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MEANS OF METRIC ENTROPY METHODS
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(communicated by Goran Peskir)

Abstract. The purpose of this paper is to indicate how easy, classical metric entropy methods
arising from the theory of stochastic processes, apply to get uniform estimates for random
polynomials like the well-known Salem-Zygmund’s bound [7]. As an application, we give a
criterion for uniform convergence of some random Fourier series.

1. Introduction

Let (pk)k�1 be a strictly increasing sequence of positive integers greater than 1 ; let
also (θk)k�1 be a sequence of reals and consider two sequences of real randomvariables
X = {X1, X2, . . .} and Y = {Y1, Y2, . . .} defined on a common probability space
(Ω, A , P) . Associate to these datas the following sequence of random polynomials

(1) ∀N � 1, ZN(ω , t) =
N∑

k=1

θk {Xk(ω) cos 2πpkt + Yk(ω) sin 2πpkt}

In this paper, we show that the metric entropy methods arising from theory of stochastic
processes, are an efficient tool for estimating the total extremums

(2) ∀N � 1, QN := sup
0�t�1

|ZN(t)| .

These estimates are known to be very efficient when studying randomly perturbed
ergodic sums, we may refer for instance to [PSW], [SW]. We will see that this reduces
to apply the metric entropy method in the simplest possible case: the real line provided
with the usual distance. And this is also the reason for which we believe that it is
likely the most elementary possible approach. We recover as a particular case of a
more general estimate, the well-known estimate from Salem-Zygmund [SZ] (Theorem
7). We could condense the arguments on one page; we have chosen on the contrary, to
display them completely, in order to make the method more accessible.
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Let us first observe in the particular case when X and Y are independent,
identically distributed random variables with EX1 = EY1 = 0 and EX2

1 = EY2
1 = 1 ,

that

E (ZN(s) − ZN(t))2 = E
( N∑

k=1

θk

{
Xk [cos 2πpkt − cos 2πpks]

+ Yk [sin 2πpkt − sin 2πpks]
})2

=
N∑

k=1

θ2
k

(
[cos 2πpkt − cos 2πpks]

2 + [sin 2πpkt − sin 2πpks]
)2

= 2
N∑

k=1

θ2
k [1 − cos 2πpk(t − s)] = 4

N∑
k=1

θ2
k sin2 πpk(t − s)

Therefore, if we put

(3) ∀s, t ∈ [0, 1], dN(s, t) = 2

(
N∑

k=1

θ2
k sin2 πpk(s − t)

) 1
2

,

we define like this a pseudo-metric on [0, 1] , since here dN(s, t) = ‖ZN(s) − ZN(t)‖2 .
This pseudo-metric will play a central role in what follows.

We introduce now an assumption concerning the increments of the process ZN(·) .
Consider the Young function G(t) = exp(t2) − 1 , t real, together with the associated
Orlicz’s space LG(P) , that is, the set of A -measurable functions f : Ω→R , such that
EG(af ) < ∞ for some real 0 < a < ∞ . We recall that LG(P) is provided with the
following norm

∀f ∈ LG(P), ||f ||G = inf{c > 0 : EG(
f
c
) � 1}

and that (LG(P), || · ||G) is a Banach space. The space LG(P) is often called the gauge
space. We will assume

(4) ∀0 � s, t � 1

⎧⎪⎨
⎪⎩

‖ZN(s) − ZN(t)‖G � CdN(s, t)

‖ZN(s)‖G � C
(∑N

k=1 θ
2
k

) 1
2
,

where by C we denote here and in what follows a universal constant, which may change
its value at each occurence. These assumptions are satisfied in the usual settings: X and
Y are independent, identically distributed, Rademacher or Gaussian random variables;
but also in other settings (see Examples 1-3). We will prove the following result

THEOREM 1. Under assumption (4) , there exists a universal constant C (which
is a function of the constant C from (4) ) such that

(5) ∀N � 1, ‖QN‖G � C (log pN)
1
2

(
N∑

k=1

θ2
k

)1/2

.



ESTIMATING RANDOM POLYNOMIALS BY MEANS OF METRIC ENTROPY METHODS 445

This estimate is optimal. Indeed, assume that Xn = ξ2n , Yn = ξ2n+1 where
(ξn)n�0 is a sequence of independent Rademacher random variables. Assume also that
θk = 1 , pk = k ( k � 1 ). Then, refering for instance to [KS] Proposition 2, p.129, we
have

∀N � 1, E QN � C (N logN)
1
2 ,

where C is a universal constant.
In order to motivate the reader, we shall immediately give three classes of examples.

EXAMPLE 1. Assume that X and Y are two stationary centered gaussian se-
quences, with finite decoupling coefficient, that is:

(6) p(X ) =
∞∑
k=1

∣∣∣∣ EX1Xk

E(X1)2

∣∣∣∣ < ∞, p(Y ) =
∞∑
k=1

∣∣∣∣ EY1Yk

E(Y1)2

∣∣∣∣ < ∞.

Then, assumption (4) is satisfied. More precisely, for any 0 � s, t � 1

(7)

⎧⎪⎪⎨
⎪⎪⎩

‖ZN(s) − ZN(t)‖G � 18
√

2 max (p(X ), p(Y ))
1
2

(∑N
k=1 θ

2
k sin2 πpk(s − t)

) 1
2

‖ZN(s)‖G � 9
√

2max (p(X ), p(Y ))
1
2

(∑N
k=1 θ

2
k

) 1
2

So, Theorem 1 does apply in that case. Note that the decoupling assumption is trivially
satisfied when both X and Y consist of independent N(0, 1) distributed random
variables. Observe also that no assumption on the correlation between X and Y
is required, and consequently the elaborated Gaussian spectral approach proposed in
[F] is unsufficient here, since ZN is not necessarily Gaussian. Finally, recall that the
Ornstein-Uhlenbeck process Uk = W(ek)e−k/2 k = 1, 2, . . . is the typical example of
stationary Gaussian sequence with finite decoupling coefficient. We show (7) and will
invoke the following lemma due to Klein-Landau-Shucker.

LEMMA 2. ([KLS], Theorem 1) Let T = (T1, T2, . . .) be a stationary, centered
Gaussian sequence with finite decoupling coefficient p(T) . Let (f k, k = 1, 2, . . .) be a
sequence of complex-valued Borel-measurable functions. Then, for each finite subset J
of N ,

(8)

∣∣∣∣∣E
∏
j∈J

f j(Tj)

∣∣∣∣∣ �
∏
j∈J

‖f j(T1)‖p(T) .

Let λ be some fixed real. By means of Cauchy-Schwarz’s inequality

Eeλ (Zn(s)−ZN(t)) = Eeλ
∑N

k=1
θk{Xk(cos 2πpks−cos 2πpkt)+Yk(sin 2πpks−sin 2πpkt)}

�
(

Ee2λ
∑N

k=1
θkXk(cos 2πpks−cos 2πpkt)Ee2λ

∑N
k=1

θkYk(sin 2πpks−sin 2πpkt)
) 1

2
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Put f X
k (x) = e2λθkx(cos 2πpks−cos 2πpkt) , f Y

k (x) = e2λθkx(sin 2πpks−sin 2πpkt) , k = 1, . . . , N
and apply lemma 2. We obtain, since EeλN(0,1) = eλ

2/2 ,

Ee2λ
∑N

k=1
θkXk(cos 2πpks−cos 2πpkt) � e2λ 2p(X )

∑N
k=1

θ2
k (cos 2πpks−cos 2πpkt)

2

Ee2λ
∑N

k=1
θkYk(sin 2πpks−sin 2πpkt) � e2λ 2p(Y )

∑N
k=1

θ2
k (sin 2πpks−sin 2πpkt)

2

Hence

Eeλ (Zn(s)−ZN(t)) � e2λ 2 max(p(X ),p(Y ))
∑N

k=1
θ2
k{(cos 2πpks−cos 2πpkt)

2+(sin 2πpks−sin 2πpkt)
2}

� e8λ 2 max(p(X ),p(Y ))
∑N

k=1
θ2
k sin2 πpk(s−t)

Now, we shall use the fact that if U is a real random variable such that: EeλU � eλ
2C2

(∀λ ∈ R ), then ||U||G � 9C . Thus, it follows from the previous estimates that

‖Zn(s) − ZN(t)‖G � 18
√

2 max (p(X ), p(Y ))
1
2

(
N∑

k=1

θ2
k sin2 πpk(s − t)

) 1
2

Hence the first inequality in (7). The second one is deduced by a similar reasoning.

EXAMPLE 2. Assume that both X and Y are sequences of independent, centered
real random variables, and that there exists a real constant M such that

∀k � 1, |Xk| � M, |Yk| � M.

Then, assumption (4) is satisfied. More precisely, for any 0 � s, t � 1

(9)

⎧⎪⎪⎨
⎪⎪⎩

‖ZN(s) − ZN(t)‖G � 4M
(∑N

k=1 θ
2
k sin2 πpk(s − t)

) 1
2

‖ZN(s)‖G � 4M
(∑N

k=1 θ
2
k

) 1
2

We don’t prove that result, which is rather a direct consequence of Theorem 3.5.1 p.77
of [G]. Our Theorem 1 thus applies in that case as well.

EXAMPLE 3. Let A0 ⊂ A1 ⊂ . . . A be an increasing filtration of A (A =∨∞
i=0 Ai ), and assume that X is a sequence of martingale differences adapted to that

filtration, with
∀k � 1, ||Xk||∞ � 1.

Assume that Y ≡ 0 (for instance!). Then assumption (4) is satisfied. Indeed,
Zn(t) =

∑N
k=1 d(t)

k where d(t)
k = θkXk cos 2πpkt . Thus, Zn(t) is a sum of martingales

differences satisfying: ||d(t)
k ||∞ � θk . But, we know from [LT], Lemma 1.5 p. 31 for

instance, that

(10) ∀v � 0, P

{ ∣∣∣∣∣
N∑

k=1

d(t)
k

∣∣∣∣∣ > v

}
� 2 exp

(
− v2

2
∑N

k=1 ||d(t)
k ||2∞

)
.
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This, of course implies that ‖ZN(s)‖G � C
(∑N

k=1 θ
2
k

) 1
2

for some universal constant

C . Similarly, we have

(11) ‖ZN(s) − ZN(t)‖G � C

(
N∑

k=1

θ2
k (cos 2πpks − cos 2πpkt)2

) 1
2

� CdN(s, t).

Consequently, Theorem 1 applies in that case as well.

2. Proof of Theorem 1

The key point of the proof is contained in the following elementary observation:
the pseudo-metric dN(., .) is locally comparable to the usual distance. Indeed, since
| sin x| � (|x| ∧ 1) , we thus have

(12) d2
N(s, t) � 4

N∑
k=1

θ2
k

(
(πpk|s − t|)2 ∧ 1

)
� 4π2|s− t|2

N∑
k=1

θ2
k

(
p2

k ∧
1

π2|s − t|2
)

;

We thus deduce that if π|s − t| � 1/pN , then
(
p2

k ∧ 1
π2|s−t|2

)
= p2

k , k = 1, . . . , N .

And consequently dN(s, t) � 2π|s − t|
(∑N

k=1 θ
2
k p2

k

)1/2
.

We divide the interval [0, 1[ in sub-intervals:

(13) IN,j =
[ j − 1

4pN
,

j
4pN

[
, j = 1, 2, . . . , 4pN

Since s, t ∈ IN,j ⇒ |s − t| � 1
4pN

� 1
πpN

, it follows from the previous estimate

(14) ∀j = 1, 2, . . . , 4pN , ∀s, t ∈ IN,j, dN(s, t) � 2π|s − t|
(

N∑
k=1

θ2
k p2

k

)1/2

.

Introduce now the auxiliary process

(15) ∀j = 1, 2, . . . , 4pN, ∀t ∈ IN,j, YN(t) =

[
ZN(t) − ZN( j−1

4pN
)
]

2π
(∑N

k=1 θ2
k p2

k

)1/2
.

Then, we bound QN relatively to the partition of [0, 1[ as follows:

(16) QN � sup
j=1,2,...,4pN

∣∣∣∣ZN(
j − 1
4pN

)
∣∣∣∣+ 2π

(
N∑

k=1

θ2
k p2

k

)1/2

sup
j=1,2,...,4pN

sup
t∈IN,j

|YN(t)| .

Weare now in an easy setting, sincewehave to estimate the local extremums supt∈IN,j
|YN(t)|

of a stochastic process of which the increments are locally bounded by the usual distance.
Indeed, from (14): for any s, t ∈ IN,j , ||YN(s)−YN(t)||G � C|s−t| , j = 1, 2, . . . , 4pN .
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In order to estimate QN , we will need two simple tools: the first one is a classical
inequality (see for instance [GPW], inequality (3.5) p.62):

(17) ∀n � 2, ∀f 1, . . . , f n || sup
1�j�n

|f j| ||G � ([2/ log 2] log n)
1
2 sup

1�j�n
|| |f j| ||G.

Observe at once from (4) and (17) that

(18)

‖QN‖G � ([2/ log 2] log 4pN)
1
2

{
sup

j=1,...,4pN

∥∥∥∥|ZN(
j − 1
4pN

)|
∥∥∥∥

G

+ 2π

(
N∑

k=1

θ2
k p2

k

)1/2

. sup
j=1,...,4pN

∥∥∥∥∥ sup
t∈IN,j

|YN(t)|
∥∥∥∥∥

G

}

� ([2/ log 2] log 4pN)
1
2

{
C

(
N∑

k=1

θ2
k

)1/2

+ 2π

(
N∑

k=1

θ2
k p2

k

)1/2

. sup
j=1,...,4pN

∥∥∥∥∥ sup
t∈IN,j

|YN(t)|
∥∥∥∥∥

G

}

The second tool is nothing else but a reformulation of the well-known integral criterion
of Dudley in theory of processes, that we slightly adapt to our purpose, in order to

estimate
∥∥∥supt∈IN,j

|YN(t)|
∥∥∥

G
. We give an elementary proof of it in Appendix, for the

sake of completeness. Introduce a notation: let (E, d) be a set provided with a pseudo-
metric and a positive real u ; we note by N(E, d, u) the smallest covering number
(possibly infinite) of E by open d -balls of radius u .

THEOREM 4. ([D], Theorem2.1) Let E be a countable set, provided with a pseudo-
metric d and let X = {X(ω , t),ω ∈ Ω, t ∈ E} be a stochastic process indexed on
E , with basic probability space (Ω, A , P) , and satisfying the following increment’s
condition

(19) ∀s, t ∈ E, ‖Xs − Xt‖G � d(s, t).

Assume that the following integral

(20) I(E, d) =
∫ diam(E,d)

0
(logN(E, d, u))

1
2 du

is convergent. Then, there exists a universal constant C such that

(21)
∥∥∥∥ sup

s,t∈E
(Xs − Xt)

∥∥∥∥
G

� C I(E, d).

Now, estimate
∥∥∥supt∈IN,j

|YN(t)|
∥∥∥

G
. By taking account of (14) and the previous

theorem, and since diam(IN,j, |.|) = 1/4pN , we must first estimate N(IN,j, |.|, u) for
0 < u � 1/4pN , which is obvious:

N(IN,j, |.|, u) � 1 +
[
1/4pN

2u

]
� 1 +

1/4pN

2u
� 1

2upN
.
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Thus

(22) I(IN,j, |.|) �
∫ 1

4pN

0

(
log

2
4upN

) 1
2

du

(
u= v

4pN

)
=

1
4pN

∫ 1

0

(
log

2
v

) 1
2

dv � C
pN

.

It follows from (4) and Theorem 4, and from the fact that Y ( j−1
4pN

) = 0 , that for any
countable subset E of IN,j

(23)
∥∥∥∥sup

t∈E
|YN(t)|

∥∥∥∥
G

�
∥∥∥∥ sup

s,t∈E
|YN(s) − YN(t)|

∥∥∥∥
G

� C
pN

.

We shall now make use of the following useful observation: the ω -trajectories t −→
ZN(t,ω) are continuous for each ω ∈ Ω , and consequently, those of the auxiliary
process YN are continuous too. By specifying estimate (23) for a countable dense
subset of IN,j , we have in fact shown∥∥∥∥∥ sup

t∈IN,j

|YN(t)|
∥∥∥∥∥

G

� C
pN

.

By putting this estimate in (18), we thus obtain

‖QN‖G � C (log 4pN)
1
2

{(
N∑

k=1

θ2
k

)1/2

+
1
pN

(
N∑

k=1

θ2
k p2

k

)1/2}

� C (log pN)
1
2

(
N∑

k=1

θ2
k

)1/2

We have therefore proved Theorem 1. �

3. Applications

In this section, we give four applications of Theorem 1, the first one establishes a
precise uniform estimate of complex random polynomials of the form

N∑
k=1

Ukθk exp 2iπpkt N = 1, 2, . . .

where U = (Uk)∞k=1 is a sequence of weakly dependent random variables; the second
one provides a global uniform estimate of the sequence formed by the differences of
these polynomials. In that case, we will assume that the sequence U is Gaussian. The
third application provides a similar global uniformestimate for sequences of independent
symmetric random variables. A fourth application to a variant of the initial problem is
given in Theorem 9. We first establish:



450 MICHEL WEBER

COROLLARY 5.
(a) Let U = (Uk)∞k=1 be a sequence of independent, centered real random vari-

ables. We assume that there exists a real M < ∞ such that: |Uk| � M a.s. for any
k � 1 . Then

(24a)

∥∥∥∥∥ sup
0�t�1

∣∣∣∣
N∑

k=1

Ukθke
2iπpkt

∣∣∣∣
∥∥∥∥∥

G

� CM

(
log pN

N∑
k=1

θ2
k

) 1
2

where C is a universal constant.
(b) Let V = (Vk)∞k=1 be a centered, stationary Gaussian sequence with finite

decoupling coefficient p(V ) (see Example 2). Then

(24b)

∥∥∥∥∥ sup
0�t�1

∣∣∣∣
N∑

k=1

Vkθke
2iπpkt

∣∣∣∣
∥∥∥∥∥

G

� C
√

p(V )

(
log pN

N∑
k=1

θ2
k

) 1
2

where C is a universal constant.

Proof. For establishing (24a), we apply Theorem 1 to X = U , Y = 0 , next
to X = 0 , Y = U . This provides the desired estimate for both the imaginary and
real part. Hence, the result by putting together these estimates. We operate similarly
for establishing (24b), by applying Theorem 1 to X = V , Y = 0 , next to X = 0 ,
Y = V . �

Estimate (24b) can be considerably strenghtened. This is the object of the next
Corollary.

COROLLARY 6. Let V = (Vk)∞k=1 be a centered, stationary Gaussian sequence
with finite decoupling coefficient p(V ) . Then,

(25)

∥∥∥∥∥∥ sup
N<M

sup
0�t�1

∣∣∑M
k=N+1 Vkθke2iπpkt

∣∣(
log pM

∑M
k=N+1 θ2

k

) 1
2

∥∥∥∥∥∥
G

� C
√

p(V ),

where C is a universal constant.

Proof. It is enough to establish a similar estimate for each of the imaginary and
real parts. Put, to that effect

(26)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L(cos)
N,M = sup0�t�1

∣∣∑M
k=N+1

Vkθk cos 2πpkt
∣∣(

log pM
∑M

k=N+1
θ2
k

) 1
2

(N < M),

L(sin)
N,M = sup0�t�1

∣∣∑M
k=N+1

Vkθk sin 2πpkt
∣∣(

log pM
∑M

k=N+1
θ2
k

) 1
2

(N < M),

L(cos) = supN<M L(cos)
N,M L(sin) = supN<M L(sin)

N,M

It suffices to show that

(27) EL(cos) � C
√

p(V ) EL(sin) � C
√

p(V ).
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It will follow from that, by taking into account the strong integrability properties of
Gaussian semi-norms (see for instance [LT], inequality 3.5 p.59),∥∥∥L(cos)

∥∥∥
G

� C
√

p(V )
∥∥∥L(sin)

∥∥∥
G

� C
√

p(V ).

Hence, the wished result follows by combining together these estimates. We prove now
(27). By means of the following inequality, which is easily derived from a simple form
of Borell-Sudakov-Tsirelson inequality (see for instance [LT] Lemma 3.1, p.57):

if G1, . . . , GN are Gaussian random vectors with values in a separable Banach
space (B, || · ||) , then

E sup
1�k�N

||Gk|| � C

{
sup

1�k�N
E||Gk|| + E sup

1�k�N
σk|gk|

}

where σk = supf ∈B∗, ||f ||�1

(
E < f , Gk >2

) 1
2 , k = 1, . . . , N , (gk)N

k=1 is a sequence of
independent N(0, 1) distributed random variables, and C is a universal constant,

EL(cos) � C

{
sup
N<M

EL(cos)
N,M + E sup

N<M
|λN,M|σN,M

}
where

σN,M = sup
0�t�1

∥∥∥∥∥∥
∣∣∑M

k=N+1 Vkθk cos 2πpkt
∣∣(

log pM
∑M

k=N+1 θ2
k

) 1
2

∥∥∥∥∥∥
2

,

and (λN,M)N<M is a sequence of independent N(0, 1) distributed random variables. By
a computation similar to the one made in example 1, we also obtain∥∥∥∥∥

M∑
k=N+1

Vkθk cos 2πpkt

∥∥∥∥∥
G

� C
√

p(V )
( M∑

k=N+1

θ2
k cos2(2πpkt)

) 1
2 � C

√
p(V )

( M∑
k=N+1

θ2
k

) 1
2 .

Hence,
∥∥∥∑M

k=N+1 Vkθk cos 2πpkt
∥∥∥

2
� C
√

p(V )
(∑M

k=N+1 θ
2
k

) 1
2 , and therefore

σN,M � C
√

p(V )
(
log pM

)− 1
2

By Theorem 1, we already know that supN<M EL(cos)
N,M � C

√
p(V ) . Consider now

the other part. For that, we re-index the sequence as follows: put m1 = 1 , mk =
1 +

∑k
j=2(j − 1) ( k � 2 ). Next, put for any M � 1 and any l ∈ [mM, mM+1[ ,

gl := λl−mM ,M , sl := (log pM)
1
2 . Observe that sl � (logM)

1
2 � C(log l)

1
2 . Thus

E sup
N<M

|λN,M|σN,M � CE sup
l�1

|gl|
sl

� C sup
l�1

√
log l
sl

E sup
l�1

|gl|√
log l

� C < ∞.

Hence EL(cos) � C
√

p(V ) . By arguing identically, we establish an estimate of the
same order for EL(sin) . Hence (27). The Corollary is thus proved. �
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We will now prove the following result

THEOREM 7. Let W = (Wk)∞k=1 be a sequence of independent, symmetric real
random variables. Then,

(28)

∥∥∥∥∥∥ sup
N<M

sup
0�t�1

∣∣∑M
k=N+1 Wke2iπpkt

∣∣(
log pM

∑M
k=N+1 W2

k

) 1
2

∥∥∥∥∥∥
G

� C,

where C is a universal constant.

Observe that, by means of Cauchy-Schwarz’s inequality∣∣∑M
k=N+1 Wke2iπpkt

∣∣(
log pM

∑M
k=N+1 W2

k

) 1
2

�
∑M

k=N+1 |Wk|(
log pM

∑M
k=N+1 W2

k

) 1
2

� (M − N)
1
2(

log pM
) 1

2

.

In particular, if (pm)m�1 is λ -lacunary (λ > 1 ), that is pm+1 � λpm for all m � 1 ,
then

sup
N<M

sup
0�t�1

∣∣∑M
k=N+1 Wke2iπpkt

∣∣(
log pM

∑M
k=N+1 W2

k

) 1
2

� C,

where C is a constant depending on λ only. So that, Theorem 7 is only interesting
when (pm)m�1 grows at most geometrically.

Proof. Since the sequence W is symmetric, it has the same distribution as
the sequence W

′
= (εkWk)∞k=1 , where ε = (εk)∞k=1 is a sequence of independent

Rademacher random variables, which is also independent from the sequence W . Let
P be some fixed nonnegative integer. Let also g = (gk)∞k=1 be a sequence of inde-
pendent N(0, 1) distributed random variables, also independent from the sequence W .
Since |g| = (|gk|)∞k=1 and sign(g) = (sign(gk))∞k=1 are independent sequences (or more
briefly, by means of the contraction principle)∥∥∥∥∥∥ sup

N<M�P
sup

0�t�1

∣∣∑M
k=N+1 εkWke2iπpkt

∣∣(
log pM

∑M
k=N+1 W2

k

) 1
2

∥∥∥∥∥∥
G

�
√

π
2

∥∥∥∥∥∥ sup
N<M�P

sup
0�t�1

∣∣∑M
k=N+1 gkWke2iπpkt

∣∣(
log pM

∑M
k=N+1 W2

k

) 1
2

∥∥∥∥∥∥
G

By applying now Corollary 6 to the sequence g conditionnally to W , next integrating
with respect to the law of W and finally letting P tend to infinity, we obtain the
announced result. �

It is now easy to deduce from Theorem 7 (except for the constant 2 in (29)), the
well-known estimate of Salem-Zygmund (see [K] or [SZ]) that we recall now for the
convenience of the reader
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THEOREM 8. (Salem-Zygmund’s estimate) Let (nk)k∈N , (pk)k∈N be two increas-
ing sequences of integers and a sequence (an)n∈N of reals. Let also ε = (εk)k∈N be a
sequence of independent Rademacher random variables defined on a probability space
that we note (Ω, B, P) . Then,

(29) P

⎧⎨
⎩lim sup

k→+∞
sup

0�t�1

maxnk<n�nk+1
|∑n

j=nk+1 ajεje2iπpjt|(
log pnk+1

∑nk+1
j=nk+1 a2

j

) 1
2

� 2

⎫⎬
⎭ = 1.

This is lemma 4.4.1 obtained from theorem 4.3.1 in [SZ]. It is worth observing here
that the lines of proof of Theorem 4.3.1 in [SZ] already contain the following useful
estimate valid for all positive integers N ,∥∥∥∥∥sup

x

∣∣∣∣∣
N∑

n=1

anεn exp(2iπnx)

∣∣∣∣∣
∥∥∥∥∥

1

� C

√√√√( N∑
n=1

a2
n

)
logN,

where the universal constant C can be estimated. Their proof is based on Bernstein’s
inequality for polynomials and exponential integrability properties of Rademacher sums.

The method we have used, as well as Theorem 7, also allows to study the following
variant of the initial problem. Let us consider a sequence P :

P1, P2, . . .

of Z -valued, independent random variables defined on a probability space (Ω, B, P) ,
and satisfying

(30) P {pi + Pi � 0} = 1 i = 1, 2, . . .

Introduce the following sequence of random polynomials

(31) UN(t) =
N∑

k=1

e2iπt(pk+Pk) − Ee2iπt(pk+Pk), N = 1, 2, . . .

By means of a classical symmetrization argument, the study of the extremums of these
polynomials may be reduced to the study of the following “symmetrized” sequence

VN(t) =
N∑

k=1

εke
2iπt(pk+Pk), N = 1, 2, . . . ,

where ε1, ε2, . . . is a Rademacher sequence defined on another probability space
(Ωε , Bε , Pε) . We denote by Eε the corresponding symbol of integration. But, condi-
tionally to the sequence (Pk)k these polynomials are exactly of the same type as those
examined in the previous Sections. And so, our method may be applied to the study
of their extremal properties. For this, we will assume that the following condition in
which Φ : N→N is some increasing map, is satisfied

(32) C(P,Φ) = E sup
M�1

[
log+(pM + PM)

] 1
2

Φ(M)
< ∞.

Then, we have the following result
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THEOREM 9. There exists a universal constant C such that

(33) E sup
N<M

sup
0�t�1

|UM(t) − UN(t)|
(M − N)

1
2Φ(M)

� C.C(P,Φ).

Proof. Consider the “symmetrized” sequence (VN)N�1 . By virtue of Theorem 7,
one has ∥∥∥∥∥ sup

N<M
sup

0�t�1

|VM(t) − VN(t)|
(M − N)

1
2 log+(pM + PM)

∥∥∥∥∥
G,Pε

� C,

where C is a universal constant. Hence Eε supN<M sup0�t�1
|VM(t)−VN(t)|

(M−N)
1
2 log+(pM+PM)

� C .

And thus,

E Eε sup
N<M

sup
0�t�1

|VM(t) − VN(t)|
(M − N)

1
2Φ(M)

� E Eε sup
N<M

sup
0�t�1

|VM(t) − VN(t)|
(M − N)

1
2 log+(pM + PM)

. sup
M

[
log+(pM + PM)

] 1
2

Φ(M)

� CE sup
M

[
log+(pM + PM)

] 1
2

Φ(M)
� C C(P,Φ).

It remains to observe in order to conclude, that by means of usual symmetrization
procedure

E Eε sup
N<M

sup
0�t�1

|UM(t) − UN(t)|
(M − N)

1
2Φ(M)

= E sup
N<M

sup
0�t�1

∣∣∣∣∑M
k=N+1 e2iπt(pk+Pk) − E

′
e2iπt(pk+P

′
k)

∣∣∣∣
(M − N)

1
2Φ(M)

� EE
′
sup
N<M

sup
0�t�1

∣∣∣∣∑M
k=N+1 e2iπt(pk+Pk) − e2iπt(pk+P

′
k)

∣∣∣∣
(M − N)

1
2Φ(M)

� 2E sup
N<M

sup
0�t�1

∣∣∣∑M
k=N+1 εke2iπt(pk+Pk)

∣∣∣
(M − N)

1
2Φ(M)

= E Eε sup
N<M

sup
0�t�1

|VM(t) − VN(t)|
(M − N)

1
2Φ(M)

� C.C(P,Φ),

where P
′
1, P

′
2, . . . is an independent copy of the sequence P1, P2, . . . defined on another

probability space (Ω
′
, B

′
, P

′
) , with E

′
as corresponding symbol of integration. �
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4. Uniform convergence of random Fourier series

Let C be the space of C -valued continuous functions on [0, 1] provided with the
supremum-norm ||f || = sup0�t�1 |f (t)| , f ∈ C . We investigate in this section the
uniform convergence of random Fourier series of type

n∑
k=1

Wk(ω)e2iπpkt n = 1, 2, . . . ,

where W = (Wk)∞k=1 is a sequence of independent, symmetric real random variables,
and {pk}k�1 is a non-decreasing sequence of non-negative integers (with p1 > 1 ). Our
aim is to indicate how Theorem 7 can be used to get a simple sufficient condition for
uniform convergence of random Fourier series. This condition is expressed by means
of the convergence of a series whose terms are depending on the sequence (pk) . When
the order of the size of this sequence is known, this condition can be easier to check
than the remarkable characterization of that property by Marcus and Pisier, in terms of
the so-called Dudley’s entropy integral. It is why it seemed us interesting to indicate
it here. We refer to [LT] Chapter 13 Theorem 13.6 and Corollary 13.9 concerning
Marcus-Pisier’s Theorem. We will prove the following result

THEOREM 10. Let W = (Wk)∞k=1 be a sequence of independent, symmetric real
random variables, defined on the probability space (Ω, A , P) , and let {pk}k�1 be a
non-decreasing sequence of non-negative integers (with p1 > 1 ). Suppose that there
exist integers 0 := n0 < n1 < n2 < . . . such that the following condition is satisfied:

(34)
∞∑
i=0

√
log(pni+1)E

[
ni+1∑

k=ni+1

|Wk|2
] 1

2

converges.

Then, the sequence of partial sums
∑n

k=1 Wk(ω)e2iπpkt n = 1, 2, . . . converges in C ,
for P -almost all ω .

Proof. Put Sn(ω , t) :=
∑n

k=1 Wk(ω)e2iπpkt and

R = sup
N<M

sup
0�t�1

∣∣∑M
k=N+1 Wke2iπpkt

∣∣(
log pM

∑M
k=N+1 W2

k

) 1
2

.

By Theorem 7, ER < ∞ , so that

∀i � 1, ‖Sni+1 − Sni‖C � R
√

log(pni+1)

[
ni+1∑

k=ni+1

|Wk|2
] 1

2

.

Moreover,

∀i � 1, sup
ni�n�ni+1

‖Sn − Sni‖C � R sup
ni�n�ni+1

√
log(pn)

[
n∑

k=ni+1

|Wk|2
] 1

2

= R
√

log(pni+1)

[
ni+1∑

k=ni+1

|Wk|2
] 1

2

.
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Thus, by means of the triangle inequality

∀r � 1, sup
u,v�r

‖Su − Sv‖C � R
∑
i�r

√
log(pni+1)

[
ni+1∑

k=ni+1

|Wk|2
] 1

2

.

This last inequality shows, when combined with the assumption made in (34) and
Fatou’s lemma, that

sup
u,v�r

‖Su − Sv‖C −→ 0

when r tends to infinity, almost surely. The result easily follows. �

5. Appendix

We give here as proposed in paragraph 2, an elementary proof of Theorem 4. We
identify in what follows E with N . We note by D the diameter of (E, d) . We can
assume D > 0 otherwise the result is obvious. Let for any integer n = 0, 1, 2, . . . ,
Sn ⊂ E be a sequence of centers of balls corresponding to a minimal covering of E of
size 2−nD , (S0 = i0 ). We note S = ∪∞

n=0Sn ; then S is a d -dense subset of E . Note
also formally by i 
→ ī , the map which sends i ∈ Sn to the smallest integer ī ∈ Sn−1

such that ||Xi − Xī|| < 2−n+1D . Finally, put

∀n � 0, Mn = sup
i∈Sn

|Xi − Xi0 | , Mn = sup
0�j�n

Mj.

We note that M0 = M0 = 0 . Then,

0 � Mn − Mn−1 � sup
i∈Sn

|Xi − Xī| .

Indeed, either Mn = Mn−1 , in which case there is nothing to prove; or Mn > Mn−1 ,
and thus Mn = Mn > Mn−1 . Let then is ∈ Sn be an indice such that Mn = |Xis − Xi0 | .
Then,

Mn − Mn−1 = |Xis − Xi0 | − Mn−1 � |Xis − Xi0 | − |Xīs − Xi0 | � |Xis − Xīs | .
Thus, by using (17), and observing that N(E, d, u) � 2 if 0 � u < D ,

‖Mn − Mn−1‖G � C
(
logN(E, d, 2−nD)

) 1
2 sup

i∈Sn

‖Xi − Xī‖G

(n � 1) � C2−(n−1)D
(
logN(E, d, 2−nD)

) 1
2 .

As Mn = Mn − M0 =
∑n

k=1 Mk − Mk−1 , it follows that

‖Mn‖G �
n∑

k=1

‖Mk − Mk−1‖G � C
n∑

k=1

2−k+1D
(
logN(E, d, 2−kD)

) 1
2
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� C
∞∑
k=1

2−k+1D
(
logN(E, d, 2−kD)

) 1
2 � C

∫ D

0
(logN(E, d, u))

1
2 du,

where C is a universal constant. When n tends to infinity Mn tends to supi∈S |Xi − Xi0 | .
By using the triangle inequality, we have thus shown∥∥∥∥sup

i,j∈S
|Xi − Xj|

∥∥∥∥
G

� C
∫ D

0
(logN(E, d, u))

1
2 du.

But assumption (19) shows X is d -continuous in probability. Since S is d -dense in
E , for each t ∈ E , we can exhibit a sequence (tn) of S such that: limn→∞ d(tn, t) = 0
and P{limn→∞ Xtn = Xt} = 1 .

It follows that P{supi,j∈S |Xi − Xj| = supi,j∈E |Xi − Xj|} = 1 . Hence the theorem.
�
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Mathématique (IRMA)
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