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NEW CONVERGENCE RESULTS OF ITERATIVE METHODS

FOR SET–VALUED MIXED VARIATIONAL INEQUALITIES
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(communicated by T. M. Rassias)

Abstract. An iterative method for solving set-valued variational inequalities is considered and
its convergence properties are studied under strong monotonicity and coercivity conditions. The
results obtained in this paper include, as a special case, some known results in this field.

1. Introduction

In recent years, variational inequalities have been extended and generalized in
several directions using new, innovative, and novel techniques to study a wide class of
problems arising in pure and applied sciences. Inspired and motivated by the research
going on this field, we propose an iterative method for solving a class of variational
inequalities, which is called the generalized mixed variational inequality. We study the
convergence analysis of this algorithm relying on an equivalent fixed point formulation
of the given problem. We show a strong convergence result on strong monotonicity
and Lipschitz continuity assumptions, as well as a weak convergence result on a weaker
condition which is called " co-coercivity". The latter implies that the operator is
Lipschitz continuous with respect to the Hausdorff excess which ensures, in particular,
the boundedness of the operator on bounded sets.

To begin with, let X be a real Hilbert space, and let the associated inner product
and norm be denoted by 〈 ·, ·〉 and | · | respectively. Troughout, we use the following
concepts which are of the common use in the context of convex and nonlinear analysis.
A mulifunction T : X → 2X is said to be a monotone operator if

〈 x − x′, y − y′〉 � 0 whenever y ∈ T(x), y′ ∈ T(x′). (1)

It said to be maximal monotone if, in addition, the graph {(x, y) ∈ X×X; y ∈ T(x)} :=
graph T is not properly contained in the graph of any other monotone operator. Such
operators have been studied extensively because of their role in the modelization of
unilateral problems, nonlinear dissipative systems, convex optimization ...
Let T−1 be the inverse of T , i.e., T−1(y) = {x ∈ X; y ∈ T(x)} . Obviously T−1 is
maximal monotone if and only if T is maximal monotone. The effective domain of
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T is the set {x ∈ X; T(x) �= ∅} := Dom T . The resolvent of parameter λ > 0 of T
is given by JT

λ := (I + λT)−1 . It is a contraction which is everywhere defined. The
subdifferential, ∂ϕ(x0) , of a convex function ϕ : X → R∪ {+∞} at x0 , is defined as
the set of y0 ∈ X satisfying

ϕ(x) � ϕ(x0) + 〈 y0, x − x0〉 ∀x ∈ X. (2)

Remember that the subdifferential of a proper convex and lower semicontinuous function
is a maximal monotone operator, see Brézis [4].
Finally, for a subset D of X , we denote the distance from x ∈ X to D by dist(x, D) =
inf y∈D|x − y| and for C and D subsets of X , the Hausdorff excess of C over D by
e(C, D) = supx∈Cd(x, D) . Let us remark That if C is bounded, then e(C, D) < +∞ .

2. Formulation and Basic results

Let ϕ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function
and T, V : X → 2X two given monotone operators with closed values. We consider the
problem of finding x ∈ X, y ∈ T(x), z ∈ V(x) such that

(MVI) 〈 y + z, u − x〉 + ϕ(u) − ϕ(x) � 0 ∀u ∈ X.

The problem (MVI) is called the set-valued mixed variational inequality. This problem
has many important and significant applications and a wide class of obstacle, unilateral,
contact and free boundary problem arising in pure and applied sciences can be studied
in the general framework of mixed variational inequalities.

EXAMPLE 2.1. To convey an idea of the applications of the set-valued variational
inequality (MV I ), we consider an elastoplasticity problem, which is mainly due
to Panagiotopoulos and Stavroulakis [14]. For simplicity, it is assumed that a general
hyper-elastic material law holds for the elastic behaviour of the elastoplastic material
under consideration. Let us assume the decomposition

E = Ee + Ep

where Ee denotes the elastic and Ep denotes the plastic deformation of the three-
dimentional elasto-plastic body. We write the complementary virtual work expression
for the body in the form

〈Ee, τ − σ〉 + 〈Ep, τ − σ〉 = 〈 f , τ − σ〉 , ∀τ ∈ Z.

Here we have assumed that the body on a part ΓU of its boundary Γ has given
displacements, that is, μi = Ui on ΓU and that on the rest of its boundary ΓF = Γ−ΓU ,
the boundary tractions are given, that is, Si = Fi on ΓF , where

〈E,σ〉 =
∫
Ω
εijσijdΩ

〈 f ,σ〉 =
∫
ΓU

UiSidΓ
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Z = {τ : τij ,j + f i = 0 on Ω, i, j = 1, 2, 3, Ti = Fi on ΓF, i = 1, 2, 3},
is the set of statically admissible stresses and Ω is the structure of the body. Let us
assume that the material of the structure Ω is hyperelastic such that

〈Ee(σ), τ − σ〉 � 〈W ′
m(σ), τ − σ〉 ∀τ ∈ R

6,

where Wm is the superpotential which produces the constitutive law of the hyperelastic
material and is assumed to be quasi-differentiable, that is, there exist convex and compact
subsets ∂′Wm and ∂′Wm such that

〈W ′
m(σ), τ − σ〉 = maxWe

1∈∂′Wm〈We
1(σ), τ − σ〉 + min

We
2∈∂′Wm

〈We
2(σ), τ − σ〉

Here Wm is a generally nonconvex and nonsmooth, but is quasi-differentiable function
for the case of plasticity with convex yield surface and hyperelasticity. Combining
these facts and using the technique of Panagiotopoulos and Stavroulakis [14] we ob-
tain the following multivalued variational inequality problem: Find σ ∈ Z, We

1 ∈
∂′Wm(σ), We

2 ∈ ∂′Wm(σ) such that

〈We
1 + We

2 , τ − σ〉 � t
∫
Γ
h(|τ| − |σ|)dΩ � 〈 f , τ − σ〉 , ∀τ ∈ Z

which is exactly the problem (MVI ), with y = We
1 , z = We

2 , ϕ(σ) =
∫

F h(|σ|)dΩ ,
h is a positive bounded function on the friction, T(σ) = ∂′Wm(σ) , V(σ) = ∂′Wm(σ)
and X = Z . For further applications, see [14].
It worth noting that if ϕ is the indicator function of a closed convex set C , V = 0 and
T a single-valued operator, then problem (MVI) reduces to finding x ∈ C such that

(V I) 〈Tx, y − x〉 ∀y ∈ C,

which is the classical variational inequality problem introduced by Stampacchia [18] in
1964. For a suitable choice of the operators T, V, ∂ϕ and the space X , one can obtain
a number of classes of variational inequalities and related complementarity problems
studied by many authors including Noor [12], Adly and Oettli [1] and Moudafi and
Théra [10] from the problem (MVI) .

3. Algorithm and Convergence Analysis

3.1. Equivalence and an iterative algorithm

In this section, we establish the equivalence between (MVI) and a fixed point
formulation which will be used to suggest our iterative method.

PROPOSITION 1. x ∈ X is a solution of (MVI) if and only if, x ∈ X, y ∈ T(x), z ∈
V(x) satisfy the relation

x = Jϕλ (x − λ (y + z)) ,

where λ > 0 is a constant and Jϕλ (x) = (I + λ∂ϕ)−1 is the proximal mapping.
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Proof. Let x ∈ X, y ∈ T(x), z ∈ V(x) be a solution of (MVI) , then

〈 y + z, u − x〉 + ϕ(u) − ϕ(x) � 0 ∀u ∈ X. (3)

Definition of the subdifferential yields,

−(y + z) ∈ ∂ϕ(x)

which can be rewriten as

x − λ (y + z) ∈ (I + λ∂ϕ) (x),

from which we deduce the desired result, i.e.,

x = Jϕλ (x − λ (y + z)) ,

where λ > 0 is a constant.
�

This alternate formulation,which ismore flexible, is very important fromnumerical
and approximation point of views. We use it to suggest and analyze an iterative
algorithm. It is worth mentioning that this equivalente formulation can be applied to
study the sensitivity analysis of variational inequality problems.

ALGORITHM.
For a given x0 ∈ X, γ > 0 , compute the sequences (xn)n∈N, (yn)n∈N and (zn)n∈N by
the iterative schemes

⎧⎨
⎩

∀n ∈ N
∗ xn = (1 − γ )xn−1 + γ Jϕλ (xn−1 − λ (yn−1 + zn−1))

yn−1 ∈ T(xn−1), |yn − yn−1| � e (T(xn), T(xn−1))
zn−1 ∈ V(xn−1), |zn − zn−1| � e (V(xn), V(xn−1)) .

(4)

3.2. A strong convergence result

In this subsection, we study conditions under which the approximate solution
obtained from our Algorihm converges strongly to the exact solution of (MVI) . The
next theorem improves a convergence result by M. A. Noor [11, 12].

THEOREM 1. In addition to conditions on ϕ , V and T , we assume that T is
strongly monotone over X (with modulus α ), namely, there exists a positive constant
α such that ∀x1, x2 ∈ domT, ∀y1 ∈ T(x1), y2 ∈ T(x2),

〈 y1 − y2, x1 − x2〉 � α|x1 − x2|2, (5)

Lipschitz continuous (with constant β ), this means, there exists a positive constant
β > 0 such that

e(T(x1), T(x2)) � β |x1 − x2| ∀x1, x2 ∈ domT. (6)

If we suppose that V is also a Lipschitz continuous operator with constant η > 0 and

0 < λ < 2
α − η
β2 − η2

, η < α, and λη < 1, (7)

then, the sequence (xn)n∈N strongly converges to the unique solution of (MV I ) .
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Proof. The first equality of relation (4) gives

|xn+1−xn|=
∣∣(1−γ )(xn−xn−1)+γ

(
Jϕλ (xn−λ (yn+zn))−Jϕλ (xn−1−λ (yn−1+zn−1))

)∣∣
�(1−γ ) |xn−xn−1|+γ |xn−xn−1−λ (yn−yn−1)|+γ λ |zn−zn−1| .

On the other hand, we have

|(xn − xn−1) − λ (yn − yn−1)|2 = |xn − xn−1|2 + λ 2 |yn − yn−1|2
− 2λ 〈 yn − yn−1, xn − xn−1〉
� |xn − xn−1|2 + λ 2e(Txn, Txn−1)2

− 2λα |xn − xn−1|2
�

(
1 − 2λα + λ 2β2

) |xn − xn−1|2 .

Since

|zn − zn−1| � e(V(xn), V(xn−1)) � η |xn − xn−1| ,
we infer

|xn+1 − xn| � θ |xn − xn−1| , (8)

with θ = 1 − γ + γ λη + γ
√

1 − 2λα + λ 2β2 .
Assumptions of the theorem ensure that θ < 1 . Hence the sequence (xn)n∈N is a
Cauchy sequence in X . We then obtain that (yn)n∈N and (zn)n∈N are also Cauchy
sequences thanks to the next inequalities

|yn − yn−1| � e(Txn, Txn−1) � β |xn − xn−1| . (9)

and

|zn − zn−1| � e(Vxn, Vxn−1) � η |xn − xn−1| . (10)

Thus there exist (x, y, z) such that (xn, yn, zn) → (x, y, z) as n → +∞ .
Now we shall show that y ∈ T(x) . In fact,

dist(y, T(x)) � |y − yn| + dist (yn, T(x))
� |y − yn| + e(T(xn), T(x))
� |y − yn| + β |xn − x|,

that is dist(y, T(x)) = 0 as n → +∞ . This implies that y ∈ T(x) since T(x) is
closed. Similarly we obtain that z ∈ V(x) .
Passing to the limit in the first equality of (4) and taking into account the continuity of
the proximal mapping, Jϕλ , we obtain x = Jϕλ (x − λ (y + z)) , which with proposition
1 complete the proof.

�
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3.3. A weak convergence result

For simplicity we take V = 0 which amounts to setting T := T + V . In our
analysis we allow λ and γ to vary from one iteration to the next and we assume that
T is an operator with closed and convex values and λn, γn are sequences such that

γ := inf
n�1

γn > 0, γ := sup
n�1

γn < 1, λ := inf
n�1

λn > 0, λ := sup
n�1

λn < 2β .

The first equality defining algorithm (4) takes the following form
{ ∀n ∈ N

∗ xn = xn−1 − γnR(xn−1)
where R(x) = x − Jϕλn

(x − λny) with y ∈ T(x). (11)

The following proposition gives sufficient conditions in order the iterative method be
convergent.

THEOREM 2. In addition to hypothesis on T and ϕ , we assume that the graph
of T + ∂ϕ is weakly-strongly closed in X × X and that T is co-coercive over X
(with modulus β > 0 ), namely, there exists a positive constant β such that ∀x1, x2 ∈
domT, ∀y1 ∈ T(x1), y2 ∈ T(x2),

〈 y1 − y2, x1 − x2〉 � βe2 (T(x1), T(x2)) . (12)

If 0 < λn < 2β and 0 < γn < 1 , then, the sequence (yn)n∈N is bounded and the
sequence (xn)n∈N weakly converges to a solution of (MV I ) .

Proof. Let x̄ be a solution of (MV I ) and choose ȳ ∈ T(x̄) and yn ∈ T(xn) such
that

|yn − ȳ| � e (T(xn), T(x̄)) .

Let us first show that P(x) := Jϕλn
(x − λny) is nonexpansive. Indeed,

|P(xn) − P(x̄)|2 = |Jϕλn
(xn − λnyn) − Jϕλn

(x̄ − λnȳ)|2
� |xn − x̄ + λn(yn − ȳ)|2
= |xn − x̄|2 − 2λn〈 yn − ȳ, xn − x̄〉 + λ 2

n |yn − ȳ|2
� |xn − x̄|2 − λn(2β − λn)e2 (T(xn), T(x̄)) |2
� |xn − x̄|2.

We have use the fact that Jϕλn
is nonexpansive, T is co-coercive and λn < 2β .

On the other hand, since (I − R)(x) = P(x) and R(x̄) = 0 , a direct computation
yields

〈R(xn) − R(x̄), xn − x̄〉 − 1
2
|R(xn) − R(x̄)|2 = |xn − x̄|2 − 〈P(xn) − P(x̄), xn − x̄〉

− 1
2

(|xn − x̄|2 + |P(xn) − P(x̄)|2 − 2〈P(xn) − P(x̄), xn − x̄
)

=
1
2

(|xn − x̄|2 − |P(xn) − P(x̄)|2) � 0.
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Thus R is co-coercive with constant 1
2 with respect to x̄ , in other words

〈R(xn), xn − x̄〉 � 1
2
|R(xn)|2. (13)

Finally, we obtain

|xn+1 − x̄|2 = |xn − x̄ − γnR(xn)|2
= |xn − x̄|2 + γ 2

n |R(xn)|2 − 2γn〈 xn − x̄, R(xn)〉 ,

which combined with (13) yields

|xn+1 − x̄|2 � |xn − x̄|2 − γ (1 − γ )|R(xn)|2. (14)

The sequence {xn} is bounded which implies, in turn, that {yn} is bounded. Likewise

μ(x̄) := lim
n→+∞ |xn − x̄| (15)

exists and is finite. In view of (15) and (12), we get easily that

lim
n→+∞R(xn) = lim

n→+∞
|xn − xn+1|

γ
= 0. (16)

This means that {xn} is asymptotically regular.
Now let x∗ be a weak cluster point of {xn} , there exists a subsequence {xnk} which
converges weakly to x∗ and according (12), we have

xnk − xnk+1

γnkλnk

∈ T(xnk ) + ∂ϕ(x̃nk ), (17)

where x̃nk = xnk +
xnk+1−xnk
γnkλnk

.

Setting ỹnk = argmin{|y− ynk |, y ∈ T(x̃nk )} (the minimum is attained uniquely since
T(x̃nk ) is a closed convex set), the last inclusion can be rewritten as

xnk − xnk+1

γnkλnk

+ ỹnk − ynk ∈ T(x̃nk ) + ∂ϕ(x̃nk). (18)

Since

|ỹnk − ynk | = dist(ynk , T(x̃nk ) � e
(
Txnk , Tx̃nk

)
� 1

β
|xnk − x̃nk |, (19)

and the graph of T + ∂ϕ is weakly-strongly closed, we get at the limit

0 ∈ T(x∗) + ∂ϕ(x∗),

that is, x∗ is a solution of the given problem. It remains to prove that there is no more
than one weak cluster point, our argument follows that given in ([16], p. 885) and is
presented here for completeness.

Let x̃ be another weak cluster point of {xn} , we will show that x̃ = x∗ . This
is a consequence of (16). Indeed, since μ(x̃) := limn→+∞ |xn − x̃| and μ(x∗) :=
limn→+∞ |xn − x∗| , from

|xn − x̃|2 = |xn − x∗|2 + |x∗ − x̃|2 + 2〈 xn − x∗, x∗ − x̃〉 ,
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we see that the limit of 〈 xn − x∗, x∗ − x̃〉 as n → +∞ must exists. This limit has to
be zero because x∗ is a weak cluster point of {xn} . Hence at the limit

μ(x̃) = μ(x∗) + |x∗ − x̃|2.
Reversing the role of x̃ and x∗ we also have

μ(x∗) = μ(x̃) + |x∗ − x̃|2.
From these we infer that x∗ = x̃ , which completes the proof.

�
Note that the weak convergence result still hold true if we allow the resolvent to

be approximately evaluated, so long as the sum of all errors is finite.

REMARK. It worth mentioning that if T is weakly closed, then every weak-cluster
point of the sequence (yn)n∈N belongs in T(x∗) . Moreover, if T is assumed to be
maximal monotone, then ∀x ∈ dom T, T(x) is a closed convex set. Furthermore, to
ensure the maximal monotonicity of T+∂ϕ which implies that gph(T+∂ϕ) is weakly-
strongly closed, it suffices to assume, for example, that int(domT) ∩ dom∂ϕ �= ∅ or
0 ∈ int(domT − dom∂ϕ) .
We would like to mention that the results obtained in this paper are still true when
replacing the subdifferential of the function ϕ by any maximal monotone operator. In
the case when T is single-valued, we recover the forward-backward splitting method
proposed by Lions and Mercier [9], by Gabay [6] and in a dual form by Han and Lou
[7]. In the case where ϕ is the indicator function of a nonempty closed convex set,
this method reduces to a projection method proposed by Sibony [17] for monotone
variational inequalities and, in the further case where T is the gradient of a differentiable
convex function, it reduces to a gradient projection method of Goldstein and Levitin
and Polyak see [3].
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