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MONOTONICITY FOR GENERALIZED WEIGHTED MEAN VALUES
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Abstract. In the article, a new proof of the weighted power mean inequalities is given using
Cauchy-Schwarz-Buniakowski’s inequality, and another two simple and short proofs of mono-
tonicity for the generalized weighted mean values with two parameters are showed.

1. Introduction

For positive sequences a = (a1, a2, . . . , an) and q = (q1, q2, . . . , qn) satisfying∑n
k=1 qk = 1 , the weighted arithmetic, geometric, and harmonic mean values are

defined respectively by

An(a, q) =
n∑

i=1

qiai, Gn(a, q) =
n∏

i=1

aqi
i , Hn(a, q) =

1
n∑

i=1

qi

ai

. (1)

For positive integrable functions f and p defined on [x, y] , their integral analogues of
(1) are given by

A(f , p) =
∫ y

x
p(t)f (t) d t,

G(f , p) = exp

(∫ y

x
p(t) ln f (t) d t

)
, (2)

H(f , p) =
1∫ y

x

p(t) d t
f (t)

,

where
∫ y

x p(t) d t = 1 holds.
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It is well-known that

An(a, q) � Gn(a, q) � Hn(a, q), A(f , p) � G(f , p) � H(f , p) (3)

are called the weighted arithmetic mean-geometric mean-harmonic mean inequalities.
For the sake of brevity, the inequality between the arithmetic and geometric means

will be called A-G inequality, while the inequality between the geometric and harmonic
means will be called G-H inequality.

The A-G inequality has found much interest among many mathematicians, and
there are numerous new proofs, extensions, refinements, and variants of it. The study
of the A-G inequality has a rich literature, for details, please refer to [2, 3, 8, 16, 21],
and so on. Recently, H. Alzer [1], and J. Pečarić and S. Varošanec [10] gave two new
proofs of the A-G inequality.

The concepts of mean values have been generalized, extended in many directons.
A recent development concerning the mean values has simply been introduced in [9, 11,
13, 14].

The generalized weighted mean values Mp,f (r, s; x, y) with two parameters r and
s are defined by the first author in [11, 20] as follows:

Let x, y, r, s ∈ R , p(u) �≡ 0 be a nonnegative and integrable function and f (u) a
positive and integrable function on the interval between x and y , then

Mp,f (r, s; x, y) =

(∫ y
x p(u)f s(u) d u∫ y
x p(u)f r(u) d u

)1/(s−r)

, (r − s)(x − y) �= 0; (4)

Mp,f (r, r; x, y) = exp

(∫ y
x p(u)f r(u) ln f (u) d u∫ y

x p(u)f r(u) d u

)
, x − y �= 0; (5)

M(r, s; x, x) = f (x).

For our own convenience, we write

Mp,f (r, s; x, y) = Mp,f (r, s) = Mp,f (x, y) = Mp,f ,

shifting notations to suit the context.
Most of two variable mean values are special cases of Mp,f . If s = 0 , then

Mp,f (r, 0; x, y) = M[r](f , p; x, y) is called the weighted mean of order r of the function
f on the interval between x and y with weight p in [6, 7]. If take p(u) ≡ 1 , f (u) = u
and x, y > 0 , then Mp,f (r − 1, s − 1; x, y) = E(r, s; x, y) are called the extended mean
values in [4, 7].

The extended mean values E are increasing with r and s , or with x and y . It
had been proven by many mathematicians, for instances [4, 5, 7, 15, 17, 22]. The study
of E has a rich literature, for details, please see [11]. The monotonicity of Mp,f was
verified by the first author in [11, 20] using the Tchebycheff’s integral inequality, the
Cauchy-Schwarz-Buniakowski’s integral inequality, and the mean value thoerem.

In this article, usingCauchy-Schwarz-Buniakowski’s inequality, we will give a new
proof of the weighted power mean inequalities, i.e., the weighted A-G-H inequalities.

From the ideas and viewpoints used in [12, 17, 18, 19], we will prove the mono-
tonicity of Mp,f (r, s; x, y) by two new and simple methods.



NEW PROOFS OF WEIGHTED POWER MEAN INEQUALITIES 379

2. A new proof of the weighted power mean inequalities

For continuous functions f and p satisfying
∫ y

x p(t) d t = 1 , define

ψ(r) =
(∫ y

x
p(t)f r(t) d t

)1/r

, r �= 0;

ψ(0) = G(f , p).

(6)

For positive sequences a = (a1, a2, . . . , an) and q = (q1, q2, . . . , qn) satisfying∑n
i=1 qi = 1 , define

ϕ(r) =

(
n∑

i=1

qia
r
i

)1/r

, r �= 0;

ϕ(0) = Gn(a, q).

(7)

THEOREM 1. The functions ψ(r) and ϕ(r) are increasing with r ∈ R , respec-
tively.

Proof. Simple calculation yields

lnψ(r) =
ln
∫ y

x p(t)f r(t) d t

r

=
ln
∫ y

x p(t)f r(t) d t − ln
∫ y

x p(t)f 0(t) d t

r

=
1
r

∫ r

0

∫ y
x p(t)f s(t) ln f (t) d t∫ y

x p(t)f s(t) d t
d s.

It is well-known [6, 11] that, if f is a continuous and increasing function on a
given interval I , then the arithmetic mean Ψ(r, s) of f defined as

Ψ(r, s) =
1

s − r

∫ s

r
f (t) d t, r − s �= 0,

Ψ(r, r) = f (r)
(8)

is also increasing with both r and s on I .
Therefore, it is sufficient to verify that

F(s)
�
=

∫ y
x p(t)f s(t) ln f (t) d t∫ y

x p(t)f s(t) d t

is increasing in s ∈ R . By a simple differentiation as in the standard proofs and then
also use Cauchy-Schwarz-Buniakowski’s integral inequality, it is easy to see that the
function F(s) increases with s if and only if

(∫ y

x
p(t)f s(t) ln f (t) d t

)2

�
∫ y

x
p(t)f s(t) d t

∫ y

x
p(t)f s(t)

[
ln f (t)

]2
d t. (9)
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Since ∫ y

x
p(t)f s(t) ln f (t) d t =

∫ y

x

[
p1/2(t)f s/2(t)

][
p1/2(t)f s/2(t) ln f (t)

]
d t,

from Cauchy-Schwarz-Buniakowski’s integral inequality, the inequality (9) follows.
The equality in (9) is valid if and only if f is a constant function. The function ψ(r)
is increasing with r .

By straightforward computation, we have

lnϕ(r) =
1
r

ln
n∑

i=1

qia
r
i

=
1
r

(
ln

n∑
i=1

qia
r
i − ln

n∑
i=1

qia
0
i

)

=
1
r

∫ r

0

(
n∑

i=1

qia
s
i ln ai

/ n∑
i=1

qia
s
i

)
d s.

(10)

Using Cauchy-Schwarz-Buniakowski’s inequality in discrete form, by the similar argu-
ments as proving the monotonicity of ψ(r) , we can easily obtain that the function ϕ(r)
increases with r . The proof of Theorem 1 follows.

�

COROLLARY. For positive continuous functions f and p such that
∫ y

x p(t) d t =
1 , or positive sequences a = (a1, a2, . . . , an) and q = (q1, q2, . . . , qn) satisfying∑n

i=1 qi = 1 , we have the following weighted A-G-H inequalities:

A(f , p) � G(f , p) � H(f , p), An(a, q) � Gn(a, q) � Hn(a, q). (11)

Equalities in (11) hold if and only if f is a constant function or a1 = a2 = · · · = an ,
respectively.

Proof. It is easy to see that ψ(1) = A(f , p) , ψ(−1) = H(f , p) , ϕ(1) = An(a, q)
and ϕ(−1) = Hn(a, q) . Thus, the weighted A-G-H inequalities in integral form
follows from the monotonicity of ψ(r) , the weighted A-G-H inequalities in discrete
form follows from the monotonicity of ϕ(r) . The proof is complete.

�

3. New proofs of monotonicity for generalized weighted mean values

In this section, we will prove the following

THEOREM 2. Let p(u) �≡ 0 be a nonnegative and continuous function, f (u)
a positive, increasing (or decreasing, respectively) and continuous function, then the
generalized weighted mean values Mp,f (r, s; x, y) increases (or decreases, respectively)
with respect to either x or y .
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3.1. The first proof

Now let

hp,f (t; x, y) =
∫ y

x
p(u)f t(u) d u, t ∈ R, (12)

where x , y , p and f are defined as in Theorem 2.
It is easy to see that

∂nhp,f (t; x, y)
∂tn

=
∫ y

x
p(u)f t(u)[ln f (u)]n d u. (13)

Set Qp,f (r, s; x, y) = lnMp,f (r, s; x, y) , then

Qp,f (r, s; x, y) =
1

s − r

∫ s

r

∂hp,f (t; x, y)/∂t
hp,f (t; x, y)

d t, (r − s)(x − y) �= 0; (14)

Qp,f (r, r; x, y) =
∂hp,f (r; x, y)/∂r

hp,f (r; x, y)
, x − y �= 0. (15)

To verify the monotonicity of Mp,f (r, s; x, y) with x and y , it is sufficient to prove
the monotonicity of [∂hp,f (t; x, y)/∂t]/hp,f (t; x, y) in Qp,f (r, s; x, y) with x and y for
any t . This is a special case of the following

LEMMA. The functions

∂2(k+i)+1hp,f (t; x, y)/∂t2(k+i)+1

∂2khp,f (t; x, y)/∂t2k
(16)

are increasing (or decreasing, respectively) with x and y if f (u) is increasing (or
decreasing, respectively) for i and k being nonnegative integers.

Proof. Using the integral expressions (12) and (13) of hp,f (t; x, y) , by standard
arguments, we have

∂

∂y

(
∂2(k+i)+1hp,f (t; x, y)/∂t2(k+i)+1

∂2khp,f (t; x, y)/∂t2k

)

=
[

∂

∂y

(
∂2(k+i)+1hp,f (t; x, y)

∂t2(k+i)+1

)
· ∂2khp,f (t; x, y)

∂t2k

−∂2(k+i)+1hp,f (t; x, y)
∂t2(k+i)+1

· ∂

∂y

(
∂2khp,f (t; x, y)

∂t2k

)]
· 1[

∂2khp,f (t; x, y)/∂t2k
]2 (17)

=
p(y)f t(y)

[
ln f (y)

]2k[
∂2khp,f (t; x, y)/∂t2k

]2 ·
[(

ln f (y)
)2i+1

∫ y

x
p(u)f t(u)

[
ln f (u)

]2k
d u

−
∫ y

x
p(u)f t(u)

[
ln f (u)

]2(i+k)+1
d u

]
.

When f (u) increases (or decreases, respectively), the derivatives (17) are non-
negative (or nonpositive, respectively); hence, the desired monotonicity of (16) with
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respect to x and y follows, since the discussed functions (16) are symmetric in x and
y . This completes the proof of lemma.

�

3.2. The second proof

Let

α(t) =
p(y)f t(y)∫ y

x p(u)f t(u) d u
. (18)

Straightforward computation yields

α′(t) =
p(y)f t(y)

∫ y
x p(u)f t(u) ln f (y)

f (u) d u(∫ y
x p(u)f t(u) d u

)2 � 0. (19)

By straightforward computation, from the mean-value theorem, we know that there is
at least one point ξ between r and s such that

∂Mp,f (r, s; x, y)/∂y
Mp,f (r, s; x, y)

=
α(s) − α(r)

s − r
= α′(ξ) � 0, (20)

thus, we obtain that the generalized weighted mean values Mp,f (r, s; x, y) increases in
y and x , since Mp,f (r, s; x, y) is symmetric with x and y .
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