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ON GENERALIZATIONS OF OSTROWSKI
INEQUALITY VIA SOME EULER-TYPE IDENTITIES

L. DEDIC, M. MATIC AND J. PECARIC

(communicated by P. S. Bullen)

Abstract. Some generalizations of Ostrowski inequality are given, by using some Euler-type
identities.
1. Introduction

The following Ostrowski inequality is well known [1]:

b
W | ra

where f : [a,b] — R is a differentiable function such that |[f'(x)| < M, for every
X € [a, b]. Tt has been generalized over the last years in a number of ways.

For every function f : [a,b] — R with n (>=1) continuous derivatives and for
every x € [a, b] the following formula is valid [2, p.17]:

L, (k=)
< L—ﬁﬁ} (b—a)M, x€[a,b], (L.1)

b
Flx) = blfa / FO)dt + Tyt (x) + Ro(x) (1.2)

where

) =3 P (24 [ @]

k=1
with convention Ty(x) = 0, and

Ry(x) = u/b 5 (L) - m (322 | roa

Here, Bi(x), k > 0, are the Bernoulli polynomials, B, k > 0, the Bernoulli numbers,
and Bj(x), k > 0, are periodic functions of period one, related to the Bernoulli
polynomials as

Bi(x) = Bi(x), 0 <x < 1
Mathematics subject classification (1991): 26D15, 26D20, 26D99.
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and
Bi(x+1)=B;(x), x €R.
To make reading easier let us recall here some properties of the Bernoulli polyno-

mials, used below [3, 23.1.]. First

1 1
Bo(x) = 1, Bl(x) =X — E, Bz(x) :X2 — X+ 6,

and
B),(x) = nB,—1(x), n € N.

In particular this means that By = 1, Bj is a discontinuous function with a jump of
—1 at each integer, and B}, k > 2, is a continuous function. If n = 2r then B, (x)
has its maximal and minimal values at the points 0, 1 and % Note that

BZr(O) = BZr(l) = BZH
and

1
By, (§> = —(1-2'"""B,,.

For n =2r+1, and r > 1, we have

2(2r + 1)! 1
(2r+1) 0<x< =

-1 r+lB ,
0 < (=1)""Ba1(x) < (Qm)2r (1 —2-2) )

and
Byry1(x) = —By1(1 — x).

In this paper we shall give two modified versions of the identity (1.2), and using
them we shall prove some generalizations of the Ostrowski inequality.

2. Some integral identities

LEMMA 1. Let a,b € R, a < b, x € [a,b] and ¢ : R — R be defined by

o) =51 (3=1).

Then for every continuous function F : [a,b] — R we have

/ F(t)do(r) :——/ 1)dt + F(x), for a<x<b
fa5]

and
b

/ F(t)do(r) = _% F(t)dt + F(a), forx=aorx=0>b,
[a,b] a

with Riemann-Stieltjes integrals on the left hand sides.
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Proof. If a < x < b the function @ is differentiable on [a, b]\{x} and its derivative
isequal to =~ since By (t) = t— 5. Further, ithas a jump of @(x+0)—@(x—0) =1
at x, which gives the first formula. For x = a or x = b the function ¢ is differentiable
on (a,b) and its derivative is equal to ;= Further, it has jump of @(a+0)—¢(a) =1
at the point a, while @(b) — @(b — 0) = 0, which gives the second formula.

O

THEOREM 1. Let f : [a,b] — R be such that f "= is continuous function of
bounded variation on [a,b] for some n > 1. Then for every x € |a, b]

b
fx)= ﬁ/ f(@)dt + Ty(x) + Ry(x), (2.1)

where T,(x) is defined by (1.3) and

1 _ (b — a)nil [ X1 (n—1)
R =t [ 5 (=) aeo

Proof. Consider the integrals

(b—a)! / Xt (k—1)
I =_=—— B d 1 <k<n).
= S [ (g ) 0 sk
By partial integration we have
b
_ —a L (x—t ey
(b—a)! (k—1) f X1
—_— dB; | —— | . 2.2
a ) wa (5= (22)

Forevery k > 1 and every x € [a,b) we have

«(x—Db « (X4 «[X—a x—a
B(t) i) n () n ()

Also, for k > 2 the above formula is valid for every x € [a, b] . The identity (2.2) for
k =1 becomes

new =8 (5=1) 0

b x—t
. [u,b]f(t)dBl (b a) .

If x € [a,b), then using Lemma 1 and (2.3) we get

b—a

I (x)

B (3=4) o) —s@l+ s [rwa-sw

b
N0+ [ 0= f )
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If x = b, then using Lemma 1 we get

I(b)

b
B (O) () ~ B (1) (@) + = [ f(0)ar -

b
- S0+ 3@+ = [ F0ar-

= IO @+ 5= [ -

= Ty(b) + ﬁ/bf(t)dt

So, for every x € [a, b] we have
1 b
1) = Ta(a) + 5 [ 7@ - ), (24)
which is just the identity (2.1) for n = 1, since I;(x) = —R}(x). Further, for every

k>2
dB* x—t\ _ k B x—t
dt *\b—a)  b—a ¥'"\b-a)’

except for ¢ from the discrete set x + (b — a)Z C R, since the Bernoulli polynomials
satisfy 4By (t) = kBy_,(t). Using the above formula and the fact that Bj ( = ) is

—a

continuous for k > 2, we get

b— k—1
7( kc'l) [b]f(k ! dBk( >

e )

_%/M]Bk 1<b_t)df(k 2(r)

= Ik_l(x).
Using this formula and (2.3), from (2.2) we get the identity
b—a)k! xX—a
nw ==, [P 0) - 4@ + i ),
k! b—a
which holds for k = 2,--- ,n and for every x € [a,b]. So, for n > 2 and for every

X € [a,b] we get

b =3 o (524 [0 ]+ 1),

—a
k=2

which, in combination with (2.4) yields

b
L(x) = Tu(x) + ﬁ / F(0)dt —
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This proves our assertion, since 1,(x) = —R}(x).
O

THEOREM 2. Let f : [a,b] — R be such that f "~ is continuous function of
bounded variation on [a,b] for some n > 1. Then for every x € [a, D]

1

)=

/3@m+nﬁm+ﬁm, (2.5)

where T, (x) is defined by (1.3) and

Rﬂﬂ::_@;%?ZiA;ﬂFZ(Z_;)_B”(Z_Z>y#@4“”

Proof. Note that

R = R+ 2=y (=4) /[ R

n! b—a

—q)"! x—a
- alw+ = (520 b0 - )
= RI(x) + To(x) = Ty (x),

that is
Ry(x) = —To(x) + Tu1(x) + Ry (x),
and apply the identity (2.1) to obtain the identity (2.5).

3. Generalizations of the Ostrowski inequality

THEOREM 3. Let f : [a,b] — R be such that f "=V is an L-Lipschitzian function

on [a,b] for some n > 1. Then
b—a)y ' —
< (b—a) L/ B.(1) — B, <x a)
n! 0 b—a

1 b
— Hdt —T,_
}f(»c) e L
Proof. For integrable function F : [a,b] — R we have

dt,

forevery x € [a,b].

b
/ Fydf (5| < L / (1) dr,
[avb] a

since f*~1 is L-Lipschitzian function.
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Let us apply this estimation to the formula (2.5). We have

b
Pw—bia/f@mnlw
2

= |R2(x)]
7 (5=2) - (5=2)

o \n—1 b
< (bia) L /
Because the function B;, has period 1, we have

n!
1
/’w* ) — 2l di = /’w ~eladi= [ 18,0 |,
0

for every y,z € R. Therefore we have
1
xX—a
dt = (b — B,(t) — B,
o [ |a0-5(3=2)

b
x—t1 x—a
B — B,

which proves our assertion.

dt,

REMARK 1. Because of

/01 B\(t) — B, (Z_Z) alt_/o1

the inequality from the theorem above for n = 1 reduces to

b _ ath
Pu%—bla/jvmtgli <w_23]<b_@g

1, oy
=it
4 (b-a)

X —d

b—a

tf

)

)

that is to the Ostrowski inequality for a function f which is L-Lipschitzian on [a, ] .

COROLLARY 1. Let f : [a,b] — R be such that f' is an L-Lipschitzian function

on [a,b]. Then
I a+b\ f(b)—f(a)
}j(x)b_a/af(t)dt(x > ) Py

T8 830 — 62) + L | (b—a)
< 3 {35 (x) =87 (x) + 12} (b—a) L
1 2
< E(bfa) L, (3.1)
forevery x € [a,b], where
_ atb
Sﬁyzk——LngMM
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Proof. For n =2 we have

Ti(x) = B (2_;’)
.

Also, by simple calculation we get

1
xX—a
B,(t) — B dt
[ mo-2(5=5))
_/1 2 X—a 2+xfa
) b—a b—a

8y sy L
—35(x) 5(x)+12,

so that the inequality from Theorem 3 for n = 2 reduces to the first inequality in (3.1).
Further, consider the function

dt

8 5 1 1
gl(t) 3[ -7 +E 1 e |:0,§:|

We have gl(O) = &, g&1(3) = 1 and g(r) achieves the minimum at ¢ = 1,

g1 (%) = 16, so that
1 1 1
— < — —.
6 S gl(t) 6 IS |:07 2:|
[a,

It is obvious that §(x) € [0, 1] forall x € [a,b] and hence
1 X , 11
<2 < -
16 5() 6(x)+12\6,x€[a,b],

which implies the second inequality in (3.1).
|

REMARK 2. For x = a or x = b we have §(a) = 8(b) = 1, and the first
inequality in (3.1) reduces to

fla)+f(b / 1 s
—(b—a)’L.
‘ 2 —a ), S0 < z(b—a)
For x = “2 we have §(%2) = 0, and the first inequality in (3.1) reduces to
a-+ b 1 2
—(b—a)’L.
% e [0l < 36—
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Also, from the proof above we see that the first inequality in (3.1) gives the best estimate
when §(x) = 1, that is when x = 3% or x = “23_ In these two cases we get the
inequalities

f<3a4+b /f fdt+ 5 [f( ) +/ (b)) <3iz(b—a)2L,
and
b
) - [ra- @ o)) < 350 - L

Adding these two inequalities with use of the triangle inequality, we obtain the following
inequality

1
—2 - Cl)zL.

%P(Sa:b)_’_f(a—z%] /f

REMARK 3. If f : [a,b] — R has a bounded second derivative on [a, b], then
Corollary 1 applies with

L=M,:= sup |[f"(1)].
t€a,b)

On the other side, Dragomir and Barnett [6] proved that for every x € [a,b] the
following inequalities are valid:

P /f d_( a+b)f(b;—j;(a)

2
< % K(Sz(x) + %) + 11—2 (b—a)* M,
< (b—af M (32)

Matié, Pecari¢ and Ujevié [3] partially improved this result. They proved that for every
X € [a,b]

P /f i ( a+b)f(b;—j;(a)

Evidently, the second inequality in (3.1) extends the inequality (3.3) to a wider class
of functions. Moreover, the first inequality in (3.1) is much better than the first
inequality in (3.2). Namely, if we consider the function g(¢) = g2(r) — g1(¢), where

o) =+ %)2 + 5 and g;(¢) is as in the proof of Corollary 1, then

1 2
< — — . .
< (b—a M. (33)

8, 3, 1
g([)—t *gt +§t +E
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L+ g(4) =1 and g(¢) is strictly increasing on [0, 1

! |, which shows
that - < gz(t) —g1(t) < %, forevery ¢ € [0,1] . This implies that

8

38 80 + 15 < <52(x) s

2
1
4_1) + ok forevery x € [a,D].

For example, for x = a or x = b the first inequality in (3.2) yields the trapezoid

inequality
fla)+f / 1 2
’ 2 —a ) 6 @) Mz,
and for x = # we get the following midpoint inequality
a—+ b 7 2
—(b—a)"M,;.
%( i [0 < g apm

The corresponding trapezoid and midpoint inequalities established in Remark 2 are
sharper and hold for a wider class of functions.

THEOREM 4. Let f : [a,b] — R be such that f "=V is an L-Lipschitzian function
on la,b] for some n > 1. Then

b
Pw—gi;/fmm—n@><“

forevery x € [a, b].

(1)| dt,

Proof. By using (2.1), as in the proof of the Theorem 3, we have

1 b . (b —a)"! b x—t
_ - _ — <z 7 *
%ﬂ s [ Fd= 10| = |Ri] < E=F—r [ e (5= ) |a
and also
b x—1t 1
B dt = (b — B, (1) dt,
[l (=) |a=e-a [ mo
which proves our assertion.
]

COROLLARY 2. Let f : [a,b] — R be an L-Lipschitzian function on [a,b]. Then

gt [+ 1) L

forevery x € [a,b].

<b_aL
4 )

(3.4)
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/01 Bl<r>|dr—/01

and apply Theorem 4 with n = 1.

Proof. Note that

1 1
t——|dt = —
2i 4’

]
REMARK 4. Matié, Pecari¢ and Ujevié [4] proved that, for every x € [a, b],
1 a+b\fb)—f(a)| b
- —(x- < r—y), (.
%x) o [ s (- SO Pty

where y and T" are constants such that y < f'(x) < T forall x € [a, b]. On the other
side, if / has a bounded derivative ' on [a, b], then Corollary 2 applies with

L=M,:= sup |[f'(1)],
t€a,b)
and we can try to compare the two inequalities (3.4) and (3.5). If for example y > 0
and I' = M, then 7 \/_(F Y) <7 \/_ < 224M,. On the contrary, if for example
Yy =—-M; and T = My, \/_(F y) = ;’%Ml > ’%Ml. We conclude that
neither of the inequalities (3.4) and (3.5) is better than another one, but (3.4) should be
preferred since it holds for a wider class of functions than (3.5) does.

THEOREM 5. Let f : [a,b] — R be such that "~V is continuous function of
bounded variation on [a,b] for some n > 1. Then

i/ _a/f T
O a1, -, (5= ) | v,

< ——— max
n! 1€[0,1]

for every x € |a, b], where V(f "=V is the total variation of f "~V on [a, b].

Moreover, for n = 2r we have

b
}_/()C) — blTa/ f(l)dl — Tg,_l(x)

(b—a! 2 2 X—a bp(2r—1)
< ANy - " r " r r : " )
(Zr)! (l 2 ) iBZ | +12 B, B, h—a Va(f )

while for n =2r+ 1, r > 1, we have

}/ _a/fdt 1o (x)

(b— 22r+1)!
(2r+ ! i(2ﬂ)2’“( —277)

+

X—a
By (m) H ‘ Vf(f(2r>)~
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Proof. If F : [a,b] — R is bounded on [a, b] and the Riemann-Stieltjes integral
[ Fware)
@b

exists, then

< max [F(1)] - V2(FO D)
t€(a,b)

/ Foydf " (1)
[a,b]

Let us apply this estimation to the formula (2.5). We have

b
}f(»c) - [ -1

= |R ()|
(b —a)"! L x—t xX—a b p(n—1)
<= max (B - B, VA
n! tren[%] "\b—-a b—a valf )
(b —a)"! xX—a bp(n—1)
e Bﬂ 7Bn . " K
n! trerl[a)l(] (1) b—a valf )

which proves the first inequality. If n = 2r then B,,(¢) has its minimum and maximum
at points 0, 1 and % Since B»,(0) = By, (1) = By, we have

X —

Bo(i) — By (r)‘ — max {/4], B]}

max
1€[0,1]

A=By By (2% B, (L) _B, (F¢
— D2y 2r b—a ) — D2r ) 2r h_a .

Also, A< O0<Bor B<0<A,sothat

where

max {|A|, |B|} = 5 (|A + B[+ |A - BJ).

R -

Using the above formula and

1
By, (5> = —(1-2""")By,

we get
X—da X—da
By, (t) — B, = (1=2"2)|By| + |27%B, — By, ,
max 2 (1) 2<ba)‘ ( )|2+‘ 2 2(ba)

which gives the second inequality. For n = 2r + 1, and r > 1, we have

2(2r + 1)! N
(27‘[)2”1(1 _ Zfzr) ’ 2’

0< (—1)r+1B2r+1()€) <

and
Byry1(x) = —=Byry1 (1 — x),
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which implies

max
t€[0,1]

+

X—a 2(2r + 1)!
Bor1(t) — Bargt < >’ < ( )

b—al)l ™ (2m)2+1(1 —2-2)

X—da
Bori1 (b—a)"

This proves the third inequality.

REMARK 5. We have

Bi(t) — B Y79 = max
! "\bp—a)| epy

and the first inequality of the preceding theorem for n = 1 becomes

b
waia/fmw

COROLLARY 3. Let f : [a,b] — R be such that f") € Ly[a,b] for some n > 1.

Then
b
Pu>bia/f@mnlw

(b—a)! By(1) — B, (Z_Z)’.lfwup

X —d

max t—

1€[0,1] 2 2

b—a

1 ‘ a+b‘
= -+ |x— .

1 a+b b
<= — . ,

< ————— max
n! 1€[0,1]

forevery x € [a,b].
Moreover, for n = 2r we have

b
P@)bia/f@wmlw

bia2r71 L L Y a )
e S L S O [ R

while for n =2r+ 1, and r > 1, we have

P(x) et G
_ay

(b—a)* 202r + 1)!
S @2r+1) {(27:)%1(1 )

+

xX—a .
e (5=5)| | v

Proof. Note that in this case we have

Wv“”>—LWﬂWOVn4wmm (3.6)

and apply the preceding theorem.



OSTROWSKI INEQUALITY VIA SOME EULER-TYPE IDENTITIES 349

O

THEOREM 6. Let f : [a,b] — R be such that f "~ is continuous function of
bounded variation on [a,b] for some n > 1. Then

b
}mx)—bla/f(r)dr—n(x) <=

forevery x € [a, b].
Moreover, for n = 2r we have

(b_a)n_l bp(n—1)
max |B, V2 (FV
n! re[(e)l)f]| 01 - Ve ),

(b—a)* ' Bal brr
Ndt — To(x)| < —————— -V, )
}’/ —a/f () (2r)! alf )
while for n =2r + 1, and r > 1 we have
2(b—a)*

<@mra-zm

}j(x /f 1)dt — Tori1(x)| <

Proof. We use the identity (2.1) and apply the argument similar to that in the proof
of the preceding theorem.

O

COROLLARY 4. Let f : [a,b] — R be such that f") € Ly[a,b] for some n > 1.

Then
P ﬂl/f Ndi — T, ()| <

forevery x € [a, b].
Moreover, for n = 2r we have

(b—a)"_l (n)
B n
ot max [Bu(o)] - IF

(b—a)* ' Bal) o
— Ty < )
}j —a / F it = Ty (x)) < o
while for n =2r + 1, and r > 1, we have
2(b—a)*
T . (2r+1) .
}f(»c s [10a ) < G2l e,

Proof. Use the formula (3.6) and apply Theorem 6.
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THEOREM 7. Let f : [a,b] — R be such that f") € Ly[a,b] for some n > 1.

Then
P _a/f Ty ()
<O Pl -8, (322) |t e

forevery x € [a, b].
Proof. Since (") exists on [a, b], we have

Ra(x) = %/M {BZ (Z_;) — B, (%ﬂf(")(t)dt, (3.7)

and from (2.5) we get the following estimate

Puwwlalﬁmm—nﬁm
< %Lb B! (Z_;) ~ B, (;_Z)‘d;. 1o

(b—a)”/1 x—a (n)
i re— Bn *Bn T t- " 00
[ s - B, (5= ar- 1)

which proves our assertion.
THEOREM 8. Let f : [a,b] — R be such that f") € Ly[a,b] for some n > 1.

Then
P /f 0)di /WB Yt - [f oo,

forevery x € [a, b].
Proof. Analogously as in the preceding theorem, use the formula

YRR Gl / (221
R,(x) = . » B; P F()dr, (3.8)
and the identity (2.1).

O

O

THEOREM 9. Let f : [a,b] — R be such that f ™) € Ly[a,b] for some n > 1 and
1 <p < oo. Then

Pm—gizzﬂmm—nqw
Sl VAL G

q 1/q
dt) A,
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forevery x € |a,b], where 1/p+1/q=1.

Proof. Use the identity (2.5) and the formula (3.7) and apply the Holder inequality
to obtain

}Ax) i [T
0l (222) - (32
([l () -n () )

/g
(b — a)”*lJrl/q /1 x—a\|? (n)
SR A —— Bu(1) — B, [ — : :

which proves our assertion.

N

O

COROLLARY 5. Let f : [a,b] — R be such that f") € L,[a,b] for some n > 1.
Then

b
}Ax) R / F(0di — Ty 1 (v)

12
(b—ay'2 [ (n1)? 2 (X —a (n)
< Bn B . )
n! (2n)!‘ wl+ B Il

forevery x € [a, b].

Proof. By Theorem 9 for p =2 we have

b
%x) - [ a1

< (b_a)n—l/z /1
n! 0

no - (2=4)]

dt
—/1B2(t)dt—2B 4 /IB(t)dt—&-Bz 4
a 0 n " b*a 0 " n b*(l ’

The Bernoulli polynomials satisfy the relation [3, 23.1.12]:

/ BBy (1)t = (1)
0

2 N\ 12
dt) e

Further

n'm!
! n+my

(n+m)
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for every n,m > 1. Therefore, we have

2 2
a1 ! n!

|
/0 B (1)dt = (—1) Man = 20yt |B2n|
and

1
/ B,(1)dt =0, n > 1.
0

lB g (¥4 2d*(n!)zB g (r—a
B =B\ =2 )| 4 Bl B\ )

which proves our assertion.

Hence

O

THEOREM 10. Let f : [a,b] — R be such that f") € Ly[a,b] for some n > 1
and 1 < p < oc. Then
1 1/q

b n—1+1 1
(b—a) 't (n)
5z [ fod= 1| < S [mora) 1o,

n!

(x) =

forevery x € |a,b], where 1/p+1/q=1.

Proof. Use the identity (2.1) and the formula (3.8) and apply the same argument
as in the preceding theorem.
O

COROLLARY 6. Let f : [a,b] — R be such that f") € L,[a,b] for some n > 1.
Then

b 1/2
-5 [roa-10) < o-a 2 (52) R

forevery x € [a,b].

Proof. Apply Theorem 10 for p = 2 and use the argument similar to that in the
proof of Corollary 5.
]
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