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TRACE INEQUALITIES FOR MULTIPLE

PRODUCTS OF TWO MATRICES

TSUYOSHI ANDO, FUMIO HIAI AND KAZUYOSHI OKUBO

(communicated by N. Elezović)

Abstract. Trace inequalities for multiple products of powers of two matrices are discussed via the
methodof logmajorization. For instance, the trace inequality |Tr(Ap1Bq1Ap2Bq2 · · ·ApK BqK )| �
Tr(AB) is obtained for positive semidefinite matrices A,B and pi, qi � 0 with p1 + · · ·+pK =
q1 + · · · + qK = 1 under some additional condition.

1. Introduction and notations

First of all, recall the notion of majorization of multiplicative type. Let �a =
(a1, a2, . . . , an) and �b = (b1, b2, . . . , bn) be real (row) vectors such that a1 � a2 �
· · · � an � 0 and b1 � b2 � · · · � bn � 0 . The log majorization �a ≺(log) �b is said to
hold if

k∏
i=1

ai �
k∏

i=1

bi for 1 � k � n

with equality for k = n . It is well-known that �a ≺(log) �b implies the weak majorization

(of additive type) �a ≺w
�b , that is,

k∑
i=1

ai �
k∑

i=1

bi for 1 � k � n.

For an n × n positive semidefinite matrix A let

�λ (A) = (λ1(A), λ2(A), . . . , λn(A))

denote the vector of the eigenvalues of A arranged in decreasing order λ1(A) � λ2(A) �
· · · � λn(A) � 0 with multiplicities. We use the same notation �λ (X) for a matrix X
having the nonnegative eigenvalues; for instance, this is the case if X is the product of
two positive semidefinite matrices. Moreover, for an arbitrary n × n matrix X write

|�λ (X)| = (|λ1(X)|, |λ2(X)|, . . . , |λn(X)|),
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where λ1(X), . . . , λn(X) are the eigenvalues of X arranged as |λ1(X)| � |λ2(X)| �
· · · � |λn(X)| .

The majorization method applied to the vectors of eigenvalues (also singular val-
ues) of matrices supplies a powerful tool in studying matrix norm inequalities and trace
inequalities (see [1, 4, 10] for example). The well-known majorization theorem of Weyl
([4, p. 42]) is

|�λ (X)| ≺(log)
�λ(|X|), (1.1)

where |X| = (X∗X)
1
2 . If |�λ (X)| ≺(log)

�λ(Y) where �λ (Y) is nonnegative, then
|Tr(X)| � Tr(Y) holds; in fact,

|Tr(X)| �
n∑

i=1

|λi(X)| �
n∑

i=1

λi(Y) = Tr(Y).

When A and B are n× n positive semidefinite matrices, the log majorization due
to Araki [3] is written as

�λ ((A
1
2 BA

1
2 )r) ≺(log)

�λ (A
r
2 BrA

r
2 ) for r � 1,

or equivalently,

�λ ((A
s
2 BsA

s
2 )

1
s ) ≺(log)

�λ ((A
t
2 BtA

t
2 )

1
t ) for 0 < s � t. (1.2)

Here we use the convention A0 = I . This is regarded as strengthening the famous
Golden-Thompson inequality ([4, p. 261])

Tr(eH+K) � Tr(eHeK) (1.3)

for Hermitian matrices H, K . Indeed, as s → +0 in (1.2) with A = eH and B = eK ,
the Lie-Trotter formula ([4, p. 254]) yields

�λ(eH+K) ≺(log)
�λ ((e

t
2 HetKe

t
2 H)

1
t ) for t > 0, (1.4)

and for t = 1 this implies (1.3). (See [2, 9] for more about the strengthened Golden-
Thompson inequality.)

According to the logmajorization given in [2, Theorem4.1], when A, B are positive
semidefinite, we have

�λ(|Ap1Bq1Ap2Bq2 · · ·ApKBqK |) ≺(log)
�λ (|AB|) (1.5)

for every pi, qi � 0 (1 � i � K ) such that
∑K

i=1 pi =
∑K

i=1 qi = 1 and

j∑
i=1

pi �
j∑

i=1

qi (1 � j � K − 1),
j−1∑
i=1

qi �
j∑

i=1

pi (2 � j � K − 1). (∗)

Although the majorization (1.5) implies in particular

Tr(|Ap1Bq1Ap2Bq2 · · ·ApKBqK |) � Tr(|AB|),
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the trace inequality

|Tr(Ap1Bq1Ap2Bq2 · · ·ApKBqK )| � Tr(AB) (1.6)

is not a consequence of (1.5).
Our primary motivation has been to consider whether the trace inequality (1.6) is

true for every pi, qi � 0 with
∑K

i=1 pi =
∑K

i=1 qi = 1 or not. It may be also interesting
to find cases where the opposite trace inequality

Tr((A
1
K B

1
K )K) � |Tr(Ap1Bq1Ap2Bq2 · · ·ApKBqK )| (1.7)

holds, which is regarded as a far extended version of the Golden-Thompson inequality.
These problems seem rather subtle; in fact, we have no counterexamples to them for
the moment. In this paper we obtain (1.6) under stronger assumptions on the exponents
(given below) and also (1.7) for some particular cases.

In Section 2, we prove a variant of the majorization (1.5) where the right-hand side
�λ(|AB|) = �λ ((AB2A)

1
2 ) is replaced by �λ (AB) = �λ (A

1
2 BA

1
2 ) and the assumptions (*)

on pi, qi � 0 with
∑K

i=1 pi =
∑K

i=1 qi = 1 are strengthened to

0 �
j∑

i=1

qi −
j∑

i=1

pi � 1
2

(1 � j � K − 1), (1.8)

0 �
j∑

i=1

pi −
j−1∑
i=1

qi � 1
2

(1 � j � K). (1.9)

Here we use the convention
∑j−1

i=1 qi = 0 for j = 1 . As a consequence we have the
trace inequality (1.6) for such pi, qi � 0 . In Section 3, we obtain similar majorization
results for products of integer powers of Hermitian matrices.

In Section 4, we consider Tr(f 1(A)g1(B)f 2(A)g2(B)) where f i, gi are nonnegative
increasing functions on [0,∞) , and compare it with other forms such as Tr(f 1(A)f 2(A)
g1(B)g2(B)) . Trace inequalities among such products of matrix functions are obtained
for some restricted cases where positive semidefinite matrices A, B have at most two
or three different eigenvalues.

2. Case of positive semidefinite matrices

Throughout this section let A, B be n × n positive semidefinite matrices. We
discuss log majorizations and trace inequalities of the form (1.6) for multiple products
of powers of A, B . As in [2] the technique of anti-symmetric tensors plays a key role in
the proof of the next theorem.

THEOREM 2.1. Let pi, qi � 0 (1 � i � K) be such that
∑K

i=1 pi =
∑K

i=1 qi = 1 .
If pi, qi satisfy the assumptions (1.8) and (1.9) stated above, then

�λ (|Ap1Bq1Ap2Bq2 · · ·ApKBqK |) ≺(log)
�λ (AB). (2.1)
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In particular,
|Tr(Ap1Bq1Ap2Bq2 · · ·ApKBqK )| � Tr(AB). (2.2)

Proof. We first show that

λ1(|Ap1Bq1Ap2Bq2 · · ·ApKBqK |) � λ1(AB). (2.3)

To do so, we may assume that A, B are invertible. By homogeneity it suffices to prove
that λ1(AB) � 1 implies λ1(|Ap1Bq1Ap2Bq2 · · ·ApKBqK |) � 1 . Assume λ1(A

1
2 BA

1
2 ) =

λ1(AB) � 1 , so A
1
2 BA

1
2 � I . Hence B � A−1 and A � B−1 . Here for two Hermitian

matrices X, Y the inequality X � Y means that Y − X is positive semidefinite. Since
0 � 2p1 � 1 and 0 � 2(q1 − p1) � 1 , the well-known Löwner’s theorem (see [4] p.
149) yields

Bq1A2p1Bq1 � B2(q1−p1)

and hence
Ap2Bq1A2p1Bq1Ap2 � Ap2B2(q1−p1)Ap2 � A2(p1+p2−q1).

Repeating this argument yields

BqKApK · · ·Bq1A2p1Bq1 · · ·ApKBqK � B2(q1+···+qK−p1−···−pK) = I,

and (2.3) has been proved.
Now (2.1) is a consequence of (2.3) via anti-symmetric tensor powers. Replace

A, B in (2.3) by their k -fold anti-symmetric tensor powers ∧kA,∧kB for 1 � k � n
(see [4] for details on anti-symmetric tensors of matrices). Since

|(∧kA)p1(∧kB)q1 · · · (∧kA)pK (∧kB)qK | = ∧k(|Ap1Bq1 · · ·ApKBqK |),
(∧kA)(∧kB) = ∧k(AB),

we have

k∏
i=1

λi(|Ap1Bq1 · · ·ApKBqK |) = λ1(∧k(|Ap1Bq1 · · ·ApKBqK |))

� λ1(∧k(AB)) =
k∏

i=1

λi(AB)

for 1 � k � n . Furthermore, for k = n ,

n∏
i=1

λi(|Ap1Bq1 · · ·ApKBqK |) = | det(Ap1Bq1 · · ·ApKBqK )|

= det(A) det(B) =
n∏

i=1

λi(AB),

so (2.1) has been proved.
Finally, note that (2.1) gives

Tr(|Ap1Bq1Ap2Bq2 · · ·ApKBqK |) � Tr(AB),
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which is stronger than (2.2). �
Note that the assumptions of the above theoremare satisfied when 0 � pi = qi � 1

2

(1 � i � K ) with
∑K

i=1 pi = 1 .
It is evident that the equality in (2.2) is attained when AB = BA . Conversely,

it is well-known that the equality case in many inequalities of Golden-Thompson type
implies the commutativity of matrices. For instance, according to [8], the equality
Tr((A1/mB1/m)m) = Tr(AB) for some integer m � 2 implies that AB = BA .

For example, let

A =
[

2 0
0 1

]
, B =

[
1 1
1 1

]
.

We compute
Tr(AB) = 3, Tr(|AB|) =

√
10,

Tr(|ApBA1−p|) =
√

4p + 41−p + 5 for 0 � p � 1.

Hence Tr(|ApBA1−p|) � Tr(|AB|) holds for all 0 � p � 1 as is assured by (1.5). But
Tr(|ApBA1−p|) � Tr(AB) is equivalent to 4p +41−p � 4 , which is valid just for p = 1

2 .
This says that both assumptions (1.8) and (1.9) are essential for the majorization (2.1)
to hold. However, it may be possible that the weaker trace inequality (2.2) is true
without assumptions on the exponents.

Restricted to the case K = 2 we have:

COROLLARY 2.2. (i) If |p − 1
2 | + |q − 1

2 | � 1
2 , then |�λ(ApBqA1−pB1−q)| ≺(log)

�λ(AB) and hence |Tr(ApBqA1−pB1−q)| � Tr(AB) .
(ii) Tr((A

1
2 B

1
2 )2) � Tr(A

1
2 BqA

1
2 B1−q) � Tr(AB) for 0 � q � 1 .

Proof. (i) Note that the eigenvalues of ApBqA1−pB1−q are the same as those of
the cyclic permutations BqA1−pB1−qAp , A1−pB1−qApBq and B1−qApBqA1−p . So the
assertion is an immediate consequence of Theorem 2.1 and the majorization (1.1).

(ii) Let B =
∑n

i=1 μiQi with orthogonal projections Qi . Then using arithmetic-
geometric mean inequality we have

Tr(A
1
2 BqA

1
2 B1−q)

=
n∑

i=1

μiTr(A
1
2 QiA

1
2 Qi) +

∑
i<j

(μq
i μ

1−q
j + μ1−q

i μq
j )Tr(A

1
2 QiA

1
2 Qj)

�
n∑

i=1

μiTr(A
1
2 QiA

1
2 Qi) +

∑
i<j

2μ
1
2
i μ

1
2
j Tr(A

1
2 QiA

1
2 Qj)

= Tr((A
1
2 B

1
2 )2).

The second inequality is a particular case of (i) . �
Note that the second inequality of the above (ii) can be shown by using (1.5)

instead of the new majorization (2.2). However, (2.2) is really useful to prove (i) ; we
have no other way to obtain the trace inequality in (i) for general positive semidefinite
A, B .
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It seems that the behavior of the function (p, q) �→ |Tr(ApBqA1−pB1−q)| on [0, 1]×
[0, 1] is rather complicated for general n × n positive semidefinite matrices A, B .
Indeed, when A, B are 3 × 3 , it is not known whether the trace inequality

|Tr(ApBqA1−pB1−q)| � Tr(AB)

is valid for all 0 � p, q � 1 without additional condition such as (1.8) and (1.9). But
in Section 4 the above inequality will be shown to hold when A, B are 2 × 2 matrices.

When H, K are Hermitian matrices, since Tr(eH+K) � Tr((e
1
2 He

1
2 K)2) by (1.4),

the Golden-Thompson inequality (1.3) can be refined due to Corollary 2.2 (ii) as
follows:

Tr(eH+K) � Tr(e
1
2 HeqKe

1
2 He(1−q)K) � Tr(eHeK) for 0 � q � 1.

REMARK 2.3. The following results generalize Corollary 2.2 (ii) . These are
essentially included in [5], so we omit the proofs.

(i) If g1, g2 are nonnegative increasing functions on [0,∞) , then

Tr(Ag1(B)Ag2(B)) � Tr(A2g1(B)g2(B)).

(ii) If g1 is nonnegative increasing and g2 is nonnegative decreasing on [0,∞) ,
then

Tr(Ag1(B)Ag2(B)) � Tr(A2g1(B)g2(B)).
(iii) For every nonnegative functions g1, g2 on [0,∞) ,

Tr((A
√

g1g2(B))2) � Tr(Ag1(B)Ag2(B)).

COROLLARY 2.4. Let li, mi (1 � i � K � 4) be nonnegative integers such that∑K
i=1 li =

∑K
i=1 mi = 4 . Then

|�λ (Al1Bm1Al2Bm2 · · ·AlKBmK )| ≺(log)
�λ(A4B4).

In particular,
|Tr(Al1Bm1Al2Bm2 · · ·AlKBmK )| � Tr(A4B4).

Proof. According to the cyclic permutation of the product Al1Bm1 · · ·AlK BmK and
the change of roles of A, B , we have to consider only the following six cases:

AB3A3B, A2B2AB2A, A2B2A2B2,

A2B2ABAB, ABAB2ABA, ABABABAB.

Put C = A4 and D = B4 . It suffices to prove that

�λ (|Cp1Dq1Cp2Dq2 · · ·CpKDqK |) ≺(log)
�λ (CD)

for pi = li/4 and qi = mi/4 corresponding to the above six cases. But the assumptions
(1.8) and (1.9) on pi, qi in Theorem 2.1 can be easily checked for each of these
cases. �

The assumptions in Theorem 2.1 are not satisfied for any cyclic permutation of the
product A

3
5 B

1
5 A

1
5 B

3
5 A

1
5 B

1
5 , so the above restriction K � 4 can not be avoided as long

as we apply Theorem 2.1.
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3. Case of Hermitian matrices

When we treat multiple products of integer powers of A, B , the proofs of [2,
Theorem 4.1] and Theorem 2.1 work well even if A, B are Hermitian. So the next
theorems are obtained in the same way as previous.

THEOREM 3.1. Let A, B be Hermitian matrices and let li, mi (1 � i � K) be
nonnegative integers such that

∑K
i=1 li =

∑K
i=1 mi = N and

j∑
i=1

li �
j∑

i=1

mi (1 � j � K − 1),
j−1∑
i=1

mi �
j∑

i=1

li (2 � j � K − 1).

Then
�λ(|Al1Bm1Al2Bm2 · · ·AlKBmK |) ≺(log)

�λ (|ANBN |).
THEOREM 3.2. Let A, B be Hermitian matrices and let li, mi (1 � i � K) be

nonnegative integers such that
∑K

i=1 li =
∑K

i=1 mi = 2N , an even integer, and

0 �
j∑

i=1

mi −
j∑

i=1

li � N (1 � j � K − 1),

0 �
j∑

i=1

li −
j−1∑
i=1

mi � N (1 � j � K).

Then
�λ(|Al1Bm1Al2Bm2 · · ·AlKBmK |) ≺(log)

�λ (A2NB2N).

COROLLARY 3.3. If A, B are Hermitian matrices, then

Tr((AB)2N) � Tr(|(AB)2N |) � Tr(A2NB2N)

for every positive integer N .

Proof. When li = mi = 1 (1 � i � 2N ), Theorem 3.2 yields �λ (|(AB)2N |) ≺(log)
�λ(A2NB2N) , so we get the second inequality. For the first inequality, by (1.1) we need
only to check that Tr((AB)2N) is real. But it is easy to see that Tr((AB)m) is real for
every positive integer m . In fact, choose c > 0 such that Ã = A + cI is positive
definite, then Tr(AB) = Tr(ÃB) − cTr(B) is real (this argument is from [7]). Since

Tr((AB)2m) = Tr(A · (BA)m−1BAB(AB)m−1),

Tr((AB)2m+1) = Tr(A · (BA)mB(AB)m)

with Hermitian (BA)m−1BAB(AB)m−1 and (BA)mB(AB)m , we have the assertion. �

The above corollary extends [6, Theorem 1] where Tr((AB)2k
) � Tr(A2k

B2k
) for

every positive integer k was shown.
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4. Trace inequalities under restriction on number of eigenvalues

In this section let A, B be n×n positive semidefinite matrices as in Section 2. We
discuss trace inequalities formatrix functions of the form f 1(A)g1(B)f 2(A)g2(B) , where
f i, gi are nonnegative increasing functions on [0,∞) . The particular case f 1 = f 2 was
treated in Remark 2.3. It would be impossible to get certain trace inequalities without
further restrictions on f i, gi and/or A, B . Below we put rather strict restrictions on the
number of different eigenvalues of A, B in compensation for f i, gi being general.

THEOREM 4.1. Let A, B be positive semidefinite matrices and assume that both
A, B have at most two different eigenvalues. If f i, gi (1 � i � K) be nonnegative
increasing functions on [0,∞) , then

0 � Tr(f 1(A)g1(B)f 2(A)g2(B) · · · f K(A)gK(B))
� Tr(f 1(A)f 2(A) · · · f K(A)g1(B)g2(B) · · · gK(B)).

Proof. By homogeneity and continuity we may assume that

f i(A) = I + aiP , gi(B) = I + biQ (1 � i � K),

where P, Q are orthogonal projections and ai, bi � 0 . Then we can write

Tr(f 1(A)g1(B)f 2(A)g2(B) · · · f K(A)gK(B))

= Tr(I) +
∑

1�i1<···<ik�K

ai1 · · · aikTr(P) +
∑

1�j1<···<jl�K

bj1 · · · bjlTr(Q)

+
∑

1�i1<···<ik�K
1�j1<···<jl�K

ai1 · · · aikbj1 · · · bjlTr((PQ)m)

� 0,

where 1 � m � K is determined depending on i1, . . . , ik; j1, . . . , jl in the following
way: when i1 � j1 , m is the number of r ∈ {1, . . . , k} such that ir � js < ir+1

(with ik+1 = K + 1 ) for some s ∈ {1, . . . , l} ; when j1 < i1 , m is the number of
r ∈ {1, . . . , k} such that ir−1 � js < ir (with i0 = 1 ) for some s ∈ {1, . . . , l} . On
the other hand,

Tr(f 1(A)f 2(A) · · · f K(A)g1(B)g2(B) · · · gK(B))

= Tr(I) +
∑

1�i1<···<ik�K

ai1 · · · aikTr(P) +
∑

1�j1<···<jl�K

bj1 · · · bjlTr(Q)

+
∑

1�i1<···<ik�K
1�j1<···<jl�K

ai1 · · · aikbj1 · · · bjlTr(PQ).

Since Tr((PQ)m) � Tr(PQ) for m � 1 , the theorem is proved. �
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THEOREM 4.2. Let A, B be positive semidefinite matrices and assume that both
A, B have at most two different eigenvalues. If f 1, f 2, g1, g2 are nonnegative increasing
functions on [0,∞) , then

Tr((
√

f 1f 2(A)
√

g1g2(B))2) � Tr(f 1(A)g1(B)f 2(A)g2(B)).

Proof. We may assume that

f i(A) = I + aiP , gi(B) = I + biQ (i = 1, 2),

where P, Q and ai, bi are as in the previous proof. Then√
f 1f 2(A) = I + aP with a =

√
(1 + a1)(1 + a2) − 1,

√
g1g2(B) = I + bQ with b =

√
(1 + b1)(1 + b2) − 1.

So we compute

Tr((
√

f 1f 2(A)
√

g1g2(B))2)
= Tr((I + aP)(I + bQ)(I + aP)(I + bQ))

= Tr(I) + (2a + a2)Tr(P) + (2b + b2)Tr(Q)

+ (4ab + 2a2b + 2ab2)Tr(PQ) + a2b2Tr((PQ)2)

and

Tr(f 1(A)g1(B)f 2(A)g2(B))
= Tr((I + a1P)(I + b1Q)(I + a2P)(I + b2Q))
= Tr(I) + (a1 + a2 + a1a2)Tr(P) + (b1 + b2 + b1b2)Tr(Q)

+ [(a1 + a2)(b1 + b2) + a1a2(b1 + b2) + (a1 + a2)b1b2]Tr(PQ)

+ a1a2b1b2Tr((PQ)2).

Direct computations give

2a + a2 = a1 + a2 + a1a2,

2b + b2 = b1 + b2 + b1b2,

and

4ab + 2a2b + 2ab2 + a2b2

= (1 + a)2(1 + b)2 − (1 + a)2 − (1 + b)2 + 1

= (a1 + a2)(b1 + b2) + a1a2(b1 + b2) + (a1 + a2)b1b2 + a1a2b1b2.

Furthermore, since

(1 + a1)(1 + a2) − (1 +
√

a1a2)2 = a1 + a2 − 2
√

a1a2 � 0,

we get
√

a1a2 �
√

(1 + a1)(1 + a2) − 1 , so a1a2 � a2 . Similarly b1b2 � b2 and
hence

a1a2b1b2 � a2b2.
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Combining the above estimates we obtain

Tr(f 1(A)g1(B)f 2(A)g2(B)) − Tr((
√

f 1f 2(A)
√

g1g2(B))2)

= (a2b2 − a1a2b1b2)[Tr(PQ) − Tr((PQ)2)] � 0,

as desired. �
By Theorems 4.1 and 4.2 we have:

COROLLARY 4.3. Let A, B be positive semidefinite matrices and assume that both
A, B have at most two different eigenvalues. Then:

(i) 0 � Tr(Ap1Bq1Ap2Bq2 · · ·ApKBpK ) � Tr(AB) for pi, qi � 0 with
∑K

i=1 pi =∑K
i=1 qi = 1 .

(ii) Tr((A1/2B1/2)2) � Tr(ApBqA1−pB1−q) � Tr(AB) for 0 � p, q � 1 .

COROLLARY 4.4. Let A, B be 2 × 2 positive semidefinite matrices. Then:
(i) 0 � Tr(Ap1Bq1Ap2Bq2 · · ·ApKBpK ) � Tr(AB) for pi, qi � 0 with

∑K
i=1 pi =∑K

i=1 qi = 1 .
(ii) Tr((A1/2B1/2)2) � Tr(ApBqA1−pB1−q) � Tr(AB) for 0 � p, q � 1 .

THEOREM 4.5. Let A, B be positive semidefinite matrices. Assume that A has
at most two different eigenvalues and B has at most three different eigenvalues. If
f 1, f 2, g1, g2 are nonnegative increasing functions on [0,∞) , then

Tr(f 1(A)g1(B)f 2(A)g2(B)) � Tr(f 1(A)f 2(A)g1(B)g2(B)). (4.1)

In particular,

Tr(ApBqA1−pB1−q) � Tr(AB) for 0 � p, q � 1.

Proof. We may assume that

f 1(A) = I + a1P, f 2(A) = I + a2P,

g1(B) = I + b+
1 Q+ − b−1 Q−, g2(B) = I + b+

2 Q+ − b−2 Q−,

where P, Q+, Q− are orthogonal projections with Q+ ⊥ Q− and a1, a2, b+
1 , b+

2 � 0 ,
0 � b−1 , b−2 � 1 . Then we estimate

Tr(f 1(A)f 2(A)g1(B)g2(B)) − Tr(f 1(A)g1(B)f 2(A)g2(B))

= a1a2b
+
1 b+

2 (Tr(PQ+) − Tr((PQ+)2) + a1a2b
−
1 b−2 (Tr(PQ−) − Tr((PQ−)2)

+ a1a2(b+
1 b−2 + b−1 b+

2 )Tr(PQ+PQ−)
� 0

as in the proof of Theorem 4.2. �
Note that there are 3 × 3 positive semidefinite matrices A, B and nonnegative

increasing functions f i, gi ( i = 1, 2 ) such that

Tr(f 1(A)g1(B)f 2(A)g2(B)) > Tr(f 1(A)f 2(A)g1(B)g2(B)).
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For example, let

A =

⎡
⎣

3
2 0 0
0 1 0
0 0 1

2

⎤
⎦ = I +

1
2
P − 1

2
Q

with orthogonal projections

P =

⎡
⎣ 1 0 0

0 0 0
0 0 0

⎤
⎦ , Q =

⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦ .

Choose a unitary matrix

U =

⎡
⎢⎣

1√
3

− 1√
3

1√
3

1√
2

0 − 1√
2

1√
6

2√
6

1√
6

⎤
⎥⎦

and put B = UAU∗ . For 0 < a < 1 take increasing functions f 1, f 2 such that

f 1

(1
2

)
= 1 − a2, f 1(1) = 1, f 1

(3
2

)
= 1 + a,

f 2

(1
2

)
= 1 − a, f 2(1) = 1, f 2

(3
2

)
= 1 + a2.

Then f 1(A) = I + aP − a2Q , f 2(A) = I + a2P − aQ and f 1(B) = Uf 1(A)U∗ =
I + aR − a2S , f 2(B) = Uf 2(A)U∗ = I + a2R − aS with orthogonal projections
R = UPU∗ and S = UQU∗ . We compute

ϕ(a) = Tr(f 1(A)f 2(A)f 1(B)f 2(B)) − Tr(f 1(A)f 1(B)f 2(A)f 2(B))

= − 1
18

a8 +
1
4
a7 +

11
18

a6 +
1
4
a5 − 1

18
a4

= − 1
36

a4(a + 1)2(2a2 − 13a + 2).

Hence we get ϕ(a) < 0 if 0 < a < 13−3
√

17
4 . In this way, we notice that the assumption

in Theorem 4.5 is rather optimal for (4.1) to hold for all nonnegative increasing f i, gi .
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