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RESULTS UNDER logA � logB CAN BE DERIVED FROM ONES

UNDER A � B � 0 BY UCHIYAMA’S METHOD – ASSOCIATED WITH

FURUTA AND KANTOROVICH TYPE OPERATOR INEQUALITIES

TAKAYUKI FURUTA

Abstract. In what follows, a capital letter means a bounded linear operator on a Hilbert space
H. We discuss some parallelism between A � B � 0 and log A � log B on generalized Furuta
inequality and Kantorovich type inequalities. Precisely speaking, several results under the chaotic
order log A � logB on Furuta type inequalities and Kantorovich type inequalities can be both
derived from ones under the usual order A � B � 0 by using Uchiyama’s method [23].
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