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Lp INEQUALITIES FOR POLAR DERIVATIVES OF POLYNOMIALS

N. K. GOVIL AND G. NYUYDINKONG

Abstract. Let p(z) =
∑n

v=0 avzv be a polynomial of degree n and for α ∈ C , let Dαp(z) =
np(z) + (α − z)p′(z) denote the polar derivative of the polynomial p(z) with respect to α .
It is well known that the polar derivative generalizes the ordinary derivative. In this paper, we

obtain Lp inequalities for polar derivatives of polynomials satisfying p(z) ≡ znp( 1
z̄ ) and for

polynomials satisfying p(z) ≡ znp( 1
z ) . Our results generalize several results in this direction.
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