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Abstract. The first part of this paper deals with the existence of maximum internal of existence for
fuzzy differential equation. Then, using the idea of perturbing Lyapunov functions, is discussed
the boundedness of solutions for fuzzy differential equation.

1. Introduction

A differential and integral calculus for fuzzy-valued mappings has been developed
in papers [1, 2, 3, 10] and the investigation of fuzzy differential equations has been
initiated in [4, 5, 7, 10, 6, 8].

In this paper, we first study the existence of maximum interval of solution of fuzzy
differential equations and then develop the concepts of boundedness which corresponds
to Lyapunov theory for fuzzy differential systems. Then, using comparison result in
[7], we discuss UUB and utilizing the method of perturbing Lyapunov method [9], we
obtain the equibounded criteria.

2. Preliminaries

Let Pk(Rn) denote the family of all nonempty compact, convex subsets of Rn . If
α, β ∈ R and A, B ∈ Pk(Rn) , then

α(A + B) = αA + βB, α(βA) = (αβ)A, 1A = A

and if α, β � 0, then (α + β)A = αA + βB. Let I = [t0, t0 + a], t0 � 0 and a > 0 .
For any set A ⊂ Rn , we denote by clA , Ac and ∂A , the closure, the complement and
the boundary. Denote

En = {u : Rn → [0, 1] |u satisfies (i) − (iv) below},
(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1 ;
(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 � λ � 1 ,

u(λx + (1 − λ )y) � min[u(x), u(y)];
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(iii) u is upper semicontinuous;
(iv) [u]0 = cl[x ∈ Rn : u(x) > 0] is compact.

For 0 < α � 1 , we denote [u]α = [x ∈ Rn : u(x) � α]. Then from (i) to (iv) , it
follows that the α -level sets [u]α ∈ Pk(Rn) for 0 � α � 1.

For later purposes, we define 0̂ ∈ En as 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if
x �= 0 .

Let dH(A, B) be the Hausdorff distance between the sets A, B ∈ Pk(Rn) , that is,

dH(A, B) = inf {ε|A ⊂ N(B, ε), B ⊂ N(A, ε)},
where N(A, ε) = {x ∈ Rn| ||x − y|| < ε for some y ∈ A}. Then we define

d[u, v] = sup
0�α�1

dH([u]α , [v]α),

It is well known that d is a metric in En and that (En, d) is a complete metric space.
We list the following properties of d[u, v] (see [5]).

d[u + w, v + w] = d[u, v] and d[u, v] = d[v, u],
d[λu, λv] = |λ |d[u, v],

d[u, v] � d[u, w] + d[w, v],

for all u, v, w ∈ En and λ ∈ R.
Let I = [t0, t0 + a] with a > 0 and x, y ∈ En . If there exists a z ∈ En such that

x = y + z , then z is called the H -difference of x and y and is denoted by x − y.

DEFINITION 2.1. A mapping F : I → En is differentiable at t ∈ I if there exists a
F′(t) ∈ En such that the limits

lim
h→0+

F(t + h) − F(t)
h

and lim
h→0+

F(t) − F(t − h)
h

exist and equal to F′(t).

Here the limits are taken in the metric space (En, d) . At the end points of I we
consider only the one-sided derivatives.

DEFINITION 2.2. [5] Let F : I → En and denote Fα(t) = [F(t)]α . The integral of
F over I , denoted

∫
I F(t)dt or

∫ t0+a
t0

F(t)dt , is defined levelwise by the equation

[
∫

I F(t)dt]α =
∫

I Fα(t)dt

= {∫I f (t)dt|f : I → Rn is a measurable selection for Fα}.

It is well known that, if F : I → En is continuous, then it is integrable and∫ c2

c1

F(t)dt =
∫ c3

c1

F(t)dt +
∫ c2

c3

F(t)dt.
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Where c1, c2, c3 ∈ I . Also, the following properties of the integral are valid (see
[2, 3, 4, 5]). If F, G : I → En are integrable, λ ∈ R , then the following hold:∫

(F + G) =
∫

F +
∫

G;

∫
λF = λ

∫
F, λ ∈ R;

d[F, G] is integrable;

d[
∫ c2

c1

F,

∫ c2

c1

G] �
∫ c2

c1

d[F, G].

If F : I → En be continuous, then, the function G(t) =
∫ t

a F(s)ds, t ∈ I , is
differentiable and G′(t) = F(t) . Furthermore,

F(t) − F(t0) =
∫ t

t0

F′(s)ds.

Now, if F is continuously differentiable on I , then we have the following mean value
theorem([5]):

d[F(b), F(a)] � (b − a) sup{d[F′(t), 0̂] : t ∈ I}.
As a consequence, we have that

d[G(b), G(a)] � (b − a) sup{d[F(t), 0̂] : t ∈ I}.
(see [1, 2, 3, 4, 5] for details).

In this paper, let

K = {a(t) : a(t) ∈ C(R+, R+) is strict increasing and a(0) = 0}.

3. Continuation of solutions and the maximum interval of existence

In this section, we will discuss the question of whether the solution u = u(t) of
the equation u′ = f (t, u) which are uniquely defined in the neighborhood of an initial
point, can be extended.

Consider equation
u′ = f (t, u), u(t0) = u0, (1)

where u ∈ En , f (t, u) ∈ C(I × S(ρ), En) and S(ρ) = [u ∈ En : d[u, 0̂] < ρ] . Let us
begin with the following lemma(see [5]):

LEMMA 3.1. A mapping u : I → En is a solution to the problem (1) if and only
if it is continuous and satisfies the integral equation

u(t) = u0 +
∫ t

t0

f (s, u(s))ds, (2)

for all t ∈ I .
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THEOREM 3.1. Assume that f (t, u) ∈ C(I × S(ρ), En) and there exists a constant
L > 0 such that

d[f (t, u1), f (t, u2)] � Ld[u1, u2], t ∈ I, u1, u2 ∈ S(ρ).

Suppose that u(t, t0, u0) = u(t) is a solution of equation (1) on the interval [t0, β) .
Then limt→β−0 u(t) exists, and furthermore if β �= t0+a and (β , u(β−0)) ∈ I×S(ρ) ,
the solution u(t) can be continued to the right.

Proof. By Lemma 2.1, u(t) satisfies

u(t) = u0 +
∫ t

t0

f (s, u(s))ds, t ∈ [t0, β).

If bn = u(β − 1/n) , then for n sufficiently large and m > n we have

d[bm, bn] = d[u(β − 1/m), u(β − 1/n)]

� (1/n − 1/m) sup{d[u′, 0̂] : t ∈ I}

= (1/n − 1/m) sup{d[f (t, u(s)), 0̂] : t ∈ I} � M(1/n − 1/m),

by mean value theorem,where M is a bound for f (t, u) in I × S(ρ) . This implies that
{bn} is a Cauchy sequence, from which it follows that limt→β0 u(t) exists.

Suppose that the point (β , u(β − 0)) ∈ I × S(ρ) , then the function u(t) defined
by

u(t) = u(t), t ∈ [t0, β), u(β) = u(β − 0)

is a solution of equation (1) , defined on [t0, β ] . This follows from the relation

u(t) = u0 +
∫ t

t0

f (s, u(s))ds, t ∈ [t0, β ],

which implies that the left-hand derivative u′(β) exists and equals f (β , u(β)) , which
is finite.

Since S(ρ) is open and (β , u(β − 0)) ∈ I × S(ρ) , there exists a solution u1(t)
of equation (1) passing through the point (β , u(β − 0)) and defined on some interval
β � t � β + α , for some α > 0 . Now define the function

v(t) = u(t), t ∈ [t0, β ],
v(t) = u1(t), t ∈ [β , β + α),

and we assert that v(t) is a solution for t ∈ [t0, β + α) . It is easy to see that we need
only to show the existence and continuity of v′(t) at t = β .

In fact, from Lemma 2.1, we have

v(t) = u(β) +
∫ t

β
f (s, v(s))ds, t ∈ [β , β + α),
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and

u(β) = u0 +
∫ β

t0

f (s, v(s))ds

since u(t) is a solution. This gives

v(t) = u0 +
∫ t

t0

f (s, v(s))ds, t ∈ [t0, β + α),

and since f and v(t) are continuous, this implies that v′(t) = f (t, v(t)), t ∈ [t0, β+α) .
Therefore v(t) is a continuation(to the right) of u(t) , and this completes the proof.

From this Theorem, we can obtain the following conclusion:

THEOREM 3.2. Suppose the hypotheses of Theorem3.1 are satisfied for the differen-
tial equation (1) . Then, given initial values (t0, u0) , there exists a solution u(t, t0, u0) ,
defined on [t0, β) , β ∈ I , such that, if v(t) is any other solution and v(t0) = u0 , then
its interval of definition is contained in [t0, β) .

The interval [t0, β) is called (right side) maximum interval of existence of solution
u(t) .

THEOREM 3.3. Suppose the hypotheses of Theorem 3.1 are satisfied for the differ-
ential equation (1) in the domain I × S(ρ) . Let u(t) be a solution of (1) and let
[t0, β) be its maximum interval of existence. If β �= t0 +a and B is any closed bounded
set contained in I × S(ρ) , then there exists an ε > 0 such that the point (t, u(t)) does
not belong to B if t > β − ε .

COROLLARY 3.1. If the conditions of Theorem 3.3 are hold except that a = ∞ and
s(ρ) is replaced by En . If u(t, t0, u0) is a solution with maximum interval of existence
[t0, β) and β < ∞ , then

lim
t→β−0

d[u(t, t0, u0), 0̂] = ∞.

4. Boundness criteria

Consider the fuzzy differential equation

u′ = f (t, u), u(t0) = u0, (3)

where u ∈ En , f (t, u) ∈ C(R+ × En, En) . In this paper, we always suppose that
equation (3) has at least one solution.

DEFINITION 4.1. We say that the solution of (3) of equation (3) is
i) equi-bounded, if given B1 > 0 , and t0 ∈ R+ , there exists a B2(t0, B1) such that

d[u0, 0̂] < B1 implies d[u(t), 0̂] < B2, t � t0;

ii) uniformly bounded(UB), if B2 in i) is independent of t0 ;
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iii) uniformly ultimately bounded(UUB) for bound B , if for each B3 > 0 , there
exists T > 0 , such that d[u0, 0̂] � B3, t0 ∈ R+, t � t0 + T imply that
d[u(t, t0, u0), 0̂] < B.

To investigate the boundedness of the solutions of equation (3) , the following
comparison result in term of a Lyapunov function is very important which has been
proved in [7].

THEOREM 4.1. Assume that

V ∈ C[R+ × S(ρ), R+], |V(t, u1) − V(t, u2)| � Ld[u1, u2], L > 0 and

D+V(t, u) ≡ lim sup
h→0+

1
h
[V(t + h, u + hf (t, u)) − V(t, u)] � g(t, V(t, u)),

where g ∈ C[R2
+, R] . Then, if u(t) is any solution of (3) existing on [t0,∞) such that

V(t0, u0) � w0 , we have

V(t, u(t)) � r(t, t0, w0), t � t0,

where r(t, t0, w0) is the maximal solution of the scalar differential equation

w′ = g(t, w), w(t0) = w0 � 0,

existing on [t0,∞) .

COROLLARY 4.1. The function g(t, w) ≡ 0 is admissible in Theorem 3.1 to yield
the estimate

V(t, u(t)) � V(t0, u0), t � t0.

We shall first prove a result similar to Lyapunou-type theorem.

THEOREM 4.2. Suppose that there exist ρ > 0 , V(t, u) ∈ C[R+×Sc(ρ), R+] , such
that

|V(t, u1) − V(t, u2)| � Ld[u1, u2], L > 0,

b(d[u, 0̂]) � V(t, u) � a(d[u, 0̂]),

where a(.), b(.) ∈ K. Then
(A1 ) limh→0+

1
h [V(t + h, u + hf (t, u)) − V(t, u)] � 0

implies that the equation (3) is (UB) and
(A2) limh→0+

1
h [V(t + h, u + hf (t, u)) − V(t, u)] � −c, c > 0

implies that the equation (3) is (UUB).

Proof. At first, we show that all the solutions of equation (3) are exists on [t0,∞) .
If it is not true, there exists a solution u(t, t0, u0) with the maximum existent interval
[t0,η),η < ∞ . This means that

lim sup
t→η

d[u(t, t0, u0), 0̂] = ∞ (4)

by the Corollary of Theorem 2.3. Thus, the set

St0 = {t|d[u(t, t0, u0), 0̂] � ρ}
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is not empty. Let t1 = inf St0 , then d[u(t1, t0, u0), 0̂] = ρ . The Corollary of Theorem
3.1 implies that

V(t, u) � V(t1, u(t1, t0, u0)), t ∈ St0 .

By hypothesis (A1) , we get

b(d[u, 0̂]) � V(t, u) � V(t1, u(t1)) � a(d[u(t1), 0̂])

and so
d[u(t), 0̂] � b−1(a(d[u(t1), 0̂])).

This contradicts (4) . Thus, all solutions of equation (3) exist on [t0,∞).
Next, we prove the boundness. Suppose that (A1) is hold. For any B1 > 0,

without loss generality, B1 > ρ , let B2 = b−1(a(B1)) . We claim that,

d[u(t0), 0̂] < B1 implies d[u(t, t0, u0), 0̂] � B2.

In fact, if the set
S = {t|d[u(t, t0, u0), 0̂] � ρ}

is not empty, without loss generality, let t0 ∈ S , we have, as proved before, that

V(t, u(t)) � V(t0, u0), t ∈ S.

By hypothesis, we obtain that

b(d[u(t), 0̂]) � V(t, u) � V(t0, u0)

� a(d[u0, 0̂]) � a(B1).

Thus,
d[u, 0̂] � b−1(a(B1)), t ∈ S.

It is clear that
d[u, 0̂] � B1 � b−1(a(B1)), t ∈ R+ − S.

Hence, solutions of (3) is UB .
Now, we prove (A2) implies UUB of equation (3) about the bound B =

b−1(a(2ρ)) .
For any B2 > ρ , take T = [a(B2) − b(ρ)]/c , we claim that,

d[u0, 0̂] < B2 implies, d[u(t, t0, u0), 0̂] < B, t � t0 + T.

It is easy to see that, from the proof of the first part, we need only prove that there exists
a point t1 ∈ [t0, t0 + T] such that d[u(t1, t0, u0), 0̂] < 2ρ , then

d[u(t, t0, u0), 0̂] < b−1(a(2ρ)) = B, t � t1.

If it is not true, then there exists a t0 ∈ R+ and u0 , such that

d[u0, 0̂] < B2 and d[u(t, t0, u0), 0̂] � 2ρ, t ∈ [t0, t0 + T] (5)
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hold. Let m(t) = V(t, u(t)) , then

m(t + h) − m(t) = V(t + h, u(t + h)) − V(t, u(t))

= V(t + h, u(t + h)) − V(t + h, u(t) + hf (t, u(t)))

+ V(t + h, u(t) + hf (t, u(t))) − V(t, u(t))

� Ld[u(t + h, u(t) + hf (t, u(t))]

+ V(t + h, u(t) + hf (t, u(t))) − V(t, u(t)).

Let u(t + h) = u(t) + z(t) , where z(t) is the H-difference for small h > 0 which is
assumed to exist. Hence using the properties of d[u, v] , we see that

d[u(t + h), u(t) + hf (t, u(t))] = d[u(t) + z(t), u(t) + hf (t, u(t))]

= d[z(t), hf (t, u(t))] = d[u(t + h) − u(t), hf (t, u(t))],

and

D+m(t) = lim suph→0+
1
h [m(t + h) − m(t)]

� D+V(t, u(t)) + L lim suph→0+
1
h [d[u(t + h), u(t) + hf (t, u(t))]]

� −c + L lim suph→0+
1
h [d[u(t + h) − u(t), hf (t, u(t))]

� −c + L lim suph→0+ d[ u(t+h)−u(t)
h , f (t, u(t))] = −c.

We therefore have the scalar differential inequality

D+m(t) � −c, m(t0) = V(t0, u(t0)) � a(B2).

Solving this equation, we obtain

m(t) � m(t0) − c(t − t0) � a(B2) − c(t − t0), t ∈ [t0, t0 + T]

and so
b(d[u(t0 + T), 0̂]) � V(t0 + T, u(t0 + T)) = m(t0 + T)

� a(B2) − cT = b(ρ),
that is

d[u(t0 + T), 0̂] � ρ.

This contradicts (5) and the proof is complete.

THEOREM 4.3. Suppose that there exists ρ > 0 , V(t, u) ∈ C[R+ × Sc(ρ), R+] ,
b(d[u, 0̂]) � V(t, u) � a(d[u, 0̂]) , such that

|V(t, u1) − V(t, u2)| � Ld[u1, u2], L > 0;
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lim sup
h→0+

1
h
[V(t + h, u(t) + hf (t, u)) − V(t, u)] � g(t, V(t, u)),

where g ∈ C(R2
+, R) and a(.), b(.) ∈ K . Then, the bound concept of the scale

equation
w′ = g(t, w), w(t0) = w0 � 0, (6)

implies corresponding bound concept of equation (3) .

Proof. It is enough to prove the case of UUB because the proof of the rests are
the same.

Suppose (6) is UUB . Then there exists a B > ρ (without loss generality, let
b(B) > ρ ), such that, for any B1 > 0 , there exists a T > 0 and satisfies that

0 � w(t0) = w0 < B1 implies γ (t, t0, w0) < b(B) for t � t0 + T,

where γ (t, t0, w0) is maximum solution of (6) through (t0, w0) . Using Theorem 3.1,
we obtain

V(t, u) � γ (t, t0, w0), if u(t) ∈ sc(ρ),

where w0 = max{d[u(t0), 0̂], ρ} and thus

b(d[u, 0̂]) � V(t, u) � γ (t, t0, w0), u ∈ Sc(ρ),

then

d[u, 0̂] � b−1[γ (t, t0, w0)] � b−1[b(B)] = B, u ∈ Sc(ρ), t � t0 + T.

It is clear that if u ∈ S(ρ) for some t � t0 + T , then d[u, 0̂] � B since B > ρ .
Summing up the analysis above, we obtain that

• For B > ρ , for any B1 > 0 , there exists a T > 0 , such that

d[u0, 0̂] < B1 implies u(t, t0, u0) ∈ S(B), t � t0 + T.

This means that equation (3) is UUB . The proof completes.

COROLLARY 4.2. The function g(t, u) = −c(u) , c ∈ K is admissible in Theorem
4.3.

It is known that the method of perturbing Lyapunov functions introduced in [9] is
a useful and important tool in the study of nonuniform properties of solutions because
when the Lyapunov function found does not satisfy all the desired conditions, it is
fruitful to perturb that Lyapunov function rather than discard it. Next result is obtained
by the method of perturbing Lyapunov functions .

THEOREM 4.4. Assume that
(i) ρ > 0, V1 ∈ C[R+ × S(ρ), R+] , V1 is bounded for (t, u) ∈ R+ × ∂S(ρ) , and

|V1(t, u1) − V(t, u2)| � L1d[u1, u2], l1 > 0,

D+V1(t, u) = lim suph→0+
1
h [V1(t + h, u + hf (t, u)) − V1(t, u)]

� g1(t, V1) (t, u) ∈ R+ × Sc(ρ)
(7)

where g1 ∈ C[R2
+, R] ;
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(ii) V2 ∈ C[R+ × Sc(ρ), R+] ,

b(d[u, 0̂]) � V2(t, u) � a(d[u, 0̂]), a(.), b(.) ∈ K, (8)

D+V1 + D+V2 � g2(t, V1(t, u) + V2(t, u)), g2 ∈ C[R2
+, R]; (9)

(iii) the scalar differential equations

w′
1 = g1(t, w1), w1(t0) = w10 � 0, (10)

and
w′

2 = g2(t, w2), w2(t0) = w20 � 0, (11)

are equibounded and uniformly bounded, respectively. Then the system (3) is
equibounded.

Proof. Let B1 > ρ and t0 ∈ R+ be given. Let α1 = α1(t0, B1) = max(α0,α∗) ,
where α0 = max[V1(t0, u0) : u0 ∈ cl{S(B1)

⋂
Sc(ρ)}] and α∗ � V1(t, u) for (t, u) ∈

R+ × ∂S(ρ). Since equation (10) is equibounded, given α1 > 0 , and t0 ∈ R+ , there
exists a β0 = β0(t0,α1) , such that

w1(t, t0, w10) < β0, t � t0, (12)

provided w10 < α1 , where w1(t, t0, w10) is any solution of (10) . Let α2 = a(B1)+β0 ,
then uniform boundedness of equation (11) yields that

w2(t, t0, w20) < β1(α2), t � t0, (13)

provided w20 < α2 , where w2(t, t0, w20) is any solution of (11) . Choose B2 satisfies

b(B2) > β1(α2). (14)

We now claim that u0 ∈ S(B1) implies that u(t, t0, u0) ∈ S(B2) for t � t0 , where
u(t, t0, u0) is any solution of (3) .

If it is not true, there exists a solution u(t, t0, u0) of (3) with u0 ∈ S(B1) , such that
for some t∗ > t0 , d[u(t∗, t0, u0), 0̂] = B2 . Since B1 > ρ , there are two possibilities to
consider:

1) u(t, t0, u0) ∈ Sc(ρ) for t ∈ [t0, t∗] ;
2) there exists a t � t0 such that u(t, t0, u0) ∈ ∂S(ρ) and u(t, t0, u0) ∈ Sc(ρ) for

t ∈ [t, t∗] .
If 1) holds, we can find t1 > t0 ,such that⎧⎨

⎩
u(t1, t0, u0) ∈ ∂S(B1)
u(t∗, t0, u0) ∈ ∂S(B2) and
u(t, t0, u0) ∈ Sc(B1), t ∈ [t1, t∗].

(15)

Setting m(t) = V1(t, u(t, t0, u0)) + V2(t, u(t, t0, u0)) for t ∈ [t1, t∗] , then using the
similar argument the proof of Theorem 4.1, we can obtain the differential inequality

D+m(t) � g2(t, m(t)), t ∈ [t1, t∗],
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and so
m(t) � γ2(t, t1, m(t1)), t ∈ [t1, t∗],

where γ2(t, t1, v0) is the maximal solution of (11) with γ2(t1, t1, v0) = v0 . Thus

V1(t∗, u(t∗, t0, u0)) + V2(t∗, u(t∗, t0, u0))
� γ2(t∗, t1, V1(t1, u(t1, t0, u0)) + V2(t1, u(t1, t0, u0))).

(16)

Similarly, we also have

V1(t1, u(t1, t0, u0)) � γ1(t1, t0, V1(t0, u0)), (17)

where γ1(t, t0, u0) is the maximal solution of (10) . Set w10 = V1(t0, u0) < α1 , then

V1(t1, u(t1, t0, u0)) � γ1(t1, t0, V1(t0, u0)) � β0

since (12) . Furthermore, V2(t1, u(t1, t0, u0)) � a(B1) because of (8) and (15) ,
consequently, we have

w20 = V1(t1, u(t1, t0, u0)) + V2(t1, u(t1, t0, u0))

� β0 + a(B1) = α2.
(18)

Combining (8) , (13) , (14) , (15) , and (18) , we obtain

b(B2) � m(t∗) � γ (t∗) � β1(α2) < b(B2), (19)

which is a contradiction.
If case 2) holds, we also arrive at the inequality (16) , where t1 > t satisfies

(15) . We now have, in place of (17) , the relation

V1(t1, u(t1, t0, u0)) � γ1(t1, t, V1(t, u(t, t0, x0))).

Since u(t, t0, u0) ∈ ∂S(ρ) and V1(t, u(t, t0, x0)) � α∗ � α1 , arguing as before, we get
the contradiction (19) . This proves that

• for any B1 > ρ , t0 > 0 are given, there exists a B2 such that u0 ∈ S(B1) implies
u(t, t0, u0) ∈ S(B2), t � t0 .

For B1 < ρ , we set B2(t0, B1) = B2(t0, ρ) and hence the proof is complete.
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