely defined by its restriction on P . Let v ∈ P . If v ∼ v−1 ,
then f (v) = f (v−1) = −f (v) . Hence, f (v) = 0 .

If v �∼ v−1 , then there is w ∈ Q+ such that either v is conjugate to w or v is
conjugate to element w−1 .

Therefore, f (v) = 0 . Then f ≡ 0 on D and ϕ ≡ ψ .
The Lemma is proved.

Let H(w) = H(w) ∪ {w} , K(w) = K(w) ∪ {w} . Define measures μu,v,μa,b,c

u, v, a, b, c ∈ D on Q+ as follows.
We set μu,v(w) = 1 if there exist x and y such that x ∈ K(w) , y ∈ H(w) , and

w = xy ; otherwise we set μu,v(w) = 0 .
We set μa,b,c(w) = 1 if there exist x, y such that x ∈ K(u) , y ∈ H(w) , and

w = xby ; otherwise we set μa,b,c(w) = 0 .
Similarly the measures μu,v, μa,b,c(w) u, v, a, b, c ∈ D∗ on Q−1 are defined.
Set

νu,v(w) = μu,v(w) + μv,u(w) + μu,v,u(w) + μv,u,v(w) − μu,u(w) − μv,v(w).

It is easy to prove that

νu,v(w) = μu,v(w) + μuv,uv(w) − μu,u(w) − μv,v(w).

Hence, the measure νu,v take values from the set {−2,−1, 0, 1, 2} .
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Let v = c1c2 · · · ckck+1 be canonical form.
We set ṽ = 1 ,if k = 1 and ṽ = c2 · · · ck , if k > 1 .
For u = a1b1a2b2 · · · anbn ∈ D \ {1} we have u̇ = a1, ü = bn ; and ũ = 1, if

n = 1 ; ũ = b1a2b2 · · · an, if n > 1 . Therefore,

u = ũüu̇, v = ṽv̈v̇, uv = ũüv̇ṽv̈u̇. (2.2)

For any t ∈ M∗ and any w ∈ Q+ we set δt(w−1) = 1 , if t = w−1 ; and
δt(w) = 0 , if t �= w−1 . Now for u, v from D \ {1} define measure ζu,v(w) on Q+ by
setting

ζu,v(w) = δüv̇(w) + δv̈u̇(w) − δüu̇(w) − δv̈v̇(w)

+νũüv̇,ṽv̈u̇(w−1) + νũ,üv̇(w−1) + νṽ,v̈u̇(w−1)

−νũ,üu̇(w−1) − νṽ,v̈v̇(w−1). (2.3)

By Lemma 12 from [10] we have

ew(uv) − ew(u) − ew(v) = νu,v(w). (2.4)

Hence, for any a, b, c, d ∈ D we obtain

ew(abcd) − ew(ab) − ew(cd) = νab,cd(w),
ew(ab) − ew(a) − ew(b) = νa,b(w),
ew(cd) − ew(c) − ew(d) = νc,d(w).

These equalities imply

ew(abcd) = ew(a) + ew(b) + ew(c) + ew(d) + νab,cd(w) + νa,b(w) + νc,d(w). (2.5)

LEMMA 7. For any w ∈ Q+ and any u, v ∈ D the following equality holds

ew−1(uv) − ew−1(u) − ew−1(v) = ζu,v(w).

Proof. Taking into account (2.2), (2.4), (2.5), we obtain

ew−1(uv) − ew−1(u) − ew−1(v) = ew−1(ũüv̇ṽv̈u̇) − ew−1(ũüu̇) − ew−1(ṽv̈v̇)
= ew−1(ũ) + ew−1(üv̇) + ew−1(ṽ) + ew−1(v̈u̇)

+ νũüv̇,ṽv̈u̇(w−1) + νũ,üv̇(w−1) + νṽ,v̈u̇(w−1)

− ew−1(ũ) − ew−1(üu̇) − νũ,üu̇(w−1) − ew−1(v̈u̇) − ew−1(ṽ) − νṽ,v̈v̇(w−1)
= ew−1(üv̇) + ew−1(v̈u̇) − ew−1(üu̇) − ew−1(v̈v̇)

+ νũüv̇,ṽv̈u̇(w−1) + νũ,üv̇(w−1) + νṽ,v̈u̇(w−1) − νũ,üu̇(w−1) − νṽ,v̈v̇(w−1)

= δüv̇(w) + δv̈u̇(w) − δüu̇(w) − δv̈v̇(w) + νũüv̇,ṽv̈u̇(w−1)

+ νũ,üv̇(w−1) + νṽ,v̈u̇(w−1) − νũ,üu̇(w−1) − νṽ,v̈v̇(w−1) = ζu,v(w).

The Lemma is proved.
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If w ∈ M , it is clear that

νũüv̇,ṽv̈u̇(w−1) = νũ,üv̇(w−1) = νṽ,v̈u̇(w−1) = νũ,üu̇(w−1) = νṽ,v̈v̇(w−1) = 0.

Hence, we obtain

ζu,v(w) = δüv̇(w) + δv̈u̇(w) − δüu̇(w) − δv̈v̇(w) ∀w ∈ M. (2.6)

If w /∈ M , then we have

δüv̇(w) = δv̈u̇(w) = δüu̇(w) = δv̈v̇(w) = 0.

Therefore, from (2.3) we obtain

ζu,v(w) = νũüv̇,ṽv̈v̇(w−1) + νũ,üv̇(w−1)

+ νṽ,v̈u̇(w−1) − νũ,üu̇(w−1) − νṽ,v̈v̇(w−1). (2.7)

For any w ∈ Q+ and any u, v ∈ D define Θu,v(w) by setting

Θu,v(w) = νu,v(w) − ζu,v(w). (2.8)

Note that if either u̇ = v̇ or ü = v̈ ,then Θu,v(w) = 0 ∀w ∈ M.
Indeed, for example if u̇ = v̇ , then we obtain üv̇ = üu̇, v̈u̇ = v̈v̇ . Hence, (2.8)

implies Θu,v(w) = 0. Thus,if Θu,v(w) �= 0 , then u̇ �= v̇, ü �= v̈ . From the latter we
obtain that the words üv̇, v̈u̇, üu̇, v̈v̇ are pare wise different. Hence, the measure Θu,v

on Q+
1 take values from the set { −1, 0, 1 } .

LEMMA 8. Suppose that w ∈ Q+ and H(w) ∩ K(w) = ∅ . Then a function

v → πw(v) = ew(v) − ew−1(v)

is an element from PX(D,−1) .

Proof. Obviously, for any v ∈ D we have

ew(v) = ew−1(v−1). (2.9)

It easy to see that for any v ∈ D the following relations hold:

(v−1)−1 ∼ v and v−1 ∼ (v)−1. (2.10)

Hence, (2.9) implies that for any v ∈ D the equality ew(v−1) = ew−1(v−1)−1 holds.
From (2.10) we obtain the following relations

ew(v−1) = ew−1(v), (2.11)

ew−1(v−1) = ew(v). (2.12)

From (2.11) and (2.12) we get

πw(v−1) = ew(v−1) − ew−1(v−1) = ew(v−1) − ew−1(v) = πw(v),
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and
πw(v−1) = −πw(v).

Let us check that for any n ∈ N and any v ∈ D the relation

πw(vn) = nπw(v)

holds. Indeed, it easy to see that vn ∼ (v)n, hence we obtain

πw(vn) = ew(vn) − ew−1(vn) = new(v) − ew−1((v)n) = new(v) − new−1(v) = nπw(v).

Suppose that u = a1b1a2b2 · · · anbn, v = α1β1α2β2 · · ·αkβk are an arbitrary
elements from D \ {1} .

Let us check that |πw(uv) − πw(u) − πw(v)| � 12. In fact, for any w ∈ Q we
have |νu,v(w)| � 2 . Hence, from (2.7) and (2.8) we obtain the following estimations
|ζu,v(w)| � 10 and

|Θu,v(w)| � 12. (2.13)

Furthermore, we get

|πw(uv) − πw(u) − πw(v)| = |ew(uv) − ew(u) − ew(v) − e−1
w (uv) + e−1

w (u) + e−1
w (v)|

= |νu,v(w) − ζu,v(w)| � |νu,v(w)| + |ζu,v(w)| � 12.

The Lemma is proved.

LEMMA 9. Let w ∈ P . Then we have:
1) ew(u) = 0 , for any u ∈ D such that |u| < |w| ;
2) ew(u) = 0 , if |u| = |w| and u �∼ w ;
3) ew(u) = 1 , if u ∼ w .

Proof. See [10, Lemma 13].

COROLLARY A. For each w ∈ Q+ ,and each u ∈ D we have
1) πw(u) = 0 ,if |u| < |w| ;
2) πw(u) = 0 , if |u| = |w| but u �∼ w, u �∼ w−1 ;
3) πw(u) = ε ,if u ∼ wε , ε ∈ {+1,−1} .

Proof. 1) Obviously. 2). From Lemma 9 if follows ew(u) = 0 , ew−1(u) = 0 .
Hence, πw(u) = 0 .

3). Let u ∼ w . Since w ∈ Q+ , we have u �∼ w−1 .Therefore, ew−1(u) = 0 and
πw(u) = 1 . Similarly, if u ∼ w−1 , then ew(u) = 0 , ew(u−1) = 1 .Therefore,πw(u) =
ew−1(u) = −1 .

The corollary is proved.

From the definition of the measures νu,v it follows that for each elements u and
v from D there are at most 4(n − 1) words in Pn such that νu,v(w) �= 0 . Hence, we
have

|Pn ∩ supp Θu,v| � 24(n − 1). (2.14)



288 V. A. FAĬZIEV

LEMMA 10. Suppose that n ∈ N and λ is a bounded function on Q+
n . Then the

function

ψλ =
∑

w∈Q+
n

λ (w)πw (*)

belongs to the space BPX(D,−1) .
And for any w0 ∈ Q+

n the following equality ψλ (w0) = λ (w0) holds.

Proof. Let λ0 = sup{λ (w)|w ∈ Q+
n }. First consider the case n = 1 .

It is clear that ew(uv) − ew(u) − ew(v) = 0 and

πw(uv) − πw(u) − πw(v) = −[δüv̇(w) + δv̈u̇(w) − δüu̇(w) − δv̈v̇(w)].

Hence, we get

|ψ(uv) − ψ(u) − ψ(v)| =|
∑

w∈Q+
1

λ (w)[πw(uv) − πw(u) − πw(v)]|

=|
∑

w∈Q+
1

λ (w)[δüv̇(w) + δv̈u̇(w) − δüu̇(w) − δv̈v̇(w)]|.

It is easy to see that for any pair u, v there are at most four elements w ∈ M such
that

δüv̇(w) + δv̈u̇(w) − δüu̇(w) − δv̈v̇(w) �= 0.

Hence, taking into account the Remark 3, we obtain

|ψ(uv) − ψ(u) − ψ(v)| � |
∑

w∈Q+
1

λ (w) | � 4 · λ0.

Now let n > 1 . From (2.13), (2.14) we get

|ψλ (xy) − ψλ (x) − ψλ (y)| = |
∑

w∈Q+
n

λ (w)[πw(xy) − πw(x) − πw(y)] |

= |
∑
Q+

n

λ (w)Θu,v(w) | �
∑

w∈Q+
n

|λ (w)||Θu,v(w)|

� λ0 · 12 · 24(n − 1) = 288λ0 · (n − 1).

The Corollary A implies that for any w0 ∈ Q+
n the equality ψλ (w0) = λ (w0) holds.

The Lemma is proved.

Denote by K(D) the set of functions ϕ on the semigroup D satisfying the
following relations :

1) ϕ(xn) = nϕ(x) ∀n ∈ N, ∀x ∈ D ;
2) ϕ(xy) = ϕ(yx) ∀x, y ∈ D ;
3) ϕ((v)−1) = −ϕ(v) ∀v ∈ D ;
4) ϕ

∣∣
Qi

is a bounded function ∀i ∈ N.

It is clear that K(D) is a linear space (with respect to ordinary operations).
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LEMMA 11. Let ϕ ∈ PX(D,−1) ; then ϕ is bounded on Q+
n ∀n ∈ N.

Proof. From the condition of the Lemma it follows that the function ϕ
∣∣
M

is
bounded. Let c > 0 such that for any x, y ∈ D the inequality |ϕ(xy)−ϕ(x)−ϕ(y)| � c
holds.

By induction on n we obtain |ϕ(x1x2 . . . xn+1) −
∑n

i=1 ϕ(xi)| � n · c . The latter
implies that the function ϕ

∣∣
Q+

n
is bounded ∀n ∈ N .

The Lemma is proved.

From Lemma 11 it follows that PX(D,−1) is subspace of K(D) .
Denote by L(Q+) the space of real-valued functions α on Q+ satisfying the

following condition: α
∣∣
Q+

n
is bounded for any n ∈ N .

Let us construct an isomorphism Δ between the spaces K(D) and L(Q+) .
Let ϕ ∈ K(D) . For each i ∈ N we define the function αi : Q+

i → R by induction
as follows : α1 ≡ ϕ

∣∣
Q+

1
, and if the values α1, . . . ,αn have already been defined, then

we set

αn+1 = (ϕ −
n∑

i=1

ϕαi)
∣∣
Q+

n+1
(w), w ∈ Q+

n+1. (2.15)

Here ϕαi are pseudocharacters introduced in the Lemma 10 by (*).
Now we define the function α = Δ(ϕ) via its restriction to Q+

i by setting
α

∣∣
Q+

i
= αi.

Let us show that Δ(ϕ) belongs to L(Q+) . Indeed, we have α
∣∣
Q+

1
= α1. Fur-

thermore, suppose that we have already established that the functions α
∣∣
Q+

1
, . . . ,α

∣∣
Q+

n

are bounded. Let us prove that α
∣∣
Q+

n+1
is also bounded. Indeed, Lemma 11 implies

that all pseudocharacters ϕα1 ,ϕα2 , . . . , ϕαn are bounded functions on Q+
n+1 . Hence,

Δ(ϕ) ∈ L(Q+) .
Now let us show that the mapping Δ is linear. First we note that if τ, τ1, τ2 are

bounded functions on Q+
n+1 and λ1, λ2 are reals such that τ = λ1τ1 + λ2τ2 , then we

have
ϕτ = λ1ϕτ1 + λ2ϕτ2 , (2.16)

where ϕτ , λ1ϕτ1 , λ2ϕτ2 are the pseudocharacters defined in Lemma 10.
Suppose that the function ϕ ∈ K(D) satisfies formula (2.15). Let λ ∈ R .

Assume that we have already established that the restrictions of the function Δ(ϕ) to
Q+

1 , . . . , Q+
n are equal to λα1, λα2, . . . , λαn respectively. Then from formulas (2.15)

and (2.16) we obtain:

Δ(λϕ)
∣∣
Q+

n+1
=

(
λϕ −

n∑
i=2

ϕλαi

)∣∣
Q+

n+1
=

(
λϕ −

n∑
i=2

λϕαi

)∣∣
Q+

n+1
= λαn+1,

i.e., Δ(λϕ) = λΔ(ϕ) .
Let ψ ∈ K(D) and Δ(ψ)

∣∣
Q+

n
= βn ∈ N. Then it is clear that (ϕ + ψ)

∣∣
Q+

1
≡

0, (ϕ + ψ)
∣∣
Q+

2
= ϕ

∣∣
Q+

2
+ ψ

∣∣
Q+

2
= α2 + β2.
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Suppose that we have already established that (ϕ + ψ)
∣∣
Q+

i
= ϕ

∣∣
Q+

i
+ ψ

∣∣
Q+

i

i = 1, . . . , n . Then for n + 1 the formulas (2.15) and (2.16) imply
(ϕ+ψ)

∣∣
Q+

n+1
=

(
(ϕ+ψ)−∑n

i=2 ϕ(αi+βi)
)∣∣

Q+
n+1

=
(
(ϕ+ψ)−∑n

i=2(ϕαi +ϕβi)
)∣∣

Q+
n+1

=(
ϕ − ∑n

i=2 ϕαi

)∣∣
Q+

n+1
+

(
ψ − ∑n

i=2 ϕβi

)∣∣
Q+

n+1
= αn+1 + βn+1 = ϕ

∣∣
Q+

n+1
+ ψ

∣∣
Q+

n+1
.

Thus, the mapping Δ is linear.
Let us show that Δ maps K(D) onto L(Q+) . Indeed, let α ∈ L(Q+) and

α
∣∣
Q+

i
= αi . Since for each w ∈ Q+ there is only a finite set of nonzero numbers of the

form ϕαn(w), n ∈ N , the function ϕ =
∑∞

i=2 ϕαi on D is well defined and belongs
to the space K(D) . Let us show that Δ(ϕ) = α . We set Δ(ϕ)

∣∣
Q+

i
= β ; let us verify

that βi = αi ∀i ∈ N . Since β1 = ϕ
∣∣
Q+

1
, we have β1 = α1 . Suppose that we have

already established the relations βi = αi for i � n ; then for all w ∈ Q+
n+1 we have

βn+1(w) =
(
ϕ(w) −

n∑
i=2

ϕαi(w)
)

=
∞∑
i=2

ϕαi(w) −
n∑

i=2

ϕαi(w) =
∞∑

i=n+1

ϕαi(w)

by formula (2.15).
Furthermore,since ϕαi

∣∣
Q+

n+1
≡ 0, ∀i > n + 1 , we obtain

∞∑
i=n+1

ϕαi(w) = ϕαn+1(w) = αn+1(w),

where the latter equality follows from Lemma 10. Thus, βn+1 = αn+1 , and Δ is onto.
Now let us verify that kerΔ = 0 . Indeed,let ϕ ∈ K(D) and Δ(ϕ) = 0. This

means αi = Δ(ϕ)Q+
i
≡ 0 ∀i ∈ N. Formula (2.15) implies ϕ

∣∣
Q+

1
≡ 0,ϕ

∣∣
Q+

2
≡ 0

and for any w ∈ Q+
n+1 we get ϕ(w) =

∑n
i=2 ϕαi(w) + αn+1(w) =

∑n+1
i=2 ϕαi(w).

Since αi ≡ 0 ∀i ∈ N ,we have ϕαi(w) ≡ 0 ,therefore, the latter equality implies
ϕ
∣∣
Q+

n+1
≡ 0 . Now from properties 1) and 2) of functions from the space K(D) it

follows that ϕ
∣∣
Q+

1
≡ 0 . Therefore, kerΔ = 0 . Hence, as was shown above, for a

function α from L(Q+) such that α
∣∣
Q+

i
= αi ∀i ∈ N , we have

Δ−1(α) =
∞∑
i=2

ϕαi(w). (2.17)

Thus, Δ is an isomorphism between linear spaces K(D) and L(Q+) .
Furthermore, if Δ(ϕ) = α , then ϕ by formula (2.17) is defined. Denote by

L(Q+,Θ) a subspace of L(Q+) , consisting of functions α ∈ L(Q+) such that the
quantities ∣∣ ∫

Q+
αdΘu,v

∣∣ u, v ∈ D

are uniformly bounded.
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THEOREM 3. 1) The mapping Δ establish an isomorphism between linear spaces
PX(D,−1) and L(Q+,Θ).

2) Each element ϕ from the space PX(D,−1) is uniquely representable in the
form

ϕ =
∑

w∈Q+

α(w)πw, where α ∈ L(Q+,Θ)

Proof. Let us show that under the isomorphism Δ : K(D) → L(Q+) we assign to
the element of PX(D,−1) functions α from L(Q+) such that

∣∣ ∫
Q+ αdΘu,v

∣∣ � ε for
some ε > 0 and any u and v from D .

Let ϕ ∈ PX(D,−1) . Let us choose ε > 0 such that |ϕ(uv) − ϕ(u) − ϕ(v)| � ε
for each u and v from D . Suppose that Δ(ϕ) = α , then

∣∣ ∫
Q+

αdΘu,v

∣∣ =
∣∣ ∞∑

i=2

∫
Q+

i

αdΘu,v

∣∣ =
∣∣ ∞∑

i=2

∫
Q+

i

αidΘu,v

∣∣ =
∣∣ ∞∑

i=2

∑
w∈Q+

i

αi(w)dΘu,v(w)
∣∣

=
∣∣ ∞∑

i=2

∑
w∈Q+

i

αi(w)
(
πw(uv) − πw(u) − πw(v)

)∣∣

=
∣∣ ∞∑

i=2

( ∑
w∈Q+

i

αi(w)πw(uv) −
∑

w∈Q+
i

αi(w)πw(u) −
∑

w∈Q+
i

αi(w)πw(v)
)∣∣

= (by Lemma 10) =
∣∣ ∞∑

i=2

(
ϕαi(uv) − ϕαi(u) − ϕαi(v)

)∣∣
= |ϕ(uv) − ϕ(u) − ϕ(v)| � ε.

Now let α ∈ L(Q+) and
∣∣ ∫

Q+ αdΘu,v

∣∣ � ε for some ε > 0 and each u and v

from D . If αi = α
∣∣
Q+

i
and ϕ = Δ−1(αi) , then ϕ =

∑∞
i=2 ϕαi . Therefore, we have

|ϕ(uv) − ϕ(u) − ϕ(v)| =
∣∣ ∞∑

i=2

(
ϕαi(uv) − ϕαi(u) − ϕαi(v)

)∣∣

=
∣∣ ∞∑

i=2

( ∑
w∈Q+

i

αi(w)πw(uv) −
∑

w∈Q+
i

αi(w)πw(u) −
∑

w∈Q+
i

αi(w)πw(v)
)∣∣

=
∣∣ ∞∑

i=2

∑
w∈Q+

i

αi(w)
(
πw(uv) − πw(u) − πw(v)

)∣∣

=
∣∣ ∞∑

i=2

∑
w∈Q+

i

αi(w)dΘu,v(w)
∣∣ =

∣∣ ∫
Q+

α(w)dΘu,v(w)
∣∣ � ε.

The Theorem is proved.
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