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SIMPLE PROOF OF THE CONCAVITY OF

OPERATOR ENTROPY f (A) = −A logA

TAKAYUKI FURUTA

Dedicated to Professor M. Nakamura and Professor H. Umegaki with respect and affection

(communicated by J. Pečarić)

Abstract. A simple proof of the concavity of operator entropy f (A) = −A log A is given.

A capital letter means a bounded linear and strictly positive operator on a Hilbert
space. Here we shall give a simple proof of the following well known and excellent
result obtained by [1] and [2] independently.

THEOREM A. f (A) = −A logA is concave function for any A > 0 .

Proof. Firstly we recall the following obvious result

lim
n→∞(T

−1
n − I)n = −logT for any T > 0. (∗)

As g(t) = tq is operator concave for q ∈ [0, 1] , then for A > 0 , B > 0 and
α, β ∈ [0, 1] such that α + β = 1

(
αA + βB

)1− 1
n � αA1− 1

n + βB1− 1
n

for any natural number n , so we obtain

(αA + βB)
(
(αA + βB)−

1
n − I

)
n � αA(A− 1

n − I)n + βB(B− 1
n − I)n.

Tending n → ∞ , we have

−(αA + βB) log (αA + βB) � (−αA logA − βB logB) by (∗)
that is,

f (αA + βB) � αf (A) + β f (B)

so the proof is complete.
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