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17 INEQUALITIES FOR POLAR DERIVATIVES OF POLYNOMIALS

N. K. GovIL AND G. NYUYDINKONG

(communicated by R. N. Mohapatra)

Abstract. Let p(z) = >_1_jayz” be a polynomial of degree n and for o € €, let Dgp(z) =
np(z) + (& — z)p’(z) denote the polar derivative of the polynomial p(z) with respect to .

It is well known that the polar derivative generalizes the ordinary derivative. In this paper, we

obtain I inequalities for polar derivatives of polynomials satisfying p(z) = z”p(%) and for

polynomials satisfying p(z) = z"p(%) . Our results generalize several results in this direction.

1. Introduction and statement of results

If p(z) = >0_,a,z" is a polynomial of degree at most n, then according to a
famous result known as Bernstein’s inequality,
max p’(z)| < nmax |p(z)]. (1)
|z]=1 |z]=1
Here, equality holds if and only if only if p(z) has all its zeros at the origin.
In case p(z) does not vanish in |z| < 1, it was conjectured by Erdds and proved
by Lax [12] that (1) can be replaced by

n
max |p'(z)| < 7 max |p(z)]. (2)
lz]=1 2 |z=1
The above inequality is sharp and equality holds for polynomials of the form p(z) =
o+ B, |af = (Bl
The I analogue of (1) was proved by Zygmund [14] and that of (2) by
de Bruijn [4], who proved that if p(z) is a polynomial of degree n having no zeros in
lz] < 1,thenfor § > 1,

1
3

21 ) 21 ) %
/O P(@)Pdo) < nCs / p(e®)Pao) | 3)

1 1
B 3 5
o 2 [ V/ED(S+) .. o
where C§ = (W) = (m) . This lnequahty is also sharp and

becomes equality for p(z) = a + Bz", |a| = |B|.
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The inequality (3) was extended for 6 > 0 by Rahman and Schmeisser [13]. De-
wan and Govil [5] observed that the inequality (3) also holds for polynomials satisfying
p(z) = z"p(%) for all z € €. Such polynomials are said to be self-inversive.

Let a € €. If Dyp(z) denotes the polar derivative of the polynomial p(z) with
respect to the point o, then

Dop(z) = np(z) + (o — 2)p'(2). (4)

As is well known, the polar derivative generalizes the ordinary derivative. In fact,
if we divide both sides of (4) by o and let o0 — oo we get

. [Dap(z) /
Jim {T} =7'(2). (5)

Furthermore, if p(z) is a polynomial of degree at most n, then Dgp(z) is a
polynomial of degree at most (n — 1).

A polynomial p(z) of degree n is said to be self-reciprocal if p(z) = Z”p(%) for all
z € €. It was suggested by Professor Q. I. Rahman to study this class of polynomials
and obtain inequalities analogous to (2). This has been done in many papers (see for
example [6, 7, 10, 11]).

In this paper, we prove the following:

THEOREM 1. If p(z) is a polynomial of degree n satisfying p(z) = Z"p(%), then
foreach & > 0 and all o with |ot| > 1,

2 % 2n %
ol = 1) (/0 |p<ef9>|5de> < ( / Dap<ef9>5de>
2n ) %
< n(lel +1)Cs (/0 P(€'6)|5d9> , (6)
and for all o with |a| < 1,
w1 (17 sae) < (i)
f</ (e d@) < (/ Dup(e”)'do
2 ) %
< n(laf+1)Cs (/0 p(€’0)|6d9> (1)

1
2r 3
where Cs = | 22— | .
IRIRERE

If in (6) we divide throughout by |ct| and make |ot| — oo, we get
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COROLLARY 1. If p(z) is a polynomial of degree n satisfying p(z) = Z”p(%),
then for each 6 > 0,

n 2 ) % 2n ) % 2n ) %
] wenpan) < ([ weytae) <ncs( [ ipenpae)
2 \Jo 0 0
| ®)
S
where Cs = (m) . The result is best possible and equality holds on the
right-hand side foor polynomials p(z) = o + Bz", |ot| = |B| and on the left-hand side
for polynomials p(z) = Bz, where n is a positive even integer and B # 0.
REMARK 1. Note that Corollary 1 can also be obtained from Theorem 1 by setting
o =0 in (7).

The special case of Corollary 1 when & > 1 was proved by Govil and Jain [9,
Corollary 1] (also see Dewan and Govil [5] and Govil [8] ). The inequality on the
left-hand side of (8) is due to Aziz and Rather [3].

1
Since lim Cs = 3 if we make 8 — oo in (6) and (7), we get

d—00

COROLLARY 2. If p(z) is a polynomial of degree n satisfying p(z) = z"p(%), then
Sorall o with |a] > 1

2D ) < pp < MU, )
and for all o with |a| < 1
1_
A1 ) < pp < MU, (10)

The inequality on the right-hand side of (9) and (10) becomes equality for
p(z) = 7" + 1 and the inequality on the left-hand side of ( ) becomes equality for
p(z) = (z— 1)", where n is a positive even integer and o, > 1. On the left-hand side
of (1 ) equality holds for p(z) = (z — 1)", where n is a positive even integer and
O<a<l.

The inequality on the right-hand side of (9) and (10) is also obtainable from Aziz
[1, Corollary 3].
For polynomials satisfying p(z) = z"p(%) , we are only able to prove

THEOREM 2. If p(z) is a polynomial of degree n satisfying p(z) = Z”p(%)7 then
foreach 6 > 1 and all o with || > 1

o I b
(/ Dap<e9>5de> >f</ |p<e9>5de> Ly
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and for all o with |a| < 1

w o S e ([ g
(/ Dap<e9>5de> >f</ |p<e9>5de> T

Dividing (11) by |a| and letting |ot| — oo, we get the following result of Aziz
and Rather [3].

COROLLARY 3. If p(z) is a self-reciprocal polynomial of degree n, then for every
o=>1,

1 1

ey T RPN ’
(/ () d@) >5</0 () d@) . (13)

The inequality in (13) is sharp and becomes equality for p(z) = Bz 3, where n is
a positive even integer and 3 # 0.

REMARK 2. Note that Corollary 3 can also be obtained from Theorem 2 by setting
o =0 in (12).
Ifin (11) and (12) we make § — oo, we get

COROLLARY 4. If p(z) is a self-reciprocal polynomial of degree n, then for every
o with o] > 1,

(|05\ )
1Dapll = Il (14)
and for every o with | < 1

n(l — |af) \a|)

1Dapll = Pl (15)

If oo > 1, then the inequality (14) becomes equality for p(z) = (z — 1)", where
n is a positive even integer. Equality holds in (15) for p(z) = (z — 1)", where n is a
positive even integer and 0 < o < 1.

This first part of result is due to Aziz and Rather [2].

2. Lemmas

We need the following lemmas.

LEMMA 1. If p(z) is a polynomial of degree n satisfying p(z) = z"p(%)7 then for
4 >0,

27 27
/0 P(€°)Pd0 < nCs® / p() P do. (16)

Lemma 1 is due to Govil [8].
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LEMMA 2.. If p(z) is a polynomial of degree n satisfying p(z) = Z"p(%)7 then for
0<6<2m,

P/ (e”)] > Slp(e®)]. (17)

_ 1 e
PE) =] -2 p (;)m lp(

Therefore for 0 < 6 < 27,

which implies (17).

LEMMA 3. If p(z) is a polynomial of degree n satisfying p(z) = Z”p(%), then for
0<6<2m,

P ()] = Inp(e®) — P (). (19)

This follows immediately from (18).
LEMMA 4. If p(z) is a polynomial of degree n satisfying p(z) = z"p(%), then for
0<6<2m, . _ . _
p'(e7)] = [np(e”) — %P’ (e?)]. (20)

The proof of this lemma is similar to that of Lemma 3.

LEMMA 5.. If p(z) is a polynomial of degree n satisfying p(z) = z"p(%)7 then for
every § > 1,

1

T ey T RPN ’
(/ () de> >5</0 (e de> . e1)

This lemma is due to Aziz and Rather [3, Theorem 2].

3. Proofs of Theorems

Proof of Theorem 1. If p(z) is a polynomial of degree n, then for any a and
0<0<2m,

Dap(@)] = Ip(e®) + (c— )/ ()

larlp’ ()] + [np(e”®) — €p' ()]
leel|p’ ()| + |p' (¢®)], by Lemma 3,
= (lof + D)Ip' ()],

/A



324 N. K. GOVIL AND G. NYUYDINKONG
which implies that

2 21
/ Dap(®)[2d6 < (o] +1)? / P ()| de. (22)
0 0

Since p(z) satisfies p(z) = 2"p(3), if we combine (22) with Lemma 1, we get for
any o and 0 > 0,

2=

1

2n ) d 2n ) %
(/ Dap(e’9)5d9> < n(lof +1)Cs (/ Ip(e’9)5d6> ) (23)
0 0

and thus the inequalities on the right-hand side of (6) and (7) are established.

To prove the inequalities on the left-hand side of (6) and (7), note that for @ € %,

IDap(e®)| = |ap' () + np(e®) — %P ()]
al|p ()] — |np(e) — P/ ()]
lal[p'(€®)] — |p'(¢)], by Lemma 3,
(lel = D)|p’ ()]

WV

Thus for |or| > 1
[Dap(e”)] = (|| = 1)|p'(¢”)]. (24)
Similarly, for || < 1, we will get

[Dap(e)] = (1= |a)lp'(¢?)]. (25)
Inequalities (24) and (25) when combined with Lemma 2, give
, ol — 1 .
Dap(e) > Do), for jo > 1, (26)
" (1~ Jal)
i 1 — o i
[Dap(e?)] = ———Ip(e”)], for|a| <1, (27)

from which the inequalities on the left-hand side of (6) and (7) follow. This completes
the proof of Theorem 1.

Proof of Theorem 2. If p(z) is a polynomial of degree n, then for any o and
0<6<2m,

Dap(e)] = Inp(e®) + (o= (")
olp' ()| = np(e”) = /(). (28)

Since p(z) satisfies p(z) = "p(L), the inequality (28) when combined with
Lemma 4, gives for |o| > 1,
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[Dap(e)] = |arlp’ ()] = Ip'(e™)]. (29)
The above inequality is clearly equivalent to

[Dap(e®)| + Ip'(e) = ladllp' ()], el > 1

which implies that

2 S 21
/ {Dap(e®)] + [P ()} d8 ) > |af / pEPde) . (30)

-

On applying Minkowski’s inequality to the right-hand side of (30), we get that for
o0=1,

21 ) S 2 )
/ Dap(@®)?d0 ) > | / /()[40
0 0

el

21 ] %
- / P (=) %40
0

2 ) % 21 . S
_ / pPde | — / RN
0 0

Thus

21 _ 8 21
| 1pate?)pan ) > (el -1 ([ e pao)' .
0 0

and this inequality when combined with Lemma 5, gives that for § > 1,

2 % 27
i n(lal —1 i
| epieyia ) > M= ) o

which is (11). The proof of the case when |a| < 1 is similar and we omit the details.
This completes the proof of Theorem 2.
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