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Abstract. Let p(z) =
∑n

v=0 avzv be a polynomial of degree n and for α ∈ C , let Dαp(z) =
np(z) + (α − z)p′(z) denote the polar derivative of the polynomial p(z) with respect to α .
It is well known that the polar derivative generalizes the ordinary derivative. In this paper, we

obtain Lp inequalities for polar derivatives of polynomials satisfying p(z) ≡ znp( 1
z̄ ) and for

polynomials satisfying p(z) ≡ znp( 1
z ) . Our results generalize several results in this direction.

1. Introduction and statement of results

If p(z) =
∑n

v=0 avzv is a polynomial of degree at most n , then according to a
famous result known as Bernstein’s inequality,

max
|z|=1

|p′(z)| � n max
|z|=1

|p(z)|. (1)

Here, equality holds if and only if only if p(z) has all its zeros at the origin.
In case p(z) does not vanish in |z| < 1 , it was conjectured by Erdös and proved

by Lax [12] that (1) can be replaced by

max
|z|=1

|p′(z)| � n
2

max
|z|=1

|p(z)|. (2)

The above inequality is sharp and equality holds for polynomials of the form p(z) =
α + βzn, |α| = |β | .

The Lp analogue of (1) was proved by Zygmund [14] and that of (2) by
de Bruijn [4], who proved that if p(z) is a polynomial of degree n having no zeros in
|z| < 1 , then for δ � 1 ,

(∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

� nCδ

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

, (3)

where Cδ =
(

2π∫ 2π
0

|1+eiθ |δ dθ

) 1
δ

=
(√

π Γ( δ2 +1)

2δ Γ( δ2 + 1
2 )

) 1
δ

. This inequality is also sharp and

becomes equality for p(z) = α + βzn, |α| = |β | .
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The inequality (3) was extended for δ � 0 by Rahman and Schmeisser [13]. De-
wan and Govil [5] observed that the inequality (3) also holds for polynomials satisfying

p(z) ≡ znp( 1
z̄ ) for all z ∈ C . Such polynomials are said to be self-inversive.

Let α ∈ C . If Dαp(z) denotes the polar derivative of the polynomial p(z) with
respect to the point α , then

Dαp(z) = np(z) + (α − z)p′(z). (4)

As is well known, the polar derivative generalizes the ordinary derivative. In fact,
if we divide both sides of (4) by α and let α → ∞ we get

lim
α→∞

[
Dαp(z)

α

]
= p′(z). (5)

Furthermore, if p(z) is a polynomial of degree at most n , then Dαp(z) is a
polynomial of degree at most (n − 1).

A polynomial p(z) of degree n is said to be self-reciprocal if p(z) ≡ znp( 1
z ) for all

z ∈ C . It was suggested by Professor Q. I. Rahman to study this class of polynomials
and obtain inequalities analogous to (2). This has been done in many papers (see for
example [6, 7, 10, 11]).

In this paper, we prove the following:

THEOREM 1. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z̄ ) , then

for each δ � 0 and all α with |α| � 1 ,

n(|α| − 1)
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

�
(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� n(|α| + 1)Cδ

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

, (6)

and for all α with |α| � 1,

n(1 − |α|)
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

�
(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� n(|α| + 1)Cδ

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

, (7)

where Cδ =
(

2π∫ 2π
0

|1+eiθ |δ dθ

) 1
δ

.

If in (6) we divide throughout by |α| and make |α| → ∞ , we get
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COROLLARY 1. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z̄ ) ,

then for each δ � 0 ,

n
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

�
(∫ 2π

0
|p′(eiθ )|δdθ

) 1
δ

� nCδ

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

,

(8)

where Cδ =
(

2π∫ 2π
0

|1+eiθ |δ dθ

) 1
δ

. The result is best possible and equality holds on the

right-hand side for polynomials p(z) = α + βzn, |α| = |β | and on the left-hand side
for polynomials p(z) = βz

n
2 , where n is a positive even integer and β �= 0.

REMARK 1. Note that Corollary 1 can also be obtained from Theorem 1 by setting
α = 0 in (7).

The special case of Corollary 1 when δ � 1 was proved by Govil and Jain [9,
Corollary 1] (also see Dewan and Govil [5] and Govil [8] ). The inequality on the
left-hand side of (8) is due to Aziz and Rather [3].

Since lim
δ→∞

Cδ =
1
2

, if we make δ → ∞ in (6) and (7), we get

COROLLARY 2. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z̄ ) , then

for all α with |α| � 1 ,

n(|α| − 1)
2

‖p‖ � ‖Dαp‖ � n(|α| + 1)
2

‖p‖, (9)

and for all α with |α| � 1,

n(1 − |α|)
2

‖p‖ � ‖Dαp‖ � n(|α| + 1)
2

‖p‖. (10)

The inequality on the right-hand side of (9) and (10) becomes equality for
p(z) = zn + 1 and the inequality on the left-hand side of (9) becomes equality for
p(z) = (z − 1)n , where n is a positive even integer and α � 1 . On the left-hand side
of (10) equality holds for p(z) = (z − 1)n, where n is a positive even integer and
0 < α � 1 .

The inequality on the right-hand side of (9) and (10) is also obtainable from Aziz
[1, Corollary 3].

For polynomials satisfying p(z) ≡ znp( 1
z ) , we are only able to prove

THEOREM 2. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z ), then

for each δ � 1 and all α with |α| � 1 ,(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� n(|α| − 1)
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

, (11)
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and for all α with |α| � 1 ,

(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� n(1 − |α|)
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

. (12)

Dividing (11) by |α| and letting |α| → ∞ , we get the following result of Aziz
and Rather [3].

COROLLARY 3. If p(z) is a self-reciprocal polynomial of degree n , then for every
δ � 1 , (∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

� n
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

. (13)

The inequality in (13) is sharp and becomes equality for p(z) = βz
n
2 , where n is

a positive even integer and β �= 0.

REMARK 2. Note that Corollary 3 can also be obtained from Theorem 2 by setting
α = 0 in (12).

If in (11) and (12) we make δ → ∞ , we get

COROLLARY 4. If p(z) is a self-reciprocal polynomial of degree n , then for every
α with |α| � 1 ,

‖Dαp‖ � n(|α| − 1)
2

‖p‖ (14)

and for every α with |α| � 1 ,

‖Dαp‖ � n(1 − |α|)
2

‖p‖. (15)

If α � 1, then the inequality (14) becomes equality for p(z) = (z − 1)n, where
n is a positive even integer. Equality holds in (15) for p(z) = (z − 1)n, where n is a
positive even integer and 0 < α � 1 .

This first part of result is due to Aziz and Rather [2].

2. Lemmas

We need the following lemmas.

LEMMA 1. If p(z) is a polynomial of degree n satisfying p(z) = znp( 1
z̄ ), then for

δ � 0, ∫ 2π

0
|p′(eiθ)|δdθ � nδCδ

δ
∫ 2π

0
|p(eiθ)|δdθ. (16)

Lemma 1 is due to Govil [8].
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LEMMA 2.. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z̄ ), then for

0 � θ < 2π ,
|p′(eiθ )| � n

2
|p(eiθ)|. (17)

Proof of Lemma 2. If p(z) ≡ znp( 1
z̄ ) , then

|p′(z)| = | − zn−2 p′
(

1
z̄

)
+ nzn−1 p

(
1
z̄

)
|.

Therefore for 0 � θ < 2π ,

|p′(eiθ)| = |nei(n−1)θp(eiθ) − ei(n−2)θp′(eiθ)| (18)

� n|p(eiθ)| − |p′(eiθ)|,
which implies (17).

LEMMA 3. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z̄ ), then for

0 � θ < 2π ,
|p′(eiθ)| = |np(eiθ) − eiθp′(eiθ)|. (19)

This follows immediately from (18).

LEMMA 4. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z ), then for

0 � θ < 2π ,
|p′(e−iθ)| = |np(eiθ) − eiθp′(eiθ)|. (20)

The proof of this lemma is similar to that of Lemma 3.

LEMMA 5.. If p(z) is a polynomial of degree n satisfying p(z) ≡ znp( 1
z ), then for

every δ � 1, (∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

� n
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

. (21)

This lemma is due to Aziz and Rather [3, Theorem 2].

3. Proofs of Theorems

Proof of Theorem 1. If p(z) is a polynomial of degree n , then for any α and
0 � θ < 2π ,

|Dαp(eiθ)| = |np(eiθ) + (α − eiθ)p′(eiθ )|
� |α||p′(eiθ)| + |np(eiθ) − eiθp′(eiθ )|
= |α||p′(eiθ)| + |p′(eiθ)|, by Lemma 3,

= (|α| + 1)|p′(eiθ)|,
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which implies that∫ 2π

0
|Dαp(eiθ)|δdθ � (|α| + 1)δ

∫ 2π

0
|p′(eiθ)|δdθ. (22)

Since p(z) satisfies p(z) ≡ znp( 1
z̄ ), if we combine (22) with Lemma 1, we get for

any α and δ � 0,

(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� n(|α| + 1)Cδ

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

, (23)

and thus the inequalities on the right-hand side of (6) and (7) are established.

To prove the inequalities on the left-hand side of (6) and (7), note that for α ∈ C ,

|Dαp(eiθ)| = |αp′(eiθ) + np(eiθ) − eiθp′(eiθ)|
� |α||p′(eiθ)| − |np(eiθ) − eiθp′(eiθ )|
= |α||p′(eiθ)| − |p′(eiθ)|, by Lemma 3,

= (|α| − 1)|p′(eiθ)|.
Thus for |α| � 1 ,

|Dαp(eiθ)| � (|α| − 1)|p′(eiθ)|. (24)

Similarly, for |α| � 1 , we will get

|Dαp(eiθ)| � (1 − |α|)|p′(eiθ)|. (25)

Inequalities (24) and (25) when combined with Lemma 2, give

|Dαp(eiθ)| � (|α| − 1)
2

|p(eiθ)|, for |α| � 1, (26)

and

|Dαp(eiθ)| � (1 − |α|)
2

|p(eiθ)|, for |α| � 1, (27)

from which the inequalities on the left-hand side of (6) and (7) follow. This completes
the proof of Theorem 1.

Proof of Theorem 2. If p(z) is a polynomial of degree n , then for any α and
0 � θ < 2π ,

|Dαp(eiθ)| = |np(eiθ) + (α − eiθ)p′(eiθ)|
� |α||p′(eiθ)| − |np(eiθ) − eiθp′(eiθ)|. (28)

Since p(z) satisfies p(z) ≡ znp( 1
z ), the inequality (28) when combined with

Lemma 4, gives for |α| � 1 ,
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|Dαp(eiθ)| � |α||p′(eiθ )| − |p′(e−iθ )|. (29)

The above inequality is clearly equivalent to

|Dαp(eiθ)| + |p′(e−iθ)| � |α||p′(eiθ )|, |α| � 1

which implies that

(∫ 2π

0

{|Dαp(eiθ)| + |p′(e−iθ)|}δ dθ

) 1
δ

� |α|
(∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

. (30)

On applying Minkowski’s inequality to the right-hand side of (30), we get that for
δ � 1,

(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� |α|
(∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

−
(∫ 2π

0
|p′(e−iθ)|δdθ

) 1
δ

= |α|
(∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

−
(∫ 2π

0
|p′(eiθ )|δdθ

) 1
δ

.

Thus

(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� (|α| − 1)

(∫ 2π

0
|p′(eiθ)|δdθ

) 1
δ

, (31)

and this inequality when combined with Lemma 5, gives that for δ � 1 ,

(∫ 2π

0
|Dαp(eiθ)|δdθ

) 1
δ

� n(|α| − 1)
2

(∫ 2π

0
|p(eiθ)|δdθ

) 1
δ

, (32)

which is (11). The proof of the case when |α| � 1 is similar and we omit the details.
This completes the proof of Theorem 2.
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