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Abstract. A sharp inequality for a linear combination of four cosines is obtained. It is used
to sharpen inequalities due to Florian, Lenhard, Ozeki all of which extend the classical Erdös-
Mordell inequality. Reverse isoperimetric inequalities for cyclic quadrilaterals are also obtained.

1. Introduction

Let x1, x2, ..., xn and δ1, δ2, ..., δn be two sets of positive real numbers such that

δ1 + δ2 + · · · + δn = π. (1)

If we put xn+1 = x1, then it was conjectured [1, p.139] by L.Fejes Tóth that

n∑
i=1

xixi+1 cos δi � cos(
π
n

)
n∑

i=1

x2
i . (2)

A proof of (2) when n = 3 runs as follows:
Let x, y, z,α, β , γ be positive real numbers with α + β + γ = π.Then

(xz cosα + yz cos β − xy)2 + (xz sinα − yz sin β)2 � 0

with equality holding if and only if

x sinα = y sin β = z sin γ .

Expansion and simplification give

x cosα + y cosβ + z cos γ � x2y2 + y2z2 + z2x2

2xyz
· (3)

Now use x = x1x2, y = x2x3, z = x3x1 in (3) to obtain (2) for the case n = 3.
The first proof of (2) when n = 4 was given by Florian [4] and the proof for

general n was obtained by Lenhard [5].The interest in (2) was originally in connection
with extension of the classical Erdös-Mordell inequality: If P is interior to a triangle,
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the sum of its distances to the sides is at most one half the sum of its distances to the
vertices.

To see how (2) is used to obtain the extension let P be a point interior to a convex
polygon A1A2...An . If the bisector of the angle <)AkPAk+1 = 2δk meets AkAk+1 in Wk

and has length wk then

wk =
2RkRk+1

Rk + Rk+1
cos δk, Rk = PAk, Rn+1 = R1. (4)

Since 2
√

RkRk+1 � Rk + Rk+1 and, here, cos δk � 0 , it follows by (2) that

n∑
k=1

wk �
n∑

k=1

√
RkRk+1 cos δk � cos(

π
n
)

n∑
k=1

Rk.

Since the distance from P to the side AkAk+1 is smaller than wk we obtain that the sum
of the distances of P to the sides of the polygon is at most cos( πn ) times the sum of its
distances to the vertices.When n = 3 the polygon reduces to a triangle, cos( πn ) = 1

2
and we have the Erdös-Mordell inequality.

Lenhard’s proof of (2) is completely different from Florian’s proof of (2) for
the case n = 4 . But absent from both proofs is a preliminary inequality analogous
to (3) . This raises the question as to whether there is an inequality corresponding to
(3) for n � 4.The purpose of this note is to obtain such an inequality for n = 4 .
(Theorem 1 below). As a consequence we are able to further extend the Erdös-Mordell
inequality for a quadrilateral, and obtain new propositions some of which complement
the isoperimetric inequality for cyclic quadrilaterals. We also include a cosine inequality
for the case n = 3 which may be of independent interest.

2. Cosine inequalities

THEOREM 1. Let x, y, z, t, δ1, δ2, δ3, δ4 be positive real numbers with δ1 + δ2 +
δ3 + δ4 = π . Then

x cos δ1 + y cos δ2 + z cos δ3 + t cos δ4 �
√

(xy + zt)(xz + yt)(xt + yz)
xyzt

· (5)

Furthermore, equality holds if and only if

x sin δ1 = y sin δ2 = z sin δ3 = t sin δ4. (6)

In particular, if x1, x2, x3, x4 are positive and x5 = x1, then

4∑
k=1

xkxk+1 cos δk �
√

2(x2
1 + x2

3)(x
2
2 + x2

4).
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Proof. Let s > 0 be an auxiliary variable to be determined shortly. Since cos(δ1+
δ2) = − cos(δ3 + δ4 ) we have using inequality (3)

x cos δ1 + y cos δ2 + z cos δ3 + t cos δ4

= x cos δ1 + y cos δ2 + s cos(δ3 + δ4) + z cos δ3 + t cos δ4 + s cos(δ1 + δ2)

� x2y2 + y2s2 + s2x2

2xys
+

z2t2 + t2s2 + s2z2

2zts

= (
x2 + y2

2xy
+

z2 + t2

2zt
)s + (

xy + zt
2

)
1
s

=

√
(
x2 + y2

xy
+

z2 + t2

zt
)(xy + zt) =

√
(xy + zt)(xz + yt)(xt + yz)

xyzt

where we made a special choice for the value of s namely s =
√

xy+zt
2

x2+y2

2xy + z2+t2
2zt

. This

finishes the proof of the inequality. If equality holds in (5) then, by the case of equality
in (3) we must have

x sin δ1 = y sin δ2 = s sin(δ3 + δ4), and z sin δ3 = t sin δ4 = s sin(δ1 + δ2).

PROPOSITION 1. Let a, b, c,α, β , γ be positive real numbers such that α+β+γ =
π . Then

4bc
b + c

cosα +
4ca

c + a
cosβ +

4ab
a + b

cos γ

� a + b + c − ab(a − b)2 + bc(b − c)2 + ca(c − a)2

(a + b)(b + c)(c + a)

Note that Proposition 1 implies, in the notation of the introduction, that

w1 + w2 + w3 =
2bc

b + c
cosα +

2ca
c + a

cos β +
2ab

a + b
cos γ � 1

2
(a + b + c)

without assumption of positivity of the cosines.
The proof of Proposition 1 depends on the following algebraic identity which may

be of independent interest.

PROPOSITION 2. If a, b and c are three real numbers then

2a2(b + c)2 + 2b2(c + a)2 + 2c2(a + b)2 − (a + b + c)(a + b)(b + c)(c + a)

= −ab(a − b)2 − bc(b − c)2 − ca(c − a)2.

In particular, if a, b, c are all non-negative then

2a2(b + c)2 + 2b2(c + a)2 + 2c2(a + b)2 � (a + b + c)(a + b)(b + c)(c + a)

and equality holds if and only if a = b = c .
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Proof. The proof is computational. We have, successively

(a + b)(b + c)(c + a) = 2abc + ab2 + a2b + ac2 + a2c + bc2 + b2c,

(a + b + c)(a + b)(b + c)(c + a) = 4a2bc + 2b2c2 + b3c + bc3

+ 4ab2c + 2a2c2 + ac3 + a3c + 4abc2 + 2a2b2 + ab3 + a3b.

Also

2a2(b + c)2 + 2b2(c + a)2 + 2c2(a + b)2

= 4a2bc + 4ab2c + 4abc2 + 4a2b2 + 4b2c2 + 4c2a2.

Subtraction now gives

2a2(b + c)2 + 2b2(c + a)2 + 2c2(a + b)2 − (a + b + c)(a + b)(b + c)(c + a)

= 2a2b2 − ab3 − a3b + 2b2c2 − b3c − bc3 + 2c2a2 − ca3 − c3a

= −ab(a − b)2 − bc(b − c)2 − ca(c − a)2.

This completes the proof of the identity. The inequality, as well as the case of equality
in it, follow immediately.

Returning to Proposition 1 suppose that a, b, c,α, β , γ are positive and α + β +
γ = π.Applying (3) we obtain

4bc
b + c

cosα +
4ca

c + a
cosβ +

4ab
a + b

cos γ

� 2a2(b + c)
(c + a)(a + b)

+
2b2(c + a)

(a + b)(b + c)
+

2c2(a + b)
(b + c)(c + a)

and the righthand side is � (a + b + c) − ab(a − b)2 + bc(b − c)2 + ca(c − a)2

(a + b)(b + c)(c + a)
by

Proposition 2 above.

3. Applications

3.1. Sharpening Florian’s inequality for a quadrilateral

Let P be a point interior to a convex quadrilateral A1A2A3A4 . If the bisector of
the angle <)AkPAk+1 = 2δk meets AkAk+1 in Wk and has length wk then Florian’s
inequality gives

w1 + w2 + w3 + w4 � 1√
2
(R1 + R3 + R2 + R4).

If we use wk = 2RkRk+1

Rk+Rk+1
cos δk � √

RkRk+1 cos δk and Theorem 1, we obtain

w1 + w2 + w3 + w4 �
√

2(R1 + R3)(R2 + R4) (7)

which is readily seen to be sharper than Florian’s inequality.
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3.2. A geometric inequality for quadrilaterals

PROPOSITION 3. Let P be the point of intersection of the diagonals AC , BD of a
convex quadrilateral ABCD . If the bisectors of the angles between the diagonals meet
the opposite sides in R, S, T, U respectively then

RT + SU �
√

2 AC · BD.

Furthermore this inequality is sharper than the corresponding Erdös-Mordell inequality.

The question of comparing lengths of bisectors and diagonals in this setting was
considered by Demir and Bankoff [3, p.131] who showed that

RT + SU � 3
4
(AC + BD).

But this inequality is not sharp.

Proof. In this case and with the same notation as above

RT + SU = RP + PT + SP + PU = w1 + w2 + w3 + w4

�
√

2(PA + PC)(PB + PD) =
√

2 AC · BD.

since 2
√

AC · BD � AC + BD this inequality implies that

RT + SU �
√

2
2

(AC + BD)

which is the only available information from the Erdös-Mordell inequality.

3.3. Reverse isoperimetric inequalities for cyclic quadrilaterals

Let ABCD be a convex cyclic quadrilateral inscribed in a circle of radius R .
Denote the lengths of its sides by a, b, c, d the lengths of its diagonals by e, f , g and
L = 2s = a + b + c + d its perimeter. The area Δ of the quadrilateral is given by
Brahmagupta’s formula [2, p.57]

Δ2 = (s − a)(s − b)(s − c)(s − d).

Using the inequality between the arithmetic and geometric means of four positive
numbers we obtain

L2 � 16Δ2. (8)

This is the isoperimetric inequality for cyclic quadrilaterals.
In the inequality (5) take δk = π

4 to obtain

(a + b + c + d)
1√
2

�
√

(ab + cd)(ac + bd)(ad + bc)
abcd

or
L√
2

�
√

16R2Δ2

abcd
,
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where we used [2, p.60] the formula Δ2 =
(ab + cd)(ac + bd)(ad + bc)

16R2
for the area

of ABCD . Thus

L � 4
√

2RΔ√
abcd

· (9)

This sharp inequality which goes in a direction opposite to (8) may be viewed as a
reverse isoperimetric inequality for cyclic quadrilaterals.

3.4. Circumscribed cyclic quadrilaterals

If the cyclic quadrilateral ABCD is also circumscribed about a circle, that is its
sides are tangent to a circle then [2, p.60] its area is given by Δ2 = abcd. Using (9)
we obtain

L � 4R
√

2 and L2 � 32Δ′

π
where Δ′ is the area of the circumcircle of ABCD.
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