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SIMPLE PROOF OF THE CONCAVITY OF
OPERATOR ENTROPY f(A) = —AlogA

TAKAYUKI FURUTA

Dedicated to Professor M. Nakamura and Professor H. Umegaki with respect and affection

(communicated by J. Pecaric)

Abstract. A simple proof of the concavity of operator entropy f (A) = —AlogA is given.

A capital letter means a bounded linear and strictly positive operator on a Hilbert
space. Here we shall give a simple proof of the following well known and excellent
result obtained by [1] and [2] independently.

THEOREM A. f(A) = —AlogA is concave function for any A > 0.

Proof. Firstly we recall the following obvious result

lim (T7Tl —I)n=—logT forany T > 0. (%)

n—o0

As g(r) = 11 is operator concave for ¢ € [0, 1], then for A > 0, B > 0 and
o, €[0,1] suchthat o+ f =1

(aA + BB)F% > oA "i + BB
for any natural number 7, so we obtain
(A + BB) ((aA 4 BB)F — I)n > aA(A™F — I)n+ BB(B~F — I)n.
Tending n — oo, we have
—(aA + BB)log (A + BB) > (—aAlogA — BBlogB) by (*)

that is,
f(aA +BB) = af (A) + Bf (B)
so the proof is complete.
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