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SOME COMPANION INEQUALITIES TO JENSEN’S INEQUALITY

M. MATIĆ AND J. PEČARIĆ

(communicated by J. Sándor)

Abstract. We prove a pair of general companion inequalities to Jensen’s inequality in its discrete
and integral form. Slater’s inequality as well as the generalization of the counterpart to Jensen’s
inequality along with some further results are deduced from these general inequalities.

1. Introduction

The function ϕ : C → R is said to be convex on a convex subset C of a real linear
space X if

ϕ(tx + (1 − t)y) � tϕ(x) + (1 − t)ϕ(y) (1.1)
holds for all x, y ∈ C and 0 � t � 1 . ϕ is said to be strictly convex if the inequality in
(1.1) is strict whenever x �= y and 0 < t < 1 . It is well known that the convexity of ϕ
is equivalent to the requirement that for any vectors xi ∈ C , i = 1, . . . , n (n � 2 ) and
for any nonnegative real numbers pi , i = 1, . . . , n with Pn :=

∑n
i=1 pi > 0 Jensen’s

inequality

ϕ

(
1
Pn

n∑
i=1

pixi

)
� 1

Pn

n∑
i=1

piϕ(xi) (1.2)

holds. In the case when ϕ is strictly convex the inequality in (1.2) is strict unless xi = c
for all indices i with pi > 0 and for some vector c ∈ C .

Jensen’s inequality has many integral analogues. We shall use the simplest one
expressed in the language of Lebesgue integral (see for example [6, p. 61]:

if (Ω,A,μ) is a measure space with 0 < μ(Ω) < ∞ and if f ∈ L1(μ) is such
that a < f (t) < b for all t ∈ Ω , −∞ � a < b � ∞ , then the inequality

ϕ
(

1
μ(Ω)

∫
Ω

f dμ
)

� 1
μ(Ω)

∫
Ω
ϕ(f )dμ (1.3)

is valid for any convex function ϕ : (a, b) → R . In the case when ϕ is strictly convex
on (a, b) we have equality in (1.3) if and only if f is constant almost everywhere on
Ω .

Slater ([7, Theorems 1 and 2]) proved an interesting companion inequality to
Jensen’s inequality (in its discrete and integral form):
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THEOREM A. Suppose that the convex function ϕ : (a, b) → R is monotonic on
(a, b) .

For x1, · · · , xn ∈ (a, b) and for p1, · · · , pn � 0 with Pn :=
∑n

i=1 pi > 0 , if∑n
i=1 piϕ′

+(xi) �= 0 , then

1
Pn

n∑
i=1

piϕ(xi) � ϕ

(
n∑

i=1

piϕ′
+(xi)xi

/ n∑
i=1

piϕ′
+(xi)

)
. (1.4)

When ϕ is strictly convex, inequality in (1.4) becomes equality if and only if xi = c for
some c ∈ (a, b) and for all i with pi > 0 .

Also if (Ω,A,μ) is a measure space with 0 < μ(Ω) < ∞ and if f : Ω → (a, b)
is such that ϕ(f ) ,ϕ′

+(f ) and ϕ′
+(f )f are all in L1(μ) , then

1
μ(Ω)

∫
Ω
ϕ(f )dμ � ϕ

(∫
Ω
ϕ′

+(f )f dμ
/∫

Ω
ϕ′

+(f )dμ
)

(1.5)

holds whenever
∫
Ω ϕ

′
+(f )dμ �= 0 . In the case when ϕ is strictly convex, we have

equality in (1.5) if and only if f is constant almost everywhere on Ω .

Here ϕ′
+ denotes the right derivative of ϕ and similarly ϕ′− denotes the left

derivative of ϕ . Both inequalities (1.4) and (1.5) remain valid if any occurrence of
ϕ′

+(x) is replaced by any value from the interval [ϕ′
−(x),ϕ′

+(x)] .Pečarić in [3] noted
that (1.4) remains true if we drop the assumption about monotonicity on ϕ , provided

n∑
i=1

piϕ′
+(xi)xi

/ n∑
i=1

piϕ′
+(xi) ∈ (a, b).

In the same paper a generalization of (1.4) to the case when ϕ is convex function
defined on the open convex subset C in Rm was proved. Further generalization of
(1.4) to the case when ϕ is convex function defined on the open convex subset C in
arbitrary normed real linear space X was proved by Pečarić and Andrica in [4].

Another companion inequality to Jensen’s inequality is a converse proved by
Dragomir and Goh in [1]:

THEOREM B. Let ϕ : C → R be a differentiable convex function defined on an
open and convex subset C of Rm . If xi ∈ C , i = 1, · · · , n ( n � 2 ) are arbitrary
vectors and pi i = 1, · · · , n nonnegative real numbers with Pn :=

∑n
i=1 pi > 0 , then

the inequalities

0 � 1
Pn

n∑
i=1

piϕ(xi) − ϕ

(
1
Pn

n∑
i=1

pixi

)

� 1
Pn

n∑
i=1

pi〈∇ϕ(xi), xi〉 −
〈

1
Pn

n∑
i=1

pi∇ϕ(xi),
1
Pn

n∑
i=1

pixi

〉
(1.6)

hold. In the case when ϕ is strictly convex, we have equalities in both inequalities in
(1.6) if and only if there is some c ∈ C such that xi = c holds for all i with pi > 0 .
(Here 〈 ·, ·〉 denotes the usual inner product in Rm .)
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The result above was stated in [1] with Pn = 1 and without the conclusion about
equalities in the case of strict convexity.

The paper is organized as follows.
In section 2 we prove a couple of general companion inequalities related to Jensen’s

discrete inequality (1.2). We show that the Jensen’s inequality (1.2), as well as Slater’s
inequality (1.4) along with its earlier mentioned generalizations due to Pečarić, can
be obtained from these general inequalities as a special cases. Moreover, one of these
general inequalities provides a generalization of the result stated in Theorem B to the
case when ϕ is arbitrary convex function defined on an open and convex subset C in
normed real linear space. In section 2, we also state the analogous results related to
Jensen’s integral inequality (1.3).

In section 3 we consider the cases when our general inequalities are the best
possible, both in the discrete case as well as in the integral case. Also, we prove that
inequality (1.6) specialized to the case m = 1 under additional assumptions on the
function ϕ , is tighter than Slater’s inequality (1.4). Under the same assumptions on ϕ
this is true for the integral analogue of (1.4) when it is compared with Slater’s integral
inequality (1.5).

In section 4 we apply the results obtained in sections 2 and 3, by suitable choice
of the function ϕ , to obtain the classical inequalities between the harmonic, geometric
and arithmetic means, as well as the inequalities of Wang and Wang, and Ky Fan, (see
for example [2, pp. 25–28]), and certain refinements of these inequalities.

2. Companion Inequalities to Jensen’s inequality

Let X be a real linear space and let X∗ be the algebraic dual space of X , that is,
the real space of all linear functionals x∗ : X → R . If ϕ : C → R is any real–valued
function defined on a subset C in X , then for any fixed point y ∈ C we can define the
abstract subdifferential ∂ϕ(y) of ϕ at y as

∂ϕ(y) := {a∗(y; ·) ∈ X∗ : ϕ(x) � ϕ(y) + a∗(y; x − y), ∀x ∈ C}.
Of course it may happen that ∂ϕ(y) = ∅ for some vector y ∈ C . However, when C
is an open convex subset in a normed real linear space X and ϕ is convex function
defined on C , we have

∂ϕ(y) �= ∅, ∀y ∈ C

(see for example [5,p. 108 Theorem B]). Also, when ϕ is strictly convex, the inequality

ϕ(x) � ϕ(y) + a∗(y; x − y), ∀x, y ∈ C (2.1)

is strict unless x = y .

THEOREM 2.1. Let ϕ : C → R be a convex function defined on an open convex
subset C in a normed real linear space X . For the given vectors xi ∈ C , i = 1, · · · , n ,
and nonegative real numbers pi such that Pn :=

∑n
i=1 pi > 0 let

x̄ :=
1
Pn

n∑
i=1

pixi, ȳ :=
1
Pn

n∑
i=1

piϕ(xi).
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If c, d ∈ C are arbitrarily chosen vectors, then we have

ϕ(c) + a∗(c; x̄ − c) � ȳ � ϕ(d) +
1
Pn

n∑
i=1

pia
∗(xi; xi − d). (2.2)

Also, when ϕ is strictly convex, we have equality in the left inequality in (2.2) if and
only if xi = c holds for all indices i with pi > 0 , while equality holds in the right
inequality in (2.2) if and only if xi = d holds for all indices i with pi > 0 .

Proof. For a fixed index i we can take x = xi and y = c in (2.1) to obtain

ϕ(c) + a∗(c; xi − c) � ϕ(xi). (2.3)

Multiplying (2.3) by pi � 0 and summing over i = 1, · · · , n , and using the fact that
a∗(c; ·) is a linear functional, we get

Pnϕ(c) + a∗(c;
n∑

i=1

pixi − Pnc) �
n∑

i=1

piϕ(xi).

Now dividing this by Pn > 0 , by the linearity of a∗(c; ·) we get the first inequality in
(2.2). Also, when ϕ is strictly convex the equality in (2.3) holds if and only if xi = c .
So, it is easy to see that our assertion on equality in the first inequality in (2.2) is true.

To obtain the second inequality in (2.2) we first put y = xi and x = d in (2.1),
and then, using the linearity of a∗(xi; ·) , rewrite it in the form

ϕ(xi) � ϕ(d) + a∗(xi; xi − d). (2.4)

Multiplication by pi � 0 and summation over i = 1, · · · , n yields

n∑
i=1

piϕ(xi) � Pnϕ(d) +
n∑

i=1

pia
∗(xi; xi − d).

Dividing this by Pn > 0 we get the second inequality in (2.2). Since in the case when
ϕ is strictly convex we have equality in (2.4) if and only if xi = d , our assertion on
equality in the second inequality in (2.2) is obviously true. �

Now we give a simple corollary to Theorem 2.1.

COROLLARY 2.2. Under the assumptions of Theorem 2.1 we have

0 � ȳ − ϕ(x̄) � 1
Pn

n∑
i=1

pia
∗(xi; xi − x̄). (2.5)

If ϕ is strictly convex, then we have equalities throughout in (2.5) if and only if there is
some c ∈ C such that xi = c holds for all i with pi > 0 .

Proof. Simply take c = d = x̄ and apply Theorem 2.1. �
REMARKS. (a) If ϕ : C → R is a differentiable convex function defined on an open

convex subset C in Rm , and if y ∈ C , then ∂ϕ(y) consists of a single element a∗(y; ·)
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given by a∗(y; z) = 〈∇ϕ(y), z〉 ( z ∈ Rm ). So, Corollary 2.2 is a generalization of
Theorem B discussed in the introduction.

(b) If there is a vector ¯̄x such that

n∑
i=1

pia
∗(xi; xi − ¯̄x) � 0

holds, then from the right inequality in (2.2) with d = ¯̄x it follows that we have

ȳ � ϕ(¯̄x).

This result was proved by Pečarić and Andrica [4]. When C is an open convex subset
in Rm , we can take a∗(y; ·) ∈ ∂ϕ(y) ( y ∈ C ) to be defined by

a∗(y; z) =
m∑

j=1

∂j+ϕ(y)ζj, z = (ζ1, · · · , ζm) ∈ Rm

where ∂j+ϕ(y) denotes right partial derivative of ϕ over j–th variable at y . Pečarić [3]
proved that in this case the vector ¯̄x = ( ¯̄ξ1, · · · , ¯̄ξm) can be given explicitely by

¯̄ξj :=
∑n

i=1 pi∂j+ϕ(xi)ξij∑n
i=1 pi∂j+ϕ(xi)

, j = 1, · · · , m,

where ξij denotes the j–th coordinate of xi .

In the simplest case when ϕ : (a, b) → R is a convex function defined on an open
interval (a, b) in R , for any y ∈ (a, b) we have that a∗(y; ·) ∈ ∂ϕ(y) is given by
a∗(y; z) = αz ( z ∈ R ), where α is any value from the interval [ϕ′−(y),ϕ′

+(y)] . For
convenience we shall always take α = ϕ′

+(y) so that, in this case, Theorem 2.1 states
that for any c, d ∈ (a, b) we have

ϕ(c) + ϕ′
+(c)(x̄ − c) � ȳ � ϕ(d) +

1
Pn

n∑
i=1

piϕ′
+(xi)(xi − d). (2.6)

The proof of this fact depends on the key inequality (2.1), that is (in this case)

ϕ(x) � ϕ(y) + ϕ′
+(y)(x − y), ∀x, y ∈ (a, b) (2.7)

with strict inequality when x �= y in the case when ϕ is strictly convex. Using
inequality (2.7) we can easily prove the integral version of Theorem 2.1 for Lebesgue
integral. Here we state this result without proof.

THEOREM 2.3. Let (Ω,A,μ) be a measure space with 0 < μ(Ω) < ∞ and let
ϕ : (a, b) → R be a convex function defined on an open interval (a, b) in R . If
f : Ω → (a, b) is such that f ,ϕ(f ) ,ϕ′

+(f ) and f ϕ′
+(f ) are all in L1(μ) , then for any

c, d ∈ (a, b) we have

ϕ(c) + ϕ′
+(c)(x̄ − c) � ȳ � ϕ(d) +

1
μ(Ω)

∫
Ω
(f − d)ϕ′

+(f )dμ, (2.8)
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where

x̄ :=
1

μ(Ω)

∫
Ω

f dμ , ȳ :=
1

μ(Ω)

∫
Ω
ϕ(f )dμ.

Further, when ϕ is strictly convex, we have equality in the left inequality in (2.8) if and
only if f (t) = c almost everywhere on Ω , while equality holds in the right inequality
in (2.8) if and only if f (t) = d almost everywhere on Ω .

REMARKS. (a)First note thatwemay take (Ω,A,μ) to be a discretemeasure space
with Ω = {1, 2, · · · , n} and μ({i}) = pi ( i = 1, · · · , n ) and then apply Theorem 2.3
to the function f defined by f (i) = xi ( i = 1, · · · , n ). We get the inequalities (2.6),
which means that we can interpret these inequalities as a special case of the inequalities
(2.8).

(b) As a corollary to Theorem2.3we can obtain an integral analogue of TheoremB.
Namely, we can simply set c = d = x̄ in (2.8) and rewrite the obtained inequalities in
the form

0 � ȳ − ϕ(x̄) � 1
μ(Ω)

∫
Ω
(f − x̄)ϕ′

+(f )dμ.

(c) When
∫
Ω ϕ

′
+(f )dμ �= 0 , we can define a value ¯̄x by

¯̄x :=
∫
Ω

f ϕ′
+(f )dμ

/∫
Ω
ϕ′

+(f )dμ.

If ¯̄x ∈ (a, b) holds, then the second inequality in (2.8) with d = ¯̄x reduces to the
inequality ȳ � ϕ(¯̄x) , which is in fact the Slater’s inequality (1.5).

3. Some further results

In this section we first address the question of optimizing the inequalities (2.2)
given in Theorem 2.1. That is, we want to find out if there is a choice of c and of d
for which the inequalities (2.2) are sharp. Our next theorem gives the answer to this
question.

THEOREM 3.1. Let the assumptions of Theorem 2.1 be satisfied. If x̄ and ȳ are
defined as in Theorem 2.1, then we have

ϕ(c) + a∗(c; x̄ − c) � ϕ(x̄) � ȳ, ∀c ∈ C. (3.1)

When ϕ is strictly convex, the first inequality in (3.1) is strict unless c = x̄ . Fur-
thermore, if there exists a vector d̄ ∈ C such that the corresponding functional
a∗(d̄; ·) ∈ ∂ϕ(d̄) satisfies

a∗(d̄; ·) =
1
Pn

n∑
i=1

pia
∗(xi; ·), (3.2)
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then

ȳ � ϕ(d̄) +
1
Pn

n∑
i=1

pia
∗(xi; xi − d̄)

� ϕ(d) +
1
Pn

n∑
i=1

pia
∗(xi; xi − d), ∀d ∈ C. (3.3)

When ϕ is strictly convex, the second inequality in (3.3) is strict unless d = d̄ .

Proof. By setting c = x̄ in the first inequality in (2.2), we get ϕ(x̄) � ȳ . Also,
setting x = x̄ and y = c in (2.1), gives the first inequality in (3.1). For the strictly
convex ϕ , this inequality is strict unless c = x̄ . If (3.2) holds for some vector d̄ ∈ C ,
then for arbitrary d ∈ C we can apply (2.1) with x = d and y = d̄ to obtain

ϕ(d) � ϕ(d̄) + a∗(d̄; d − d̄)

= ϕ(d̄) +
1
Pn

n∑
i=1

pia
∗(xi; d − d̄)

= ϕ(d̄) +
1
Pn

n∑
i=1

pia
∗(xi; xi − d̄ − (xi − d))

= ϕ(d̄) +
1
Pn

n∑
i=1

pia
∗(xi; xi − d̄) − 1

Pn

n∑
i=1

pia
∗(xi; xi − d).

This, in turn, implies the second inequality in (3.3). In the strictly convex case this
inequality is strict unless d = d̄ . The first inequality in (3.3) follows by the second
inequality in (2.2) with d = d̄ . �

COROLLARY 3.2. Suppose that ϕ : (a, b) → R is a convex function defined on
an open interval (a, b) in R and that the first derivative ϕ′(x) exists at every point
x in (a, b) . For xi ∈ (a, b) and nonnegative real numbers pi , i = 1, · · · , n , with
Pn =

∑n
i=1 pi > 0 , let

x̄ :=
1
Pn

n∑
i=1

pixi, ȳ :=
1
Pn

n∑
i=1

piϕ(xi).

Then, we have

ϕ(c) + ϕ′(c)(x̄ − c) � ϕ(x̄) � ȳ, ∀c ∈ (a, b). (3.4)

If ϕ is strictly convex, then the first inequality in (3.4) is strict unless c = x̄ . Further-
more, there exists at least one d̄ ∈ (a, b) such that

ϕ′(d̄) =
1
Pn

n∑
i=1

piϕ′(xi), (3.5)
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and

ȳ � ϕ(d̄) +
1
Pn

n∑
i=1

piϕ′(xi)(xi − d̄)

� ϕ(d) +
1
Pn

n∑
i=1

piϕ′(xi)(xi − d), ∀d ∈ (a, b). (3.6)

When ϕ is strictly convex, there exists exactly one d̄ for which (3.5) and (3.6) hold,
and the second inequality in (3.6) is strict unless d = d̄ .

Proof. Since ϕ′(y) exists for arbitrary y ∈ (a, b) , the subdifferential ∂ϕ(y)
consists of exactly one element a∗(y; ·) given by

a∗(y; z) = ϕ′(y)z, z ∈ R.

Therefore, the condition (3.2) is in this case equivalent to the requirement that

ϕ′(d̄)z =
1
Pn

n∑
i=1

piϕ′(xi)z, ∀z ∈ R,

which is, in turn, equivalent to (3.5). The derivative ϕ′ is nondecreasing and continuous
on (a, b) (see for example [5, pp. 3–7]), which implies that I = ϕ′((a, b)) is an interval
in R (not necessarily open). So (1/Pn)

∑n
i=1 piϕ′(xi) must be in I since it is a convex

combination of ϕ′(xi) ∈ I ( i = 1, · · · , n ). This shows that there must exist at least one
d̄ ∈ (a, b) which satisfies (3.5). When ϕ is strictly convex, the derivative ϕ′ is strictly
increasing and exactly one d̄ ∈ (a, b) satisfies (3.5). Now we apply Theorem 3.1 to
get desired conclusions. �

REMARK. When ϕ is strictly convex, the value d̄ is uniquely determined by (3.5)
which can be rewriten as

d̄ = Mϕ′(x1, · · · , xn; p1, · · · , pn) := (ϕ′)−1

(
1
Pn

n∑
i=1

piϕ′(xi)

)
.

Thus, d̄ is the quasiarithmeticmeanwith respect to the strictly increasing and continuous
function ϕ′ of (x1, · · · , xn) with weights (p1, · · · , pn) .

The result proved in Corollary 3.2 can be regarded as the special case of the
following more general result.

THEOREM 3.3. Let (Ω,A,μ) be a measure space with 0 < μ(Ω) < ∞ and let
ϕ : (a, b) → R be a convex function such that ϕ′(x) exists at every point x ∈ (a, b) .
If f : Ω → (a, b) is such that f ,ϕ(f ) ,ϕ′(f ) and f ϕ′(f ) are all in L1(μ) , and if

x̄ :=
1

μ(Ω)

∫
Ω

f dμ , ȳ :=
1

μ(Ω)

∫
Ω
ϕ(f )dμ,

then
ϕ(c) + ϕ′(c)(x̄ − c) � ϕ(x̄) � ȳ, ∀c ∈ (a, b). (3.7)
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When ϕ is strictly convex, the first inequality in (3.7) is strict unless c = x̄ . Also, there
exists at least one d̄ ∈ (a, b) such that

ϕ′(d̄) =
1

μ(Ω)

∫
Ω
ϕ′(f )dμ (3.8)

holds, and

ȳ � ϕ(d̄) +
1

μ(Ω)

∫
Ω
(f − d̄)ϕ′(f )dμ

� ϕ(d) +
1

μ(Ω)

∫
Ω
(f − d)ϕ′(f )dμ, ∀d ∈ (a, b). (3.9)

When ϕ is strictly convex, there exists exactly one d̄ for which (3.8) and (3.9) hold and
the second inequality in (3.9) is strict unless d = d̄ .

Proof. The argument for the first inequality in (3.7) is the same as the one given
for the first inequality in (3.4). The second inequality in (3.7) and the first one in (3.9)
follow from the inequalities (2.8) if we set c = x̄ and d = d̄ . Also, we have

1
μ(Ω)

∫
Ω
ϕ′(f )dμ ∈ ϕ′((a, b))

so that the argument for the existence of d̄ and for its uniqueness (in the case when ϕ
is strictly convex) is the same as the one given in the proof of Corollary 3.2. To prove
the second inequality in (3.9), it is enough to minimize the function ψ : (a, b) → R
defined as

ψ(d) := ϕ(d) +
1

μ(Ω)

∫
Ω
(f − d)ϕ′(f )dμ, d ∈ (a, b).

The first derivative of ψ is

ψ ′(d) = ϕ′(d) − 1
μ(Ω)

∫
Ω
ϕ′(f )dμ, d ∈ (a, b).

Since the function ϕ′ is nondecreasing and continuous on (a, b) , it is obvious that
ψ ′ is nondecreasing and continuous on (a, b) , too. So, if d̄ satisfies (3.8), then the
function ψ attains its minimum at d̄ . �

For d = x̄ , Theorem 3.3 gives

ϕ(x̄) � ȳ � DJ := ϕ(x̄) +
1

μ(Ω)

∫
Ω
(f − x̄)ϕ′(f )dμ. (3.10)

Also, if
∫
Ω ϕ

′(f )dμ �= 0 , then we can define

¯̄x :=
∫
Ω

f ϕ′(f )dμ
/∫

Ω
ϕ′(f )dμ,

and the Slater’s inequality
ȳ � DS := ϕ(¯̄x) (3.11)

is valid whenever ¯̄x ∈ (a, b) holds (this happens for example in the case when ϕ is
monotone). We now prove that, under the additional assumptions on ϕ , the second
inequality in (3.10) is sharper than inequality (3.11).
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THEOREM3.4. Let the assumptions of Theorem3.3 hold. Suppose that
∫
Ω ϕ

′(f )dμ �=
0 holds. If either ϕ is nondecreasing and ϕ′ is concave on (a, b) , or ϕ is nonin-
creasing and ϕ′ is convex on (a, b) , then

ȳ � DJ � DS.

Proof. The relation (3.10) implies

(¯̄x − x̄)
∫
Ω
ϕ′(f )dμ =

∫
Ω
(f − x̄)ϕ′(f )dμ � 0. (3.12)

Also, the difference DS − DJ can be writen as

DS − DJ = ϕ(¯̄x) − ϕ(x̄) − (¯̄x − x̄)
1

μ(Ω)

∫
Ω
ϕ′(f )dμ. (3.13)

If ϕ is nondecreasing, then we have
∫
Ω ϕ

′(f )dμ > 0 , and (3.12) implies ¯̄x − x̄ � 0 .
Also, Jensen’s inequality applied to the concave function ϕ′ yields

1
μ(Ω)

∫
Ω
ϕ′(f )dμ � ϕ′

(
1

μ(Ω)

∫
Ω

f dμ
)

= ϕ′(x̄),

so that from (3.13) we get

DS − DJ � ϕ(¯̄x) − ϕ(x̄) − ϕ′(x̄)(¯̄x − x̄) � 0. (3.14)

Similarly, if ϕ is nonincreasing, then we have
∫
Ω ϕ

′(f )dμ < 0 , and (3.12) implies
¯̄x − x̄ � 0 . Now, Jensen’s inequality applied to the convex function ϕ′ yields

1
μ(Ω)

∫
Ω
ϕ′(f )dμ � ϕ′

(
1

μ(Ω)

∫
Ω

f dμ
)

= ϕ′(x̄),

and from (3.13) we get (3.14) again. �

REMARK. If we specialize (Ω,A,μ) to be a discrete measure space with Ω =
{1, · · · , n} and μ({i}) = pi � 0 ( i = 1 · · · , n ), and then apply Theorem 3.3 to a
function f defined by f (i) = xi ∈ (a, b) , i = 1, · · · , n , we get the conclusions stated
in Corollary 3.2. In that case x̄ , ȳ and ¯̄x are given by

x̄ =
1
Pn

n∑
i=1

pixi, ȳ =
1
Pn

n∑
i=1

piϕ(xi) and ¯̄x =
n∑

i=1

piϕ′(xi)xi

/ n∑
i=1

piϕ′(xi),

respectively, provided that
∑n

i=1 piϕ′(xi) �= 0 . If, additionally, either ϕ is nondecreas-
ing and ϕ′ is concave on (a, b) , or ϕ is nonincreasing and ϕ′ is convex on (a, b) ,
then by Theorem 3.4 we have ȳ � DJ � DS , where

DJ = ϕ(x̄) +
1
Pn

∑
i=1

piϕ′(xi)(xi − x̄) and DS = ϕ(¯̄x).
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4. Applications to some classical inequalities

Let x1, · · · , xn and p1, · · · , xn be positive real numbers and let Pn :=
∑n

i=1 pi .
Let Hn ,Gn and An denote the weighted harmonic, geometric and arithmetic mean,
respectively, defined by

Hn := Pn

(
n∑

i=1

pi/xi

)−1

, Gn :=

(
n∏

i=1

xpi
i

)1/Pn

and An :=
1
Pn

n∑
i=1

pixi. (4.1)

It is well–known that Hn � Gn � An . We call these inequalities shortly HGA. Here
we shall deduce HGA as a consequence of our results from sections 2 and 3.

THEOREM 4.1. Suppose that x1, · · · , xn and p1, · · · , pn are positive real numbers
and let Hn ,Gn and An be defined by (4.1). For any positive real numbers c and d we
have

d exp

{
1 − d

Hn

}
� Hn � Gn � An � c exp

{
An

c
− 1

}
. (4.2)

The equality in the first inequality in (4.2) holds if and only if d = Hn , while the equality
in the last inequality in (4.2) holds if and only if c = An . Also, the second and the
third inequality in (4.2) are strict unless there is an K > 0 such that xi = K for all
i = 1, · · · , n .

Proof. The function ϕ(x) = − ln x is strictly convex on the interval (0,∞) and
we have ϕ′(x) = −1/x , for x > 0 . Also, we have

x̄ =
1
Pn

n∑
i=1

pixi = An and ȳ =
1
Pn

n∑
i=1

piϕ(xi) = − lnGn.

Furthermore,

1
Pn

n∑
i=1

piϕ′(xi)xi = −1 and
1
Pn

n∑
i=1

piϕ′(xi) = − 1
Hn

,

so that ¯̄x = Hn . Also, the equation (3.5) reduces to −1/d̄ = −1/Hn which yields
d̄ = Hn . Now we can apply Corollary 3.2 to get the inequalities

− ln c − 1
c
(An − c) � − lnAn � − lnGn � − lnHn � − ln d − 1 +

d
Hn

,

which are obviously equivalent to the inequalities (4.2). The assertions on the cases
when equalities hold are true by Theorem 2.1 and Corollary 3.2. �

REMARK. It should be noted that we can not apply Theorem 3.4 to the function
ϕ(x) = − ln x since it is strictly decreasing and its derivative ϕ′(x) = −1/x is strictly
concave on (0,∞) . In fact, we have ¯̄x = d̄ = Hn so that Corollary 3.2 implies

DS = − lnHn � DJ = − lnAn − 1 +
An

Hn
.
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It is easy to see that this inequality is strict unless Hn = An .

Suppose that x1, · · · , xn and p1, · · · , pn are positive real numbers such that xi ∈
(0, 1/2] for all i = 1, · · · , n . Then we have 1 − xi ∈ [1/2, 1) for all i = 1, · · · , n ,
and we can consider the means Hn ,Gn and An defined by (4.1), as well as the means
H′

n , G′
n and A′

n defined by

H′
n := Pn

(
n∑

i=1

pi/(1 − xi)

)−1

, G′
n :=

(
n∏

i=1

(1 − xi)pi

)1/Pn

and A′
n :=

1
Pn

n∑
i=1

pi(1 − xi) = 1 − An. (4.3)

It is well–known that the inequalities

Hn/H′
n � Gn/G′

n � An/A
′
n (4.4)

are valid. The first inequality in (4.4) is known in the literature as the inequality of
Wang and Wang while the second one is known as the inequality of Ky Fan (see for
example [2, pp. 25–28]). Again we shall use our results from the previous sections to
deduce the inequalities (4.4).

THEOREM 4.2. Suppose that x1, · · · , xn and p1, · · · , pn are positive real numbers
such that xi ∈ (0, 1/2] for all i = 1, · · · , n . Then the value d̄ given by

d̄ =
1
2
−
√

1
4
− H′

nHn

H′
n + Hn

(4.5)

is a well defined number in the interval (0, 1/2] and for any two real numbers c and d
from the interval (0, 1/2] we have

d
1 − d

exp

{
1
H′

n
− d

H′
n + Hn

H′
nHn

}
� d̄

1 − d̄
exp

{
1
H′

n
− d̄

H′
n + Hn

H′
nHn

}

� Gn

G′
n

� An

A′
n

� c
1 − c

exp

{
An − c

c(1 − c)

}
. (4.6)

Also, we have
Hn

H′
n

� d̄
1 − d̄

exp

{
1
H′

n
− d̄

H′
n + Hn

H′
nHn

}
� Gn

G′
n
. (4.7)

In the first inequality in (4.6) the equality holds if and only if d = d̄ , while in the
last inequality in (4.6) the equality holds if and only if c = An . Also, the equalities
hold throughout in (4.4) if and only if there exists K > 0 such that xi = K for all
i = 1, · · · , n .

Proof. Consider the function ϕ(x) = ln(1−x)−ln x which is defined on (0, 1) . It
is strictly convexon the interval (0, 1/2] and has a derivative ϕ′(x) = −1/(1−x)−1/x .
It is easy to see that we can apply our results from the previous sections to this function
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in spite of the fact that the interval on which this function is convex is not open. We
have

x̄ =
1
Pn

n∑
i=1

pixi = An and ȳ =
1
Pn

n∑
i=1

piϕ(xi) = ln(G′
n/Gn).

Furthermore,

1
Pn

n∑
i=1

piϕ′(xi)xi = − 1
H′

n
and

1
Pn

n∑
i=1

piϕ′(xi) = − 1
Hn

− 1
H′

n
,

which implies ¯̄x = Hn/(H′
n + Hn) . Also, the equation (3.5) reduces to

− 1
1 − d̄

− 1
d̄

= − 1
H′

n
− 1

Hn
,

and this is equivalent to the equation

d̄2 − d̄ + H′
nHn/(H′

n + Hn) = 0.

This last equation has exactly one solution d̄ in interval (0, 1/2] and this solution is
given by (4.5). Now we can apply Corollary 3.2 to obtain the inequalities

ln
1 − c

c
− 1

c(1 − c)
(An − c) � ln

1 − An

An
= ln

A′
n

An
� ln

G′
n

Gn
(4.8)

and

ln
G′

n

Gn
� ln

1 − d̄

d̄
− 1

H′
n
− d̄

(
− 1

Hn
− 1

H′
n

)

� ln
1 − d

d
− 1

H′
n
− d

(
− 1

Hn
− 1

H′
n

)
. (4.9)

From (4.8) and (4.9) we get the inequalities (4.6), while the inequality (4.7) follows by
the first inequality in (4.6) if we set d = Hn/(H′

n + Hn) . The assertions on the cases
when equalities hold are true by Theorem 2.1 and Corollary 3.2. �
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