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ON SOME INTEGRAL INEQUALITIES OF OPIAL TYPE

BRONISEAW FLORKIEWICZ

Abstract. Integral inequalities of the form
/s|h\1’\h’|dt < /r\h’|1’“dt, he H,
1 1

are derived, where p > 0, I = (o, ), —00o < o < f < 00, r and s are given real functions of
the variable 7, H is the class of functions /4, which are absolutely continuous on I and satisfy
the integral condition fI r|i! P+1dt < 0o, as well as one of the following boundary conditions:
h(oe) =0 or h(B) =0.
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