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ON SOME INTEGRAL INEQUALITIES OF OPIAL TYPE

BRONISŁAW FLORKIEWICZ

Abstract. Integral inequalities of the form∫
I
s|h|p|h′|dt �

∫
I
r|h′|p+1dt, h ∈ H,

are derived, where p > 0, I = (α,β),−∞ � α < β �∞ , r and s are given real functions of
the variable t , H is the class of functions h , which are absolutely continuous on I and satisfy
the integral condition

∫
I r|h′|p+1dt < ∞ , as well as one of the following boundary conditions:

h(α) = 0 or h(β) = 0 .
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Math. J. 47(1995), 567–593.

[2] R. P. AGARWAL AND P. Y. H. PANG, Opial Inequalities with Applications in Differential and Difference
Equations, Kluwer, Dordrecht, 1995.

[3] R. P. AGARWAL AND P. Y. H. PANG, Remarks on the generalizations of Opial’s inequality, J. Math. Anal.
Appl. 190 (1995), 559–577.

[4] P. R. BEESACK, Integral inequalities of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470–475.
[5] P. R. Beesack, Integral inequalities involving a function and its derivative, Amer. Math. Monthly 78

(1971), 705–741.
[6] P. R. BEESACK AND K. M. DAS, Extensions of Opial’s inequality, Pacific J. Math. 26 (1968), 215–232.
[7] S. BLOOM, First and second order Opial inequalities, Studia Math. 126 (1997), 27–50.
[8] D. W. BOYD, Best constants in a class of integral inequalities, Pacific J. Math. 30 (1969), 367–383.
[9] D. W. BOYD AND J. S. W. WONG, An extension of Opial’s inequality, J. Math. Anal. Appl. 19 (1967),

100–102.
[10] J. CALVERT, Some generalizations of Opial’s inequality, Proc. Amer. Math. Soc. 18 (1967), 72–75.
[11] B. FLORKIEWICZ, Some integral inequalities of Hardy type, Colloq. Math. 43 (1980), 321–330.
[12] B. FLORKIEWICZ AND M. KUCHTA, Some quadratic integral inequalities the first order, Colloq. Math.

75 (1998), 7–18.
[13] B. FLORKIEWICZ AND A. RYBARSKI, Some integral inequalities of Sturm-Liouville type, Colloq. Math.

36 (1976), 127–141.
[14] M. KUCHTA, Some quadratic integral inequalities of Opial type, Ann. Polon. Math. 63 (1996), 103–113.
[15] J.-D. LI, Opial-type integral inequalities involving several higher order derivatives, J. Math. Anal. Appl.

167 (1992), 98–110.
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