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Abstract. In this paper we introduce the concept of area functions for a given function. We then
apply these area functions to establish new analytic and geometric isoperimetric inequalities.

1. Introduction

The study of analytic and geometric inequalities is important in both analysis and
geometry. Moreover these inequalities are closely related to each other. For instance, by
using Fourier series and Wirtinger inequality, Hurwitz (cf. [3, pp. 97–98] [5,15]) showed
that the classical geometric isoperimetric inequality for piecewise smooth closed curves
in the plane is equivalent to an analytic isoperimetric inequality, that is, Wirtinger
inequality. More generally, for a Riemannian manifold, Federer and Fleming verified
that the classical isoperimetric inequality is equivalent to one type of Sobolev inequality
(cf. [2, p. 97] [14, p. 98]). It is well-known that these inequalities are also useful in
mathematical physics [11], statistics and other applied sciences.

For cyclic polygons in the plane, Tang [16] proved that analytic and geometric
inequalities are also equivalent. Let us discuss these inequalities below. The classical
isoperimetric inequality for polygons states that

L2(Pn) � 4dnA(Pn), dn = n tan(π/n) (1)

with equality if and only if Pn is regular [4,6,10], where Pn is an n-sided polygon in
the plane with length L(Pn) which enclosed a domain of area A(Pn) . It is well-known
that if we want to establish any isoperimetric inequality for polygons in the plane such
as inequality (1), it suffices to consider Pn cyclic [6,9], that is, it is inscribed in a circle.
For simplicity, we shall assume that the circle is of radius 1. For cyclic polygons the
inequalty (1) is equivalent to the following analytic isoperimetric inequality [16]

(
n∑

i=1

sin θi

)2

� dn(σ)
n∑

i=1

sin θi cos θi, dn(σ) = n tanσ, (2)
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where 0 < θi < π/2, 1 � i � n , and σ =
n∑

i=1

θi/n is a constant. Equality holds if and

only if θ1 = θ2 = · · · = θn = σ . Tang [16] also showed that(
n∑

i=1

cos θi

)2

� δn(σ)
n∑

i=1

sin θi cos θi, δn(σ) = n cotσ. (3)

Equality occurs in (3) if and only if θ1 = θ2 = · · · = θn = σ . There is a geomet-
ric isoperimetric inequality for polygons naturally associated with the inequality (3)
(See[16]).

The inequalities (2) and (3) are generalized further in [8,17,18]. For instances,
Zhang [17,18] proved that(

n∑
i=1

sin θi

)2

� dn(σ)
n∑

i=1

sin θi cos θi + (n sinσ −
n∑

i=1

sin θi)2. (4)

(
n∑

i=1

cosθi

)2

� δn(σ)
n∑

i=1

sin θi cosθi + (n cosσ −
n∑

i=1

cosθi)2. (5)

Equality is valid in (4) (resp.(5)) if and only if θ1 = θ2 = · · · = θn = σ .
The geometric counterparts for plane polygons corresponding to (4) and (5) can be
easily formulated. For example, inequality (4) is equivalent to

L2(Pn) � 4dnA(Pn) +
{

n sin
π
n
− L(Pn)

}2
. (6)

with equality holding if and only if Pn is regular. Notice that the term n sin π
n is equal

to the length of regular n - gon inscribed in the same unit circle as Pn .
Throughout this paper, let S : I −→ R+ = {x ∈ R : x > 0} be a C2 -differentiable

function with derivative S′ �= 0 , where I is an open interval of the real line R . Assume,
as we may, that I ⊂ R+ . Analytic isoperimetric inequalities should exist for many other
functions. In order to have an analytic isoperimetric inequality for a function S , we
must have a suitable area function defined by S . Thus, we defined an area function
An(θ) in [7] by

An(θ) =
n∑

i=1

S(θi)S′(θi) (7)

where θ = (θ1, θ2, · · · , θn), θi ∈ I . Since the function An(θ) involves the derivative of
S , we proved some anlytic isoperimetric inequalities in [7,18] for very special types of
functions which are solutions of particular second order ordinary differential equations.
In this paper, we shall avoid using the function S′ in the definition of area function.
Instead, we prove new area formulas for general polygons which generalize Macnab
formula (see section 2). These area formulas inspired us to define new area functions
Ar

S(α, β ; c), AS
r (α, β ; c), Ak,m

S (α, β ; c) and AS
k,m(α, β ; c) . In doing so, we are able to

establish new analytic isoperimetric inequalities involving these area functions. One of
our basic results is the following. For notations, see sections 3 and 4.
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THEOREM 1.1. For any c, 1 > c � 0 , we have

(i)

{
r∑

i=1

[S(αi) + S(βi)]

}2

� Ar
S(α, β ; c), αi, βi ∈ I.

(ii) Assume that k and m are positive integers, n = k + m, α � β (α, β ∈ I),
a = S(α) and b = S(β) . If S′ > 0 and na

2m � S(σ) � nb
2k , or S′ < 0 and

na
2m � S(σ) � nb

2k , where σ = (kα + mβ)/n , then

{kS(α) + mS(β)}2 � Ak,,m
S (α, β ; c) + {nS(σ)− [kS(α) + mS(β)]}2. (8)

The sign of equality holds in (i) (resp.(8)) if and only if α = β .

Theorem1.1 is very general. It holds for most functions S with non-zero derivative
S′ on an open interval I . When m = k , the hypotheses in (ii) simply states that
a � S(σ) � b , if S′ > 0 , and a � S(σ) � b if S′ < 0 . But these inequalities
always hold. Therefore, the inequality (8) is a best possible result. We like to point out
that our new analytic isoperimetric inequalities can be used to obtain new geometric
inequalities, especially for geodesic cyclic polygons in the spaces of constant curvatures
by applying the techniques used in [8].

2. Area formulas for polygons

Since ancient Greek, mathematicians and scientists are interested in finding rea-
sonable formulas for the area A(Pn) of the polygons Pn . For triangles and cyclic
quadrilaterals, there are famous Heron’s formula and Brahmagupta formula [1,6]. It
is natural to expect that similar formulas for A(Pn) might exists for cyclic polygons
Pn, n � 5 . This is false. Robbin [12] has proved that similar formulas for A(Pn), n � 7 ,
do not exist. Yet, we are still able to find some simple elegant formulas for A(Pn) . We
shall discuss such formulas in this section.

First, let us introduce some notations which we will use throughout this paper. Let
Pn be a n-sided convex cyclic polygon so that the origin O is inside the closure of
the domain bounded by the polygon. Let 2ai be the length of the i -th side of Pn and

θi be the half of the center angle subtended by the i -th side. Hence
n∑

i=1

θi = π , and

ai = sin θi, 0 < θi < π/2, 1 � i � n . Set ui = cos θi, 1 � i � n . There are two
special types of polygons:
(i) Pn(α, β), n = 2rm : There are m -sides of lengths 2ai and 2bi , where ai =

sinαi, bi = sin βi, (αi, βi are equal to some θj ’s above), 1 � i � r,α =
(αi, · · · ,αr) and β = (β1, · · · , βr) . We write Pn(α, β) simply as Pm,m if
r = 1 .

(ii) Pk,m(α, β), n = k +m : There are k -sides of length 2a, m -sides of length 2b, a =
sinα , and b = sin β . It becomes Pm,m if k = m .

In [9], Macnab proved the following beautiful formula.
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THEOREM 2.1.

A(Pm,m) =
m

sin(π/m)
{2ab + (a2 + b2) cos(π/m)}.

In order to extend this formula to the general polygons, we need a lemma.
For 0 < α, β ,α + β < π/2 , define

A(α, β) = sinα cosα + sinβ cos β .

For simplicity of statements, let us set α+β = 2η , a = sinα , b = sin β , c = cos 2η ,
u = cosα and v = cosβ .

LEMMA 2.2.
(i) A(α, β) = {2ab + (a2 + b2)c}/(sin2η).
(ii) A(α, β) = {2uv− (u2 + v2)c}/(sin 2η).

Proof. (i) We claim the followings:

cotα =
(

b
a

+ c

)
/(sin 2η). (9)

cotβ =
(a

b
+ c
)

/(sin 2η). (10)

Notice that

b
a

sinα = sinβ = sin(2η− α) = sin 2η cosα − cos2η sinα,

and so, (
b
a

+ c

)
sinα = cosα sin 2η.

This proves (9). The proof of (10) is identical. It follows from (9) and (10) that

A(α, β) = a2 cotα + b2 cotβ = {2ab + (a2 + b2)c}/(sin 2η).

(ii) The proof is similar. Instead of (9) and (10), we use

tanα =
( v

u
− c
)

/(sin 2η). (11)

tanβ =
(u

v
− c
)

/(sin 2η). (12)

REMARK. From (ii) we have the following inequality:

2 cosα cosβ > (cos2 α + cos2 β) cos(α + β). (13)
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THEOREM 2.3.
(i)

A(Pn(α, β)) = m
r∑

i=1

{2aibi + (a2
i + b2

i ) cos 2σ}/ sin 2σ

= m
r∑

i=1

{2uivi − (u2
i + v2

i cos 2σ}/ sin 2σ.

where 2σ = αi + βi = π/(mr) , ui = cosαi and vi = cos βi , 1 � i � r .

(ii)
A(Pk,m(α, β)) = {nab + (ka2 + mb2) cos 2η}/sin2η

= {nuv− (ku2 + mv2) cos 2η}/ sin 2η,

where 2η = α + β , u = cosα and v = cos β .

(iii)
A(Pn) =

1
n − 1

∑
i<j

{2aiaj + (a2
i + a2

j ) cos 2ηij}/ sin 2ηij

=
1

n − 1

∑
i<j

{2uiuj − (u2
i + u2

j ) cos 2ηij}/ sin 2ηij,

where 2ηij = θi + θj , i < j , 1 � i , j � n.

Proof. Observe that we have

A(Pn(α, β)) = m
r∑

i=1

A(αi, βi), (14)

A(Pk,m(α, β)) = ka2 cotα + mb2 cot β
= ku2 tanα + mv2 tanβ , (15)

and

A(Pn) =
1

n − 1

∑
i<j

A(θi, θj). (16)

Hence the theorem follows immediately from Lemma 2.2, (9), (10), (11) and (12).

3. Isoperimetric Inequalities

In this section we shall use the area formula of the polygon Pn(α, β) obtained in
section 2 as a model to introduce new area functions Ar

S(α, β ; c) and AS
r (α, β ; c) , and

to prove new analytic isoperimetric inequalities.
A direct calculation using Theorem 2.3(i), we get

dnA(Pn(α, β)) = m2

{
2r

1 + c

r∑
i=1

[2aibi + (a2
i + b2

i )c]

}
,



464 HSU-TUNG KU AND MEI-CHIN KU

and

δnA(Pn(α, β)) = m2

{
2r

1 − c

r∑
i=1

[2uivi − (u2
i + v2

i )c]

}
,

where 0 < c = cos 2σ < 1.

DEFINITION 3.1.. For α = (α1, · · · ,αr), β = (β1, · · · , βr) ∈ Ir satisfying αi +
βi = 2σ, 1 � i � r,σ a constant, define area functions Ar

S(α, β ; c) and AS
r (α, β ; c), c �

0, as follows:

Ar
S(α, β ; c) =

2r
1 − c

r∑
i=1

{2aibi − (a2
i + b2

i )c},

if 2aibi > (a2
i + b2

i )c, 1 � i � r, 0 � c < 1, and

AS
r (α, β ; c) =

2r
1 + c

r∑
i=1

{2aibi + (a2
i + b2

i )c},

where ai = S(αi) and bi = S(βi), 1 � i � r.
In order to simplify the statements, we introduce the functions

BS(α, β) = 2r
r∑

i=1

(a2
i + b2

i ) −
{

r∑
i=1

(ai + bi)

}2

,

and

DS(α, β) =

{
r∑

i=1

(ai + bi)

}2

− 4r
r∑

i=1

aibi.

A simple calculation shows that

BS(α, β) =
r∑

i=1

(ai −bi)2 +
r∑

i,j=1
i<j

{(ai−aj)2 +(aj−bi)2 +(ai −bj)2 +(bi−bj)2}. (17)

Hence
BS(α, β) � 0, (18)

with equality if and only if a1 = a2 = · · · = ar = b1 = · · · = br.

THEOREM 3.2.
(i) For any c , 1 > c � 0,{

r∑
i=1

(ai + bi)

}2

� Ar
S(α, β ; c). (19)

(ii) Let c � 0 and 2r
r∑

i=1

(ai − bi)2 � (1 + c)BS(α, β) . Then

{
r∑

i=1

(ai + bi)

}2

� AS
r (α, β ; c), (20)
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and if αi �= βi for some i, c < 1 .
Equality holds in (19) (resp.(20) ) if and only if a1 = · · · = ar = b1 = · · · = br .

Proof. First, we prove

DS(α, β) =
r∑

i=1

(ai − bi)2 + 2
∑
i<j

{(ai − bj)(aj − bi) + (ai − aj)(bj − bi)}. (21)

Since

4(r − 1)
r∑

i=1

aibi = 2
∑
i<j

(2aibi + 2ajbj),

DS(α, β) =
r∑

i=1

(ai − bi)2 − 4(r − 1)
r∑

i=1

aibi + 2
∑
i<j

(aiaj + aibj + ajbi + bibj)

=
r∑

i=1

(ai − bi)2 + 2
∑
i<j

(aiaj + aibj + ajbi + bibj − 2aibi − 2ajbj))

=
r∑

i=1

(ai − bi)2 + 2
∑
i<j

{(ai − bj)(aj − bi) + (ai − aj)(bj − bi)}

as desired. Now we proceed to show that

DS(α, β) � 0, (22)

with equality holding if and only if a1 = · · · = ar = b1 = · · · = br . Without loss
of generality, we may assume that αi � βi for 1 � i � r , and by rearranging the
subscripts if necessary, assuming α1 � α2 � · · · � αr . Since αi + βi = 2σ for
1 � i � r ,

α1 � α2 � · · · � αr � βr � βr−1 � · · · � β1.

This will imply that

a1 � a2 � · · · � αr � br � br−1 � · · · � b1.

if S′ > 0 , and if S′ < 0 ,

a1 � a2 � · · · � ar � br � br−1 � · · · � b1,

Therefore, if S′ �= 0 , and i < j , we have

(ai − bj)(aj − bi) + (ai − aj)(bj − bi) � 0,
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which proves (22). From (18) and (22){
r∑

i=1

(ai + bi)

}2

− Ar
S(α, β ; c)

=
1

1 − c

⎧⎨
⎩
[

r∑
i=1

(ai + bi)

]2

− 4r
r∑

i=1

aibi

+

⎛
⎝2r

r∑
i=1

(a2
i + b2

i ) −
[

r∑
i=1

(ai + bi)

]2
⎞
⎠ c

⎫⎬
⎭

=
1

1 − c
{DS(α, β) + BS(α, β)c} � 0.

This completes the proof of (19).
To prove the inequality (20), let us observe that the hypothesis

2r
r∑

i=1

(ai − bi)2 � (1 + c)BS(α, β)

is equivalent to the following inequality

DS(α, β) − BS(α, β)c � 0, (23)

because DS(α, β) + BS(α, β) = 2r
r∑

i=1

(ai − bi)2 . Therefore,

{
r∑

i=1

(ai + bi)

}2

− AS
r (α, β ; c) =

1
1 + c

{DS(α, β) − BS(α, β)c} � 0,

which concludes the proof of (20). From (17) and (21)

BS(α, β) � DS(α, β). (24)

If αi �= βi for some i , BS(α, β) > 0 by (18) which leads to c < 1 by (23) and (24),
thereby proving the theorem.

In (19), if S is the cosine function, I = (0, π/2) and c = cos 2σ, then Ar
S(α, β ; c)

is well-defined by (13), and the inequality (19) is exactly the inequality of (3) with
(θ1, θ2, · · · , θn) = (α1, β1, · · · ,αr, βr), n = 2r and αi + βi = 2σ, 1 � i � k .

4. Quadratic Jensen’s inequalities

If the function S is convex (resp. concave), Jensen’s inequality states that

2rS(σ) −
r∑

i=1

(ai + bi) � 0, (resp. 2rS(σ) −
r∑

i=1

(ai + bi) � 0) (25)
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with equality holding if and only if a1 = · · · = ar = b1 = · · · = br .
Thus, the analytic isoperimetric inequalities proved in this section may be regarded

as quadratic Jensen’s inequalities because they contain the terms defined by Jensen’s

inequality such as

{
2rS(σ) −

r∑
i=1

(ai + bi)
}2

in (26) and (27).

Since αi + βi = 2σ , we may assume that αi � βi , 1 � i � r .

THEOREM 4.1. Let 0 � c < 1 .
(i) Let 1 � i � r . Suppose αi � βi and the function S satisfying one of the

following 4 conditions.
(a) S′′ < 0 , S′ > 0 and S′(ai) � cS′(βi) ;
(b) S′′ < 0 , S′ < 0 and S′(βi) � cS′(αi) ;
(c) S′′ > 0 , S′ > 0 and S′(βi) � cS′(αi) ;
(d) S′′ > 0 , S′ < 0 and S′(αi) � cS′(βi) .

Then we have quadratic Jensen’s inequality{
r∑

i=1

(ai + bi)

}2

� AS
r (α, β ; c) +

{
2rS(σ) −

r∑
i=1

(ai + bi)

}2

. (26)

We have analytic isoperimetric inequality{
r∑

i=1

(ai + bi)

}2

� Ar
S(α, β ; c) +

{
2rS(σ) −

r∑
i=1

(ai + bi)

}2

. (27)

Equality is valid in (26) (resp. (27) ) if and only if a1 = · · · = ar = bi = · · · = br .

Proof. (i) For 1 � i � r , we define the function

ΦS(αi, βi; c) = 2{ai − S(σ)}{S(σ)− bi} − {[ai − S(σ)]2 + [S(σ) − bi]2}c.
We claim that

ΦS(αi, βi; c) � 0, 1 � i � r (28)

with equality if and only if αi = βi = σ . It is clear that equality is true if αi = βi .
It remains to verify that ΦS(αi, βi; c) > 0 if αi > βi . We shall show that the
function ΦS(αi, βi; c) is strictly Schur convex for each i = 1, 2, · · · , r . This means
that (cf. [13, p. 259], [18, p. 462], [19])

(αi − βi)
(

∂

∂αi
ΦS − ∂

∂βi
ΦS

)
> 0, f or αi > βi. (29)

It is well-known [13] (see also [18, p.426]) that if Φ(αi, βi; c) is strictly Schur convex,

ΦS(αi, βi; c) > ΦS((αi, βi)
(

1/2 1/2
1/2 1/2

)
; c) (30)

But

ΦS((αi, βi)
(

1/2 1/2
1/2 1/2

)
; c) = ΦS(σ,σ; c) = 0.
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This will imply that ΦS(αi, βi; c) > 0 by (30). Thus, to complete the proof of (30), we
need to verify (29). However

∂

∂αi
ΦS(αi, βi; c) = 2S′(αi){(1 + c)S(σ) − aic − bi}.

∂

∂βi
ΦS(αi, βi; c) = 2S′(βi){(1 + c)S(σ) − bic − ai},

hence

(αi − βi)
(

∂

∂αi
ΦS − ∂

∂βi
ΦS

)
= 2(αi − βi) {S′(αi)[S(σ) − bi] + S′(βi)[ai − S(σ)]

−c[S′(αi)(ai − S(σ)) + S′(βi)(S(σ) − bi)]} .

Since the proof of (29) for four cases are similar, we shall only prove the case (a).
From S′′ < 0 and αi > βi , we get S′(αi) < S′(βi). As S′ > 0 and αi > σ > βi , we
have ai − S(σ) > 0 and S(σ) − bi > 0 . Therefore

(αi − βi)
(

∂

∂αi
ΦS − ∂

∂βi
ΦS

)
> 2(αi − βi){S′(αi)([S(σ) − bi] + [ai − S(σ)])

− cS′(βi)([ai − S(σ)] + [S(σ) − bi])}
= 2(αi − βi)(ai − bi){S′(αi) − cS′(βi)} � 0

by hypotheses, which proves (29), whence, (28). Now we have{
r∑

i=1

(ai + bi)

}2

− AS
r (α, β ; c) −

{
2rS(σ)−

r∑
i=1

(ai + bi)

}2

=
2r

1 + c

r∑
i=1

ΦS(αi, βi; c). (31)

This proves (26) by using (28).

(ii) For 1 � i � r , we define another function

ΦS(αi, βi; c) = 2{ai − S(σ)}{S(σ)− bi} + {[ai − S(σ)]2 + [S(σ) − b]2}c.
Since S′ �= 0, {ai − S(σ)}{S(σ)− bi} � 0, 1 � i � r . Hence ΦS(αi, βi; c) � 0 with
equality holding if and only if αi = βi . Thus,

{
r∑

i=1

(ai + bi)

}2

− Ar
S(α, β ; c) −

{
2rS(σ)−

r∑
i=1

(ai + bi)

}2

=
2r

1 − c

r∑
i=1

ΦS(αi, βi; c) � 0. (32)

This completes the proof of (27).
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COROLLARY 4.2.

L2(Pn(α, β)) − 4dnA(Pn(α, β)) −
{

2n sin
π
n
− L(Pn(α, β)

}2
,

− 4mn

1 + cos 2π
n

r∑
i=1

ΦS

(
αi, βi; cos

2π
n

)
� 0, (33)

where
r∑

i=1

ΦS
(
αi, βi; cos

2π
n

)
� 0 . With equality holds in (33) if and only if Pn(α, β)

is regular.

Proof. We can easily check that

sinαi � c sinβi, for αi � βi, c = cos 2σ and σ = π/n.

Applying (31) to sine function and I = (0, π/2) we get{
r∑

i=1

(sinαi + sinβi)

}2

=
2r

1 + c

r∑
i=1

A(αi, βi)

+

{
2r sinσ −

r∑
i=1

(sinαi + sinβi)

}2

+
2r

1 + cos 2σ

r∑
i=1

ΦS(αi, βi; cos 2σ), (34)

which is equivalent to (33).
The geometric isoperimetric inequality (33) is much shaper than (6) for polygon

Pn(α, β) . If we apply (32) to cosine function we obtain inequality.{
r∑

i=1

(cosαi + cosβi)

}2

− 2r
1 − c

r∑
i=1

A(αi, βi)

−
{

2r cosσ −
r∑

i=1

(cosαi + cosβi)

}2

− 2r
1 − cos 2σ

r∑
i=1

ΦS(αi, βi; cos 2σ) � 0, (35)

where
r∑

i=1

ΦS(αi, βi; cos 2σ) � 0 , with equality holding in (35) if and only if αi =

βi = σ , 1 � i � r .

Next, we like to introduce area functions which model after the area of Pk,m(α, β) .
Simple calculations, using Theorem 2.3 (ii), lead to

δnA(Pk,m(α, β)) = (cotσ tanη)
{

n
1 − c

[nuv− (ku2 + mv2)c]
}

, (36)
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dnA(Pk,m(α, β)) = (tanσ cotη)
{

n
1 + c

[nab + (ka2 + mb2)c]
}

, (37)

where c = cos 2η, and σ = (kα + mβ)/n = π/n. Hence we have

nuv > (ku2 + mv2)c, (38)

δnA(Pk,m(α, β)) � n
1 − c

{
nuv− (ku2 + mv2)c

}
, if σ � η; (39)

dnA(Pk,m(α, β)) � n
1 + c

{
nab + (ka2 + mb2)c

}
, if σ � η. (40)

The equalities (36), (37) and inequalities (39) and (40) motivate us to define

DEFINITION 4.3. Let k, m > 0 be integers, n = k + m , and c > 0 . For α, β ∈ I,
define area functions Ak,m

S (α, β ; c) and AS
k,m(α, β ; c) by

Ak,m
S (α, β , c) =

n
1 − c

{
nab − (ka2 + mb2)c

}
,

if 0 � c < 1 and nab > (ka2 + mb2)c , and

AS
k,m(α, β ; c) =

n
1 + c

{
nab + (ka2 + mb2)c

}
.

We shall assume that σ = (kα + mβ)/n is a constant, and α � β . Let us recall that
if S is concave (resp. convex), Jensen’s inequality state that

nS(σ) � ka + mb (resp. nS(σ) � ka + mb),

with equality if and and only if a = β = σ .

THEOREM 4.4. Let α � β . Suppose that we have S′ > 0 and na
2m � S(σ) � nb

2k ,
or S′ < 0 and na

2m � S(σ) � nb
2k . Then

(ka + mb)2 � Ak,m
S (α, β ; c) + {nS(σ) − (ka + mb)}2 . (41)

Equality occurs if and only if a = b = S(σ) .

Proof. Here we consider only the case of S′ > 0 . The case S′ < 0 can be easily
modified. Notice that

(ka + mb)2 − Ak,m
S (α, β ; c) − {nS(σ)− (ka + mb)}2

=
n

1 − c

{
2(ka + mb)S(σ) − nab − nS2(σ) + c[k(a − S(σ))2 + m(S(σ) − b)2]

}
.

Since β = (nσ − kα)/m , define the function F(α) by

F(α) = 2(ka + mb)S(σ) − nab − nS2(σ).

Then F(σ) = 0 . As S′ > 0 , and na
2m � S(σ) � nb

2k , we have

F′(α) = S′(α) {2kS(σ)− nb} + kS′(β)
{na

m
− 2S(σ)

}
� 0,

and so, F(α) is an increasing function of α . Therefore F(α) � F(σ) = 0 , thereby
proving (41).

REMARK. The hypothesis of the theorem is true if (k − m)(a − b) � 0 .
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THEOREM 4.5. Suppose that α � β , and S satisfies one of the following 4
conditions:

(i) S′ > 0 and na
2m � S(σ) � nb

2k ; and if S′′ < 0 ,

S′(α)(ka − mb) � 2km
n

(a − b) {cS′(β)} ,

and if S′′ > 0 ,

S′(β)(ka − mb) � 2km
n

(a − b) {cS′(α)} .

(ii) S′ < 0 and na
2m � S(σ) � nb

2k ; and if S′′ < 0 ,

S′(β)(mb − ka) � 2km
n

(b − a) {cS′(α)} ,

and if S′′ > 0

S′(α)(mb − ka) � 2km
n

(b − a){cS′(β)}.
Then we have quadratic Jensen’s inequality.

(ka + mb)2 � AS
k,m(α, β ; c) + {nS(σ) − (ka + mb)}2

. (42)

The sign of equality holds if and only if a = b = S(σ) .

Proof. Again, we shall only give the proof under the hypotheses S′′ < 0 and
S′ > 0 . Define the function

G(α) = (ka + mb)2 − AS
k,m(α, β ; c) − {nS(σ) − (ka + mb)}2 .

A direct calculations give G(σ) = 0 and

G(α) = 2n(ka + mb)S(σ) − n2S2(σ) − n
1 + c

{
nab + (ka2 + mb2)c

}
.

So we may assume α > β , hence a > S(σ) > b, and 0 < S′(α) < S′(β). Thus
0 > −S′(α) > −S′(β) . Differentiating,

G′(α) =
n

1 + c

{
S′(α)[2kS(σ) − nb] + S′(β)

[
kna
m

− 2kS(σ)
]

+c[−S′(α)(2ka − 2kS(σ)) − S′(β)(2kS(σ) − 2kb)]}
>

n
1 + c

{
S′(α)[2kS(σ) − nb] + S′(α)

[
kna
m

− 2kS(σ)
]

+c[−S′(β)(2k)(a − S(σ)) − S′(β)(2k)(S(σ) − b)]}
=

n
1 + c

{
S′(α)

n
m

(ka − mb) − 2kS′(β)(a − b)c
}

� 0

by hypotheses. Thus, G(α) > G(σ) = 0 , and concludes the proof of (42).
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It is clear that we can apply Theorems 4.4 and 4.5 to some polygons of type
Pk,m(α, β) to obtain improved geometric isoperimetric inequalities. In the case of
k = m , this gives another proof of Theorem 4.1 for r = 1 . We also can obtain reverse
inequality. For instance, by a modification of the proof of (42) we can show that

(ka + mb)2 � AS
k,m(α, β ; c) + {nS(σ)− (ka + mb)}2 (43)

with equality holding if and only if α = β = σ under the hypotheses: S′′ < 0, S′ >
0, na

2m � S(σ) � nb
2k and

S′(β)(ka − mb) � 2km
n

(a − b){cS′(α)}.

To conclude this paper, let us remark that we can use other types of polygons, or
even arbitrary polygon Pn as models to obtain various forms of area functions, and to
establish some other types of analytic and geometric isoperimetric inequalities.
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