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INEQUALITIES FOR AVERAGES OF DIVIDED DIFFERENCES

A. M. FINK

(communicated by L.-E. Persson)

Abstract. We provide upper bounds for the averages of divided differences in terms of the norms
of an appropriate derivative. These generalize a result of Ostrowski.

1. Introduction

Ostrowski [1] proved that if f is absolutely continuous and λ � 1 then

1∫
0

1∫
0

∣∣∣∣ f (x) − f (y)
x − y

∣∣∣∣
λ

dxdy � (log 4)

1∫
0

|(f ′(x)|λdx. (1)

If λ = 1 then log 4 is the best constant.
On another occasion, Fink [2] considered lower bounds for the average of f [t, un] =

f [t, u,...,u
n times ] , the n th divided difference at the named points. Here we look at upper

bounds for the average of general divided differences as Ostrowski did.

2. The setting

There are various ways to write formulae for the divided difference of a function f
which has n continuous derivatives. Here f [x0, x1] ≡ f (x1)−f (x0)

x1−x0
and f [x0, . . . , xk] ≡

f [x0,...,xk−1]−f [x1,...,xk ]
x0−xk

k = 2, . . . , n . Following Schoenberg [3], let 0 � x0 � x1 � · · · �
xn � 1 , then

f [x0, x1, . . . , xn] =
1
n!

1∫
0

M[t; x0, . . . , xn]f (n)(t)dt, (2)

where f [x0, x1, . . . , xn] is the n th divided difference of f at x0, . . . , xn and M[t; x0, . . . , xn]
is a basic B -spline obtained by taking the n th divided difference of the function
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M(t; x) = (x − t)n−1
+ with respect to the variable x at the points x0, . . . , xn . The basic

facts about M are, that for distinct xi ,

M[t; x0, . . . , xn] =
n∑

k=0

n(xk − t)n−1
+

w′(xk)
,

where w(t) =
n∏

i=0
(t − xi) ;

M[t; x0, . . . , xn] > 0 on (x0, xn) and zero elsewhere;

1∫
0

M[t; x0, . . . , xn]dt = 1;

and
1∫

0

tM[t; x0, . . . , xn]dt =
1

n + 1

n∑
l=0

xl.

It is easy to see that M is symmetric in its arguments x0, . . . , xn so the order is
immaterial. One can also verify that in the limit as two xi take a common value, one
merely differentiates M[t; x0, . . . , xn] with respect to xi and evaluates at the common
value, etc. In this way M[t; x0, . . . , xn] is defined on the cube [0, 1]n+1 in the t − x
space.

Consider now the averages

Av(f ; n, λ ) =

1∫
0

. . .

1∫
0

|f [x0, . . . , xn]|λdx0 . . . dxn. (3)

We want to obtain upper bounds of this quantity in terms of the various norms of f (n)

on [0, 1] . Ostrowski’s result is that Av(f ; 1, λ ) � log 4‖f ′‖λλ .
A standing hypothesis is that f has the required derivatives, n is a positive integer

and λ > 0 .

3. Results for general differences

THEOREM 1. Av(f ; n; λ ) � 1
n!‖f (n)‖λ∞ with equality when f (n) is a constant, i.e.

f is a polynomial of degree n , so the constant 1
n! cannot be improved.

Proof. Combining (2) and (3), we have

Av(f ; n, λ ) =
1
n!

1∫
0

. . .

1∫
0

∣∣∣∣
1∫

0

M[t; x0, . . . xn]f (n)(t)dt

∣∣∣∣
λ

dx0 . . . dxn. (4)

We estimate f (n)(t) by ‖f (n)‖∞ (remembering that M � 0 ), and the remaining
integrals are all 1. Since M � 0 , equality will hold if f (n) is a constant.
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We want to prove inequalities of the form

Av(f ; n, λ ) � K(λ , n, p)‖f (n)‖α(λ ,p)
p (5)

for appropriate powers α(λ , p) . The result of Theorem 1 is that K(λ , n,∞) = 1
n! and

α(λ ,∞) = λ .

PROPOSITION 1. To prove inequalities of the type (5) we may assume that f (n) � 0
a.e.

Proof. Let f be given and define g to be any function such that g(n)(x) = |f (n)(x)| .
We have

|f [x0, . . . , xn]| =
1
n!

∣∣∣∣
1∫

0

M[t; x0, . . . , xn]f (n)(t)dt

∣∣∣∣

� 1
n!

1∫
0

M[t; x0, . . . , xn]|f (n)(t)|dt=
1
n!

1∫
0

M[t; x0, . . . , xn]g(n)(t)dt

= g[x0, . . . , xn] = |g[x0, . . . , xn]|
since by its representation, g[x0, . . . , xn] � 0 . Since g(n) , and f (n) have the same Lp

norms, the proposition follows.
The case λ = 1 is the most definitive here.

THEOREM 2. For 1 < p < ∞ , (5) holds with α(λ , p) = 1 and K(1, n, p) =
‖gn‖p′ where 1

p + 1
p′ = 1 and gn(t) =

∫
0�x0�x1

. . .
∫

�···�xn

M[t; x0, . . . , xn]dx0 . . . dxn

also K(1, n, 1) � ‖gn‖∞ .

Proof. Since by Proposition 1 we may assume f (n) � 0 , we have

Av(f ; n, 1) =
1
n!

1∫
0

. . .

1∫
0

M[t; x0, . . . , xn]f (n)(t)dtdx0 . . . dxn

=

1∫
0

f (n)(t)gn(t)dt

where gn(t) = 1
n!

1∫
0

. . .
1∫
0

M[t; x0, . . . , xn]dx0 . . . dxn .

Now the cube [0, 1]n is the union of n! simplices, each corresponding to a given
ordering of the xi . Since the overlap is of measure zero and M is symmetric in its
arguments, the integral over any one of the simplices is the same as any other. Hence
gn has the representation given.

We now use Hölders inequality to arrive at Av(f ; n, 1) � ‖gn‖p′‖f (n)‖p with

equality if f (n)(t) = μgn(t)p′−1 for some positive constant μ . For p = 1 we have
Av(f ; n, 1) � ‖gn‖∞‖f (n)‖1 . This ends the proof.
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In the case of p = 1 , equality would hold for f (n)(t) = δ(t0) where t0 is a
maximizing point of gn(t) , so it is likely that ‖gn‖∞ is the best constant also.

When λ > 1 we proceed in a different way and do not get best constants. We
look at equation (4) remembering that M � 0 and that we may assume that f (n) � 0 .
We note that the inner integral

⎛
⎝ 1∫

0

M[t; x0, . . . , xn]f (n)(t)dt

⎞
⎠

λ

�
1∫

0

M[t; x0, . . . , xn]f (n)(t)λ dt

by Jensen’s inequality applied with the probability measure dμ = M[t; x0, . . . , xn]dt .
Consequently we have the basic inequality

Av(f ; n, λ ) � 1
n!

1∫
0

. . .

1∫
0

M[t; x0, . . . , xn]f (n)(t)λ dtdx0 . . . , xn (6)

=

1∫
0

f (n)(t)λ gn(t)dt

where gn is defined in Theorem 2. In general (6) is a strict inequality if λ > 1 .

THEOREM 3. For λ < p < ∞ we have

K(λ , n, p) � ‖gn‖ p
p−λ

and α(λ , p) = λ , and

K(λ , n,∞) � 1
n!

with α(λ , p) = λ .

Proof. For p < ∞ this is immediate from (6) if one applies Hölder’s inequality
with index r = p

λ . For p = ∞ the result follows from (4).

4. The two point case

We now want to do the special case where the xi take on only two values; Os-
trowski’s inequality being an example. We do not use the above representation. Instead
we begin with

f (t) − f (u)
t − u

=

1∫
0

f ′(θt + (1 − θ)u)dθ.

We let

f [tj; uk] ≡ f [t, . . . , t, u, . . . , u], t (j + 1) times and u (k + 1) times.
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Then we can compute this by taking j derivatives of f (t)−f (u)
t−u with respect to t and k

derivatives with respect to u . We have

f [tj; uk] =

1∫
0

θ j(1 − θ)kf (n)(θt + (1 − θ)u)dt (7)

with n = j + k + 1 , we look at Av(f [tj, uk]) =
1∫
0

1∫
0

f [tj; uk]dtdu .

PROPOSITION 2. For j, k � 0 and n = j + k + 1 ,

Av(f [tj, uk]) =

1∫
0

f (n)(s)gjk(s)ds

where gjk(s) =
1∫
s

dt

s
t∫

0
[xj(1 − x)k−1 + xk(1 − x)j−1]dx .

Proof. Using (7) we have

Av(f [tj, uk]) =

1∫
0

1∫
0

dt du

1∫
0

θ j(1 − θ)kf (n)(θt + (1 − t)u)dθ.

Consider, for continuous p � 0 , the integral

I =

1∫
0

1∫
0

dt du

1∫
0

θ j(1 − θ)kp(θt + (1 − t)u)dθ = I1 + I2 (8)

where I1 is the integral over t � u and I2 the integral over t � u . For I1 we let
s = θt + (1 − t)u in the inner integral so that

I1 =

1∫
0

dt

t∫
0

du

⎛
⎝ t∫

u

(s − u)j(t − s)k

(t − u)j+k+1
p(s)ds

⎞
⎠

The integrand is bounded by 1
t−u

t∫
u

p(s)ds � ‖p‖∞ so we may interchange order

of integration to get

I1 =

1∫
0

dt

t∫
0

p(s)ds

s∫
0

(s − u)j(t − s)k

(t − u)j+k+1
du.

In the inner integral let x = s−u
t−u to get

I1 =

1∫
0

dt

t∫
0

p(s)ds

s
t∫

0

xj(1 − x)k−1dx =

1∫
0

p(s)

⎛
⎜⎝

1∫
s

dt

s
t∫

0

xj(1 − x)k+1dx

⎞
⎟⎠ ds
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In a similar way I2 =
1∫
0

p(s)

(
1∫
s

dt

s
t∫

0
xk(1 − x)j−1dx

)
ds . This completes the proof.

THEOREM 4. For 1 < p < ∞ , Avf [tj, uk] � ‖gjk‖p′‖f (n)‖p with equality when

f (n) = μgp′−1
jk and Avf [tj, jk] � ‖gjk‖∞‖f (n)‖1

Proof. This is immediate from Proposition 2 and Hölder’s inequality.
The norms ‖gjk‖∞ can be computed. We note that

g′jk(s) = −
1∫

0

(xj(1 − x)k−1 + xk(1 − x)j−1]dx

+

1∫
s

( s
t

)j (
1 − s

t

)k−1
+
(s

t

)k (
1 − s

t

)j−1 dt
t

= −
1∫

0

[xj(1 − x)k−1 + xk(1 − x)j−1]dx

+

1∫
s

[xj−1(1 − x)k−1 + xk−1(1 − x)j−1]dx

and g′′jk(s) � 0 . We claim that g′jk
(

1
2

)
= 0 so that gjk

(
1
2

)
is ‖gjk‖∞ . By writing the

first integral as the sum of two integrals one on
[
0, 1

2

]
and one on

[
1
2 , 1
]
, combining

the latter with second integral we get

g′jk

(
1
2

)
= −

1
2∫

0

[xj(1 − x)k−1 + xk(1 − x)j−1]dx +

1∫
1
2

[(1 − x)kxj−1 + xk−1(1 − x)j]dx

which is zero by letting u = 1 − x in the second integral.
Then

‖gjk‖∞ = gjk

(
1
2

)
=

1∫
1
2

du

1
2u∫

0

[xj(1 − x)k−1 + xk(1 − x)j−1]dx

=

1
2∫

0

[xj(1 − x)k−1 + xk(1 − x)j−1]dx (9)

by interchange of order.
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5. Some explicit estimates

We note immediately that ‖goo‖∞ =
1
2∫

0

2
1−x dx = log 4 which is Ostrowski’s result

(1). Actually for all λ � 1 one can get this with use of Jensen’s inequality as above.
Other explicit computations lead to

‖g01‖∞ = log 2, ‖g1k‖∞ =
1

k(k + 1)

[
1 −

(
1
2

)k
]

, k � 1, and

‖g0k‖∞ =
1
k

+
∞∑
i=1

(
1

k + i

)(
1
2

)k+i

, k � 2.

For j, k � 1 one can use the binomial theorem to get an explicit expansion for ‖gjk‖∞ .
One can get good lower bounds by making the change of variables in (9) x = u

1+u to
arrive at

gjk

(
1
2

)
=

1∫
0

uj + uk

(1 + k)j+k+1

which is very nearly a Beta function. But B(j+ 1, k+ 1) =
1∫
0

uj+uk

(1+u)j+k+2 � gjk

(
1
2

)
gives

a nice lower bound.
To give some estimates for p < ∞ we change the order of integration in the

representation of gjk in Proposition 2 to get

gjk(s) = (1− s)

s∫
0

[xj(1− x)k−1 + xk(1− x)j−1]dx+ s

1∫
s

[xj−1(1− x)k + xk−1(1− x)j]dx.

(10)
Only a few are simple enough to compute neatly. For example g00 = 2g01 = −2(1 −
s) log(1 − s) − 2s log s and g11 = s(1 − s) but others are more complicated. The
representation (10) is reminiscent of a Green’s function. Indeed, we have for j, k >
1, gjk(0) = gjk(1) = 0 and −g′′jk = sj−1(1 − s)k−1 + sk−1(1 − s)j−1 . Thus for B the
Beta function

1∫
0

|g′′jk|ds = 2B(j, k). (11)

We have

gjk(s) =

1∫
0

G(s, t)[−g′′jk(t)]dt (12)

for G(s, t) =
{

t(1 − s), t � s

s(1 − t), s � t.
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PROPOSITION 3. For j, k > 1

‖gjk‖p′ � 2B(j, k)B(p′ + 1, p′ + 1)
1
p′ . (13)

Proof. From (12)

|gjk(s)| � s(1 − s)

1∫
0

−g′′jkdt = 2s(1 − s)B(j, k) so

‖gjk‖p′ � 2B(j, k)

⎛
⎝ 1∫

0

sp′(1 − s)p′

⎞
⎠

1
p′

= 2B(j, k)B(p′ + 1, p′ + 1)
1
p′ .

Note that the factor of 2 is sort of extra since ‖gu‖p′ = B(p′ + 1, p′ + 1)
1
p′ and

B(1, 1) = 1 .
The estimate (13) can be improved slightly. We have shown elsewhere Fink [4]

the following. Let C(p, 1) be the best constant for the inequality

‖f ‖p � C(p, 1)‖f ′′‖, (14)

given that f has a zero at each end of [0, 1] . Furthermore, let C(∞, p′) be the best
constant for the inequality

‖f ‖∞ � C(∞, p′)‖f ′′‖p′ (15)

given that f has a zero at each end of [0, 1] . Fink proved that C(p, 1) = C(∞, p′) .

The constant C(∞, p′) can be computed this way. With G(s, t) as above

f (s) =

1∫
0

G(s, t)(−f ′′(t))dt

so that

f (s) �

⎛
⎝ 1∫

0

G(s, t)pdt

⎞
⎠

1
p

‖f ′′‖p′

=
[
sp+1(1 − s)p + sp(1 − s)p+1

p + 1

] 1
p

‖f ′′‖p′

� 1
4

1

(p + 1)
1
p
‖f ′′‖p′

since the bracket has its max at s = 1
2 . One can argue that this is best possible by

letting −f ′′(t) = G
(

1
2 , t
)p−1

. So C(p, 1) = 1
4

1

(p+1)
1
p

.
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PROPOSITION 4. For j, k > 1

‖gjk‖p′ � 1
2

1

(p + 1)
1
p′

B(j, k).

Proof. We apply (11) and (14).

By Stirling’s formula B(p′+1, p′+1)
1
p′ ∼

(√
πp′
) 1

p′

2 which is larger than 1
2

1

(p′+1)
1
p′

but asymptotically the same as p goes to ∞ .

6. Final Remarks

One can improve the bounds in Theorem 3 by obtaining a stronger inequality in

(6). In [5], Fink and Jodeit have shown that

(
1∫

0

g(x)dμ

)λ

1∫
0

g(x)λ dμ

is decreasing in λ if μ is a

probability measure and g � 0 . From p > λ

(
1∫
0

gdμ
)λ

1∫
0

gλdμ
<

(
1∫
0

gdμ
)p

1∫
0

gpdμ

one gets

Av(f ; n, λ ) �

(
1∫
0

f (n)M[t; x0, . . . , xn]dt

)p

1∫
0

f (n)(t)pM[t; x0, . . . , xn]dt

1∫
0

f (n)(t)λgn(t)dt, (6 ′ )

with this extra factor < 1 by Jensen’s Inequality.
Finally, although Fink [2] establishes the existence of a lower bound of Av(f ; n, 1)

in a specific case, the argument also applies to the cases of this paper. However we have
not been able to get specific constants of the sort

Av(f ; n, 1) � C‖f (n)‖p.

We leave this an an open problem.
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