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ON THE CAUCHY–BUNIAKOWSKY–SCHWARTZ’S INEQUALITY

FOR SEQUENCES IN INNER PRODUCT SPACES

S. S. DRAGOMIR

(communicated by N. Elezović)

Abstract. In this paper we consider somemappings naturally connected to Cauchy-Buniakowsky-
Schwartz’s inequality for sequences of vectors in inner product spaces and point out their main
properties. Some applications are also given.

1. Introduction

In the following pages, we will assume that (H; (·, ·)) is an inner product on the
real or complex number field K . The following inequality is a variant of the well-known
Cauchy-Buniakowsky-Schwartz inequality:

∑
i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 �
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

(1.1)

where pi � 0, αi ∈ K , xi ∈ H for all i ∈ I, where I is a finite part of the natural
number set N . If pi > 0 for all i ∈ I , then the inequality holds in (1.1) iff there exists
a vector x0 ∈ H such that xi = ᾱix0 for all i ∈ I.

Indeed, a simple calculation shows that:

0 � 1
2

∑
(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2

=
1
2

∑
(i,j)∈I2

pipj

[
|αi|2 ‖xj‖2 − 2 Re (ᾱixj, ᾱjxi) + |αj|2 ‖xi‖2

]

=
∑

(i,j)∈I2

pipj |αi|2 ‖xj‖2 −
∑

(i,j)∈I2

pipj Re (ᾱjxj, ᾱixi)

=
∑
i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

and thus the inequality holds in (1.1) iff ᾱixj = ᾱjxi for all i, j ∈ I. That is, there
exists a vector x0 ∈ H such that xi = ᾱi · x0 for all i ∈ I.
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In the following, we shall use the following notations:

Pf (N) := {I ⊂ N |I is finite} ;

J (R) :=
{
p = (pi)i∈N

|pi ∈ R for all i ∈ N
}

;

J+ (R) :=
{
p = (pi)i∈N

|pi � 0 for all i ∈ N
}

;

J (K) :=
{
α = (αi)i∈N

|αi ∈ K for all i ∈ N
}

and given by:
J (H) :=

{
x = (xi)i∈N

|xi ∈ H for all i ∈ N
}

.

By the use of these notations, we can define the following mapping associated with the
Cauchy-Buniakowsky-Schwartz inequality (1.1) :

μ : Pf (N) × J+ (R) × J (K) ×H (X) −→ R,

given by:

μ (I, p,α, x) :=

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎤
⎦

1
2

.

The main aim of this paper is to point out the fundamental properties of this mapping.
Some natural applications are also made.

2. The superadditivity of the mapping μ (I, ·,α, x)

We will start with the following result:

THEOREM 1. Let I ∈ Pf (N) , α ∈ J (K) and x ∈ J (H) . Then

(i) For all p, q ∈ J+ (R) we have the inequality:

μ (I, p + q,α, x) � μ (I, p,α, x) + μ (I, q,α, x) � 0. (2.1)

That is, the mapping μ (I, ·,α, x) is superadditive on J+ (R) ;

(ii) For all p, q ∈ J+ (R) with p � q, we have the inequality:

μ (I, p,α, x) � μ (I, q,α, x) � 0. (2.2)

That is, the mapping μ (I, ·,α, x) is monotonic nondecreasing on J+ (R) .
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Proof. (i) We will start with the following identity of Lagrange’s type:

μ (I, r,α, x) =

⎛
⎝1

2

∑
(i,j)∈I2

rirj ‖ᾱixj − ᾱjxi‖2

⎞
⎠

1
2

.

Then for all p, q ∈ J+ (R) we have:

μ2 (I, p + q,α, x)

=
1
2

∑
(i,j)∈I2

(pi + qi) (pj + qj) ‖ᾱixj − ᾱjxi‖2

=
1
2

∑
(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2 +
1
2

∑
(i,j)∈I2

qiqj ‖ᾱixj − ᾱjxi‖2

+
1
2

∑
(i,j)∈I2

piqj ‖ᾱixj − ᾱjxi‖2 +
1
2

∑
(i,j)∈I2

qipj ‖ᾱixj − ᾱjxi‖2

= μ2 (I, p,α, x) + μ2 (I, q,α, x) +
∑

(i,j)∈I2

piqj ‖ᾱixj − ᾱjxi‖2

as a simple calculation shows that:∑
(i,j)∈I2

piqj ‖ᾱixj − ᾱjxi‖2 =
∑

(i,j)∈I2

pjqi ‖ᾱixj − ᾱjxi‖2
.

We will prove the following inequality:∑
(i,j)∈I2

pjqi ‖ᾱixj − ᾱjxi‖2 � 2μ (I, p,α, x)μ (I, q,α, x) (2.3)

which is equivalent to:⎛
⎝ ∑

(i,j)∈I2

piqj ‖ᾱixj − ᾱjxi‖2

⎞
⎠

2

�
∑

(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2 ×
∑

(i,j)∈I2

qiqj ‖ᾱixj − ᾱjxi‖2 . (2.4)

As we have: ∑
(i,j)∈I2

piqj ‖ᾱixj − ᾱjxi‖2

=
∑
i∈I

pi |αi|2
∑
i∈I

qi ‖xi‖2 +
∑
i∈I

pi ‖xi‖2
∑
i∈I

qi |αi|2

−2 Re

(∑
i∈I

piαixi,
∑
i∈I

qiαixi

)
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and

∑
(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2 = 2

⎛
⎝∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

and

∑
(i,j)∈I2

qiqj ‖ᾱixj − ᾱjxi‖2 = 2

⎛
⎝∑

i∈I

qi |αi|2
∑
i∈I

qi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

qiαixi

∥∥∥∥∥
2
⎞
⎠ ,

the inequality (2.4) becomes:[∑
i∈I

pi |αi|2
∑
i∈I

qi ‖xi‖2 +
∑
i∈I

pi ‖xi‖2
∑
i∈I

qi |αi|2

− 2 Re

(∑
i∈I

piαixi,
∑
i∈I

qiαixi

)]2

� 4

⎛
⎝∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

×
⎛
⎝∑

i∈I

qi |αi|2
∑
i∈I

qi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

qiαixi

∥∥∥∥∥
2
⎞
⎠ . (2.5)

Denote

a :=

(∑
i∈I

pi |αi|2
) 1

2

, b :=

(∑
i∈I

pi ‖xi‖2

) 1
2

and x :=
∑
i∈I

piαixi ∈ H.

c :=

(∑
i∈I

qi |αi|2
) 1

2

, d :=

(∑
i∈I

qi ‖xi‖2

) 1
2

and y :=
∑
i∈I

qiαixi ∈ H.

By the use of these notations, the inequality (2.5) becomes

(
a2d2 + b2c2 − 2 Re (x, y)

)2 � 4
(
a2b2 − ‖x‖2

)(
c2d2 − ‖y‖2

)
� 0. (2.6)

Now, let us observe that a simple calculation shows us:

(abcd − ‖x‖ ‖y‖)2 �
(
a2b2 − ‖x‖2

)(
c2d2 − ‖y‖2

)
� 0. (2.7)

Since, by the Cauchy-Buniakowsky-Schwartz inequality (1.1) we have

abcd � ‖x‖ ‖y‖ ,
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then it is sufficient to prove that

a2d2 + b2c2 − 2 Re (x, y) � 2 (abcd − ‖x‖ ‖y‖) � 0. (2.8)

However,
a2d2 + b2c2 � 2abcd, a, b, c, d � 0

and Schwartz’s inequality in the inner product space (H; (·, ·)) tells us that

‖x‖ ‖y‖ � Re (x, y) .

Therefore, the inequality (2.8) is proved. Now, using the inequalities (2.7) and (2.8)
we get (2.6) . That is, the inequality (2.3) holds.

Finally, we have

μ2 (I, p + q,α, x) � μ2 (I, p,α, x) + μ2 (I, q,α, x) + 2μ (I, p,α, x)μ (I, q,α, x)

= [μ (I, p,α, x) + μ (I, q,α, x)]2

and the inequality (2.1) is proved.

(ii) Let p, q ∈ J+ (R) with p � q. Then

μ (I, p,α, x) = μ (I, q + (p − q) ,α, x) � μ (I, q,α, x) + μ (I, p − q,α, x)

which indicates that

μ (I, p,α, x) − μ (I, q,α, x) � μ (I, p − q,α, x) � 0

and the inequality is proved.
�

The following corollary is important as it gives an interesting refinement of the
Cauchy-Buniakowsky-Schwartz inequality (1.1) .

COROLLARY 1. Let α ∈ J (K) , x ∈ J (H) and β = (βi)i∈N
∈ J (R) . Then for

all I ∈ Pf (N) we have the inequality:

⎛
⎝∑

i∈I

|αi|2
∑
i∈I

‖xi‖2 −
∥∥∥∥∥
∑
i∈I

αixi

∥∥∥∥∥
2
⎞
⎠

1
2

�

⎛
⎝∑

i∈I

|αi|2 sin2 βi

∑
i∈I

‖xi‖2 sin2 βi −
∥∥∥∥∥
∑
i∈I

(sinβi)
2 αixi

∥∥∥∥∥
2
⎞
⎠

1
2

+

⎛
⎝∑

i∈I

|αi|2 cos2 βi

∑
i∈I

‖xi‖2 cos2 βi −
∥∥∥∥∥
∑
i∈I

(cos βi)
2 αixi

∥∥∥∥∥
2
⎞
⎠

1
2

� 0.
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The next bound also holds.

COROLLARY 2. Consider the set of sequences

S (I) :=
{
p = (pi)i∈N

|0 � pi � 1 for all i ∈ N
}

.

Then one has the bound:

∑
i∈I

|αi|2
∑
i∈I

‖xi‖2 −
∥∥∥∥∥
∑
i∈I

αixi

∥∥∥∥∥
2

= sup
p∈S(I)

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎤
⎦ � 0.

3. The superadditivity of the mapping μ (·, p,α, x)

In this sectionwe will investigate the mapping μ (·, p,α, x) as an index set function
defined on Pf (N) .

The main result is embodied in the following theorem.

THEOREM 2. Let p ∈ J+ (R) , α ∈ J (K) and x ∈ J (H) . Then

(i) For all I, J ∈ Pf (N) with I ∩ J = ∅ one has the inequality:

μ (I ∪ J, p,α, x) � μ (I, p,α, x) + μ (J, p,α, x) � 0. (3.1)

That is, the mapping μ (·, p,α, x) is superadditive as an index set function defined
on Pf (N) ;

(ii) For all I, J ∈ Pf (N) with ∅ 	= I ⊆ J we have

μ (I, p,α, x) � μ (J, p,α, x) � 0. (3.2)

That is, the mapping μ (·, p,α, x) is monotonic decreasing on Pf (N) .

Proof. (i) We have, for all I, J ∈ Pf (N) with I ∩ J = ∅ that:

μ2 (I ∪ J, p,α, x)

=
1
2

∑
(i,j)∈(I∪J)2

pipj ‖ᾱixj − ᾱjxi‖2

=
1
2

∑
(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2 +
1
2

∑
(i,j)∈J2

pipj ‖ᾱixj − ᾱjxi‖2

=
1
2

∑
(i,j)∈I×J

pipj ‖ᾱixj − ᾱjxi‖2 +
1
2

∑
(i,j)∈J×I

pipj ‖ᾱixj − ᾱjxi‖2

= μ2 (I, p,α, x) + μ2 (J, p,α, x) +
∑

(i,j)∈I×J

pipj ‖ᾱixj − ᾱjxi‖2
,
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because ∑
(i,j)∈I×J

pipj ‖ᾱixj − ᾱjxi‖2 =
∑

(i,j)∈J×I

pipj ‖ᾱixj − ᾱjxi‖2 .

We will prove the following inequality∑
(i,j)∈I×J

pipj ‖ᾱixj − ᾱjxi‖2 � 2μ (I, p,α, x)μ (J, p,α, x) (3.3)

which is the equivalent to[∑
i∈I

pi |αi|2
∑
j∈J

pj ‖xj‖2 +
∑
j∈J

pj |αj|2
∑
i∈I

pi ‖xi‖2

− 2 Re

(∑
i∈I

piαixi,
∑
j∈J

pjαjxj

)]2

� 4

⎛
⎝∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

×
⎛
⎝∑

j∈J

pj |αj|2
∑
j∈J

pj ‖xj‖2 −
∥∥∥∥∥
∑
j∈J

pjαjxj

∥∥∥∥∥
2
⎞
⎠ . (3.4)

Now, if we denote

a :=

(∑
i∈I

pi |αi|2
) 1

2

, b :=

(∑
i∈I

pi ‖xi‖2

) 1
2

and x :=
∑
i∈I

piαixi ∈ H,

c :=

(∑
j∈J

pj |αj|2
) 1

2

, d :=

(∑
j∈J

pj ‖xj‖2

) 1
2

and y :=
∑
j∈J

pjαjxj ∈ H,

then the above inequality is equivalent to:(
a2d2 + b2c2 − 2 Re (x, y)

)2 � 4
(
a2b2 − ‖x‖2

)(
c2d2 − ‖y‖2

)
� 0 (3.5)

which is exactly the inequality (2.6) that was proved above.
Consequently, we have:

μ2 (I ∪ J, p,α, x) � μ2 (I, p,α, x) + μ2 (J, p,α, x) + 2μ (I, p,α, x)μ (J, p,α, x)

= (μ (I, p,α, x) + μ (J, p,α, x))2

which proves the desired inequality (3.1) .

(ii) Suppose that ∅ 	= I ⊂ J and J 	= I. Then we have successively:

μ (I, p,α, x) = μ (I ∪ (I\J) , p,α, x)
� μ (J, p,α, x) + μ (I\J, p,α, x)
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which gives us

μ (I, p,α, x) − μ (J, p,α, x) � μ (I\J, p,α, x) � 0,

and the theorem is proved.
�

The following corollaries are interesting.

COROLLARY 3. Let p ∈ J+ (R) , α ∈ J (K) and x ∈ J (H) . Then we have the
inequality:

⎛
⎝ 2n∑

i=1

pi |αi|2
2n∑
i=1

pi ‖xi‖2 −
∥∥∥∥∥

2n∑
i=1

piαixi

∥∥∥∥∥
2
⎞
⎠

1
2

�

⎛
⎝ n∑

i=1

p2i−1 |α2i−1|2
n∑

i=1

p2i−1 ‖x2i−1‖2 −
∥∥∥∥∥

n∑
i=1

p2i−1α2i−1x2i−1

∥∥∥∥∥
2
⎞
⎠

1
2

+

⎛
⎝ n∑

i=1

p2i |α2i|2
n∑

i=1

p2i ‖x2i‖2 −
∥∥∥∥∥

n∑
i=1

p2iα2ix2i

∥∥∥∥∥
2
⎞
⎠

1
2

� 0.

COROLLARY 4. With the above assumptions, we have:

n∑
i=1

pi |αi|2
n∑

i=1

pi ‖xi‖2 −
∥∥∥∥∥

n∑
i=1

piαixi

∥∥∥∥∥
2

= sup
I⊆In

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎤
⎦ � 0,

where In := {1, 2, ..., n} and

n∑
i=1

pi |αi|2
n∑

i=1

pi ‖xi‖2 −
∥∥∥∥∥

n∑
i=1

piαixi

∥∥∥∥∥
2

� max
1�i<j�n

{
pipj ‖ᾱixj − ᾱjxi‖2

}
� 0.

The proof of this corollary follows by the statement (ii) of the above theorem. We
shall omit the details.

Note that similar results were proved in the paper [3].

4. Some properties of the mapping μ (I, p,α, x, ·)

Now let X be a linear space over the real or complex number field K , and H (X)
the class of all non-negative Hermitian forms on X . That is, a mapping belongs to
H (X) if it satisfies the conditions:
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(i) (x, x) � 0 for all x ∈ X;
(ii) (αx + βy, z) = α (x, z) + β (y, z) for all x, y, z ∈ X and α, β ∈ K ;
(iii) (y, x) = (x, y) for all x, y ∈ X

If (·, ·) ∈ H (X) , then the following inequality (x, x) (y, y) � |(x, y)|2 or

‖x‖ ‖y‖ � |(x, y)| for all x, y ∈ X where ‖x‖ = (x, x)
1
2 is the semi-norm associated

with the Hermitian form (·, ·) is well-known as Schwartz’s inequality for Hermitian
forms.

Now, let us observe that H (X) is a convex cone in the linear space of all mappings
defined on X2 with values in K . That is,

(i) (·, ·)1 , (·, ·)2 ∈ H (X) implies that (·, ·)1 + (·, ·)2 ∈ H (X) ;
(ii) α � 0 and (·, ·) ∈ H (X) implies that α (·, ·) ∈ H (X) .

Also, we can introduce on H (X) the following binary relation: (·, ·)2 � (·, ·)1 iff
‖x‖2 � ‖x‖1 for all x ∈ X.

We observe that:
(b) (·, ·) � (·, ·) for all (·, ·) ∈ H (X) ;

(bb) (·, ·)3 � (·, ·)2 and (·, ·)2 � (·, ·)1 implies that (·, ·)3 � (·, ·)1 ;
(bbb) (·, ·)2 � (·, ·)1 and (·, ·)2 � (·, ·)1 implies that (·, ·)2 = (·, ·)1 .

That is, the relation “� " is an order relation on H (X) .
To prove the relation (bbb) we observe that (·, ·)2 � (·, ·)1 and (·, ·)1 � (·, ·)2 is

equivalent to ‖x‖2 = ‖x‖1 for all x ∈ X, which implies, by the following relation

(x, y)k =
1
4

[
‖x + y‖2

k − ‖x − y‖2
k + i ‖x + iy‖k − i ‖x − iy‖k

]
, x, y ∈ X, k = 1, 2

that (x, y)2 = (x, y)1 for all x, y ∈ X.
Now, let us consider the mapping

μ : Pf (N) × J+ (R) × J (K) × J (H) ×H (X) −→ R

given by:

μ (I, p,α, x, (·, ·)) :=

[∑
i∈I

pi |αi|2
∑
i∈I

pi (xi, xi) −
(∑

i∈I

piαixi,
∑
i∈I

piαixi

)] 1
2

=

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎤
⎦

1
2

.

The main properties of the mapping μ (I, p,α, x, ·) are embodied in the following
theorem.

THEOREM 3. Let I ∈ Pf (N) , p ∈ J+ (R) , α ∈ J (K) and x ∈ J (H) . Then

(i) For all (·, ·)1 , (·, ·)2 ∈ H (X) we have the inequality

μ (I, p,α, x, (·, ·)1 + (·, ·)2) � μ (I, p,α, x, (·, ·)1) + μ (I, p,α, x, (·, ·)2) . (4.1)

That is, the mapping μ (I, p,α, x, ·) is subadditive on H (X) ;
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(ii) For all (·, ·) ∈ H (X) and c � 0 we have:

μ (I, p,α, x,α (·, ·)) = αμ (I, p,α, x, (·, ·)1) .

That is, the mapping μ (I, p,α, x, ·) is positive homogeneous on H (X) ;
(iii) For all (·, ·)2 � (·, ·)1 , (·, ·)i ∈ H (X)

(
i = 1, 2

)
, we have that:

μ (I, p,α, x, (·, ·)2) � μ (I, p,α, x, (·, ·)1) � 0.

That is, the mapping μ (I, p,α, x, ·) is monotonic nondecreasing.

Proof. (i) Let (·, ·)i ∈ H (X)
(
i = 1, 2

)
. We have

μ (I, p,α, x, (·, ·)1 + (·, ·)2)

=

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi

(
‖xi‖2

1 + ‖xi‖2
2

)
−
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

1

−
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

2

⎤
⎦

1
2

=

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2
1 −

∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

1

+
∑
i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2
2 −

∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

2

⎤
⎦

1
2

�

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2
1 −

∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

1

⎤
⎦

1
2

+

⎡
⎣∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2
2 −

∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

2

⎤
⎦

1
2

= μ (I, p,α, x, (·, ·)1) + μ (I, p,α, x, (·, ·)2) .

(ii) It is obvious.

(iii) Suppose that (·, ·)2 � (·, ·)1 , i.e., ‖x‖2 � ‖x‖1 for all x ∈ X. Then, by
Lagrange’s identity, we have:

μ (I, p,α, x, (·, ·)2) =

⎛
⎝1

2

∑
(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2
2

⎞
⎠

1
2

�

⎛
⎝1

2

∑
(i,j)∈I2

pipj ‖ᾱixj − ᾱjxi‖2
1

⎞
⎠

1
2

= μ (I, p,α, x, (·, ·)1)
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and the theorem is proved.
�

The following corollaries are interesting.

COROLLARY 5. Let A : H −→ H be a bounded linear operator and

‖A‖ = sup {‖Ax‖ , ‖x‖ = 1} .

Then, for all p ∈ J+ (R) , α ∈ J (K) and x ∈ J (H) we have the inequality:

‖A‖2

⎛
⎝∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

�
∑
i∈I

pi |αi|2
∑
i∈I

pi ‖Axi‖2 −
∥∥∥∥∥
∑
i∈I

piαiAxi

∥∥∥∥∥
2

� 0.

Proof. The argument follows by the statement (iii) of the above theorem for the
norms: ‖x‖2 := ‖A‖ ‖x‖ and ‖x‖1 := ‖Ax‖ , x ∈ H.

�

COROLLARY 6. Let A : H −→ H be a positive linear operator with the property
that (Ax, x) � m ‖x‖2 for all x ∈ H. Then for all p ∈ J+ (R) , α ∈ J (K) and
x ∈ J (H) we have the inequality:

∑
i∈I

pi |αi|2
∑
i∈I

pi (Axi, xi) −
(∑

i∈I

piαiAxi,
∑
i∈I

piαixi

)

� m

⎛
⎝∑

i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠ � 0.

Proof. The proof is obvious from the statement (iii) of the above theorem applied

to the norms ‖x‖2 := [(Ax, x)]
1
2 and ‖x‖1 := m

1
2 ‖x‖ , x ∈ H.

�
Finally, the following corollary also holds.

COROLLARY 7. Let {lα}α∈A be a family of orthonormal vectors in the linear
product space H where p,α, x are as above. Then we have the following refinement
of the Cauchy-Buniakowsky-Schwartz inequality:

∑
i∈I

pi |αi|2
∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥
∑
i∈I

piαixi

∥∥∥∥∥
2

�
∑
i∈I

pi |αi|2
∑
i∈I
α∈A

pi |(xi, lα)|2 −
∑
α∈A

∣∣∣∣∣
∑
i∈I

piαi (xi, lα)

∣∣∣∣∣
2

� 0.
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The argument follows by the above theorem, choosing ‖x‖2 := ‖x‖ and ‖x‖1 :=(∑
α∈A |(x, lα)|2

) 1
2
. The fact that ‖·‖2 � ‖·‖1 follows by the well-known Bessel’s

inequality

‖x‖2 �
∑
α∈A

|(x, lα)|2 , x ∈ H.

5. Some properties of supermultiplicity for the Cauchy-Buniakowsky-Schwartz
inequality

Further on, we will study the following mappings associated with the Cauchy-
Buniakowsky-Schwartz Inequality:

ν,ϕ : Pf (N) × J+ (R) × J (K) × J (H) −→ R

given by

ν (I, p,α, x) :=
1
PI
μ (I, p,α, x)

=

⎛
⎝ 1

PI

∑
i∈I

pi |αi|2 1
PI

∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥ 1

PI

∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

1
2

and

ϕ (I, p,α, x) := [ν (I, p,α, x)]PI

=

⎛
⎝ 1

PI

∑
i∈I

pi |αi|2 1
PI

∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥ 1

PI

∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

PI
2

,

where PI > 0.

The following property of supermultiplicity holds.

THEOREM 4. Let I ∈ Pf (N) , α ∈ J (K) and x ∈ J (H) . Then for all p, q ∈
J+ (H) with PI, QI > 0 we have the inequality:

ϕ (I, p + q,α, x) � ϕ (I, p,α, x)ϕ (I, q,α, x) � 0. (5.1)

That is, the mapping ϕ (I, ·,α, x) is supermultiplicative on J+ (R) .

Proof. Using the well-known arithmetic mean-geometric mean inequality for real
numbers, i.e., we recall that:

αa + βb
α + β

� a
α

α+β b
β

α+β ,
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where a, b � 0 and α, β � 0 with α + β > 0, we have successively:

ν (I, p + q,α, x) =
1

PI + QI
μ (I, p + q,α, x)

� μ (I, p,α, x) + μ (I, q,α, x)
PI + QI

=
PIν (I, p,α, x) + QIν (I, q,α, x)

PI + QI

� [ν (I, p,α, x)]
PI

PI+QI [ν (I, q,α, x)]
QI

PI+QI ,

which gives us:

[ν (I, p + q,α, x)](PI+QI) � [ν (I, p,α, x)]PI [ν (I, q,α, x)]QI

and the inequality (5.1) is proved.
�

The following refinement of the Cauchy-Buniakowsky-Schwartz inequality is
equivalent to (5.1) :

1
PI + QI

∑
i∈I

(pi + qi) |αi|2 1
PI + QI

∑
i∈I

(pi + qi) ‖xi‖2

−
∥∥∥∥∥ 1

PI + QI

∑
i∈I

(pi + qi)αixi

∥∥∥∥∥
2

�

⎛
⎝ 1

PI

∑
i∈I

pi |αi|2 1
PI

∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥ 1

PI

∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

PI
PI+QI

×
⎛
⎝ 1

QI

∑
i∈I

qi |αi|2 1
QI

∑
i∈I

qi ‖xi‖2 −
∥∥∥∥∥ 1

QI

∑
i∈I

qiαixi

∥∥∥∥∥
2
⎞
⎠

QI
PI+QI

� 0, (5.2)

where p, q ∈ J+ (R) with PI, QI > 0 and α, x, I are as above.
Finally, by the use Theorem 2, we also have the result:

THEOREM 5. Let p ∈ J+ (R) , α ∈ J (K) and x ∈ J (H) . Then, for all I, J ∈
Pf (N) , with I ∩ J = ∅ and PI, QI > 0, we have the inequality:

ϕ (I ∪ J, p,α, x) � ϕ (I, p,α, x)ϕ (J, p,α, x) � 0. (5.3)

That is, the mapping ϕ (·, p,α, x) is supermultiplicative as an index map on Pf (N) .

Note that the inequality (5.3) is equivalent to the following refinement of the
Cauchy-Buniakowsky-Schwartz inequality:
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1
PI∪J

∑
i∈I∪J

pi |αi|2
∑
i∈I∪J

pi ‖xi‖2 −
∥∥∥∥∥ 1

PI∪J

∑
i∈I∪J

piαixi

∥∥∥∥∥
2

�

⎛
⎝ 1

PI

∑
i∈I

pi |αi|2 1
PI

∑
i∈I

pi ‖xi‖2 −
∥∥∥∥∥ 1

PI

∑
i∈I

piαixi

∥∥∥∥∥
2
⎞
⎠

PI
PI∪J

×
⎛
⎝ 1

PJ

∑
i∈J

pi |αi|2 1
PJ

∑
i∈J

pi ‖xi‖2 −
∥∥∥∥∥ 1

PJ

∑
i∈J

piαixi

∥∥∥∥∥
2
⎞
⎠

PJ
PI∪J

� 0. (5.4)

For other results of the Cauchy-Buniakowsky-Schwartz’s type in inner product
spaces, see the papers [1]-[12] and the book [13].

RE F ER EN C ES

[1] S. S. DRAGOMIR, Some refinements of Schwarz’s inequality, Proc. Symp. Math. and its Appl., Nov. 1985,
Pol. Iust. Timisoara, p. 13–16. ZBL No. 594:46018.
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