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Abstract. Integral inequalities of the form∫
I
s|h|p|h′|dt �

∫
I
r|h′|p+1dt, h ∈ H,

are derived, where p > 0, I = (α,β),−∞ � α < β �∞ , r and s are given real functions of
the variable t , H is the class of functions h , which are absolutely continuous on I and satisfy
the integral condition

∫
I r|h′|p+1dt < ∞ , as well as one of the following boundary conditions:

h(α) = 0 or h(β) = 0 .

In [13], [11], [14] and [12] a uniform method of obtaining and investigating various
types of integral inequalities involving a function and its first derivative are introduced.
In [13] and [11] Hardy type integral inequalities of the form∫

I
s|h|p dt �

∫
I
r|h′|p dt, h ∈ H (1)

(p = 2 [13] and p > 1 [11]) are obtained. In [14] quadratic Opial type integral
inequalities of the form ∫

I
s|hh′| dt �

∫
I
rh′2 dt, h ∈ H (2)

are derived and in [12] quadratic integral inequalities of the general form∫
I
(rh′2 + 2shh′ + uh2) dt � 0, h ∈ H (3)

are derived. Here I = (α, β) , −∞ � α < β � ∞ , r , s and u are real functions and
H is a class of absolutely continuous functions on I . The method of obtaining these
integral inequalities as follows: given any weight function r and an auxiliary function ϕ
the weight function s for the inequalities (1) and (2) is selected or the weight functions
s and u for the inequality (3) are selected, such that a suitable differential identity is
satisfied. In the case of the inequality (1), the weight function s is determined directly.
In the cases of the inequalities (2) and (3), the weight function s or the weight functions
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s and u satisfy appropriate differential inequalities. Next, for such determined weight
functions, the calculated differential identity is then used to construct as wide a class H
as possible of functions h , for which the integral inequalities considered hold.

In this paper, we will generalize the above method of obtaining integral inequalities
in the case of Opial type integral inequalities of the form∫

I
s|h|p|h′| dt �

∫
I
r|h′|p+1 dt, h ∈ H, (4)

where p > 0 . The method allows us, for a given weight function r and an auxiliary
function ϕ , to determine the weight function s as the solution of the appropriate
differential equation. Then we can directly calculate the auxiliary function v and use
these functions to construct the class H of functions h , for which the inequality (4)
holds.

Integral inequalities of the form (4) have also been obtained by other methods (see
notably Boyd and Wong [9] and Beesack [5], for an extensive bibliography see the books
of Mitrinović, Pečarić and Fink [16] and Agarwal and Pang [2]). Numerous authors
have studied generalizations and extensions of such integral inequalities, notably Shum
[20], Sinnamon [21], Agarwal and Pang [3], Bloom [7]. These inequalities are obtained
as particular cases of Opial-type integral inequalities involving higher order derivatives
(see Li [15], Agarwal [1], Pachpatte [18], Bloom [7]).

Let p be any positive real number and let I = (α, β),−∞ � α < β � ∞ , be an
arbitrary open interval. We denote the class of absolutely continuous real functions on
I by AC(I) . Let A denote the set of the pairs of functions (r,ϕ) , such that r ∈ AC(I)
and ϕ ∈ AC(I) , r > 0 and ϕ > 0 on I and r|ϕ′|psgnϕ′ ∈ AC(I) .

Let (r,ϕ) ∈ A and let s ∈ AC(I) be an arbitrary function satisfying the differ-
ential equation

ϕps′ − (p + 1)( r|ϕ′|psgnϕ′ )′ = 0 (5)

almost everywhere on I . We also assume

v = r|ϕ′|psgnϕ′ ϕ−p − (p + 1)−1s (6)

on I . These assumptions imply that v ∈ AC(I) , since ϕ−p ∈ AC(I)
(ϕ ∈ AC(I) , ϕ > 0 on I and p > 0 ).

Let Ĥ denote the class of functions h ∈ AC(I) such that h � 0 on I and∫
I
r|h′|p+1 dt < ∞, (7)

∫
I
shph′ dt > −∞, (8)

lim inf
t→α

vhp+1 < ∞, lim sup
t→β

vhp+1 > −∞. (9)
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THEOREM 1. Let (r,ϕ) ∈ A .
For every function h ∈ Ĥ both limits in (9) are proper and finite, and∫

I
shph′ dt + lim

t→β
vhp+1 − lim

t→α
vhp+1 �

∫
I
r|h′|p+1 dt. (10)

If h �≡ 0 , then equality holds in (10), if and only if ϕ ∈ Ĥ and h = cϕ , where
c = const > 0 .

Proof. Let (r,ϕ) ∈ A and let h ∈ AC(I) and h � 0 on I . We assume

g = r|h′|p+1 + ( r|ϕ′|psgnϕ′ )′ϕ−php+1 − ( r|ϕ′|psgnϕ′ ϕ−php+1)′ (11)

almost everywhere on I . It follows from Lemma 1 in [11] that g � 0 a. e. on I . g = 0
a. e. on I , if and only if h = cϕ , where c = const � 0 . In view of (5) we have

( r|ϕ′|psgnϕ′ )′ϕ−php+1 = (p + 1)−1s′hp+1

= [(p + 1)−1shp+1]′ − shph′ (12)

a. e. on I . By virtue of (6) and (12) and from the equality (11) we get the following
identity

r|h′|p+1 = shph′ + (vhp+1)′ + g , (13)

which is valid almost everywhere on I .
Now let h ∈ Ĥ . The condition (7) implies that the function r|h′|p+1 is summable

on I since r|h′|p+1 � 0 on I . It follows from our assumptions, that the functions shph′

and (vhp+1)′ are summable on each compact interval [a, b] ⊂ I . Thus by (13) we get
the summability of the function g on [a, b] ⊂ I and we obtain the equality∫ b

a
r|h′|p+1

dt =
∫ b

a
shph′ dt + vhp+1 |ba +

∫ b

a
g dt. (14)

for arbitrary α < a < b < β . In view of (9) there exist two sequences (an) and (bn) ,
such that α < an < bn < β , an → α , bn → β and

lim
n→∞ vhp+1 |an < ∞ , lim

n→∞ (−vhp+1) |bn < ∞.

Thus there is a constant C , such that

(−vhp+1) |bn
an

� C < ∞.

By virtue of the condition g � 0 a. e. on I and from the equality (14) we infer that∫ bn

an

shph′ dt �
∫ bn

an

r|h′|p+1
dt + C �

∫
I
r|h′|p+1

dt + C

and from this letting n → ∞ , we obtain∫
I
shph′ dt �

∫
I
r|h′|p+1

dt + C < ∞.
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Using this estimate and the condition (8), we conclude that the function shp+1h′ is
summable on I . Next, in a similar way, using (14) and the summability of the functions
r|h′|p+1 and shph′ on I , we prove that the function g is summable on I . Thus all the
integrals in the equality (14) have finite limits as a → α or b → β , and hence both of
the limits in (9) are proper and finite. Now by (14), as a → α and b → β , we obtain
the equality ∫

I
r|h′|p+1dt =

∫
I
shph′dt + lim

t→β
vhp+1 − lim

t→α
vhp+1 +

∫
I
gdt, (15)

whence the inequality (10) follows, since g � 0 a. e. on I .
If the inequality (10) becomes an equality for a non-vanishing function h ∈ Ĥ ,

then by (15) we have
∫

I gdt = 0 . As g � 0 a. e. on I we obtain g = 0 a. e. on
I . In view of Lemma 1 in [11], g = 0 a. e. on I , if and only if h = cϕ , where
c = const � 0 . Thus ϕ ∈ Ĥ and h = cϕ with c > 0 .

Now let ϕ ∈ Ĥ and h = cϕ , where c = const > 0 . That implies g = 0 a. e.
on I so that

∫
I gdt = 0 and, in view of (15), the inequality (10) becomes an equality

which completes the proof.

Let h ∈ AC(I) and
∫

I r|h′|p+1 dt < ∞. Using Hölder’s inequality we obtain the
estimate

|h(b) − h(a)| �
∫ b

a
|h′| dt �

(∫ b

a
r−1/p dt

)p/(p+1)(∫ b

a
r|h′|p+1

dt

)1/(p+1)

, (16)

where α < a < b < β . If
∫ t
α r−1/p dτ < ∞ for some t ∈ I , then the Cauchy

condition for the existence of the limit yields the existence of a proper and finite limit

limt→α h ≡ h(α) . Furthermore, if h(α) = 0 and v(t)
(∫ t

α r−1/p dτ
)p

= O(1) as

t → α , where v is an arbitrary measurable function on I , then from (16) as a → α
and with b = t we get the estimate

0 � |v|h|p+1| �
∣∣∣∣v(t)

(∫ t

α
r−1/p dτ

)p∣∣∣∣
∫ t

α
r|h′|p+1 dτ

and hence
lim
t→α

v|h|p+1 = 0. (17)

Similarly, if
∫ β

t r−1/p dτ < ∞ , then there exists a proper and finite limit limt→β h ≡
h(β) and moreover, if h(β) = 0 and v(t)

(∫ β
t r−1/p dτ

)p
= O(1) as t → β , then

limt→β v|h|p+1 = 0.
From (6) and (5) we have

v′ = −pr|ϕ′|p+1ϕ−(p+1) � 0 (18)

a. e. on I . Therefore v is a nonincreasing function on I . Hence there exist proper
limits limt→α v ≡ v(α) and limt→β v ≡ v(β) . Moreover v(α) > −∞ , v(β) < ∞
and v(α) � v � v(β) on I .
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We will denote by Uα (resp. Uβ ) some right-hand (resp. left-hand) neighbour-
hood of the point α (resp. β ).

LEMMA 1. (i) If sv � 0 on Uα and v(α) �= 0 , then
∫ t
α r−1/p dτ < ∞ for some

t ∈ I . Moreover, if v(α) = ∞ , then v(t)
(∫ t

α r−1/p dτ
)p

= O(1) as t → α .

(ii) If sv � 0 on Uβ and v(β) �= 0 , then
∫ β

t r−1/p dτ < ∞ for some t ∈ I .

Moreover, if v(β) = −∞ , then v(t)
(∫ β

t r−1/p dτ
)p

= O(1) as t → β .

Proof. We prove the lemma only for the point α . The proof for β is analogous.
Let v(α) �= 0 and consider some right-hand neighbourhood U ⊂ Uα of α , such

that v �= 0 on U .
Let v > 0 on U . Then s � 0 on U and by (6) we obtain v � r|ϕ′|psgnϕ′ ϕ−p

on U . Hence ϕ′ > 0 on U , because r > 0 and ϕ > 0 on I . Thus we have

v � r|ϕ′|pϕ−p (19)

on U . By virtue of (18) and (19) we get

v′ � −pr−1/pv(p+1)/p

a. e. on U . Thus r−1/p � −p−1v−(p+1)/pv′ a. e. on U and we obtain the estimate∫ t

a
r−1/p dτ � −p−1

∫ t

a
v−(p+1)/pv′ dτ = [v(t)]−1/p − [v(a)]−1/p < [v(t)]−1/p

for α < a < t < β on U . Hence as a → α we obtain∫ t

α
r−1/p dτ � [v(t)]−1/p < ∞. (20)

If v(α) = ∞ , then from (20) we get

0 < v(t)
(∫ t

α
r−1/p dτ

)p

� 1

for t ∈ U and thus v(t)
(∫ t

α r−1/p dτ
)p

= O(1) as t → α .

Let v < 0 on U . Then s � 0 on U and by (6) we obtain v � r|ϕ′|psgnϕ′ ϕ−p

on U . Hence ϕ′ < 0 on U and

v � −r|ϕ′|pϕ−p (21)

on U . Similarly, by virtue of (18) and (21), we get the estimate∫ t

a
r−1/p dτ � −p−1

∫ t

a
|v|−(p+1)/pv′ dτ = |v(a)|−1/p − |v(t)|−1/p < [v(a)]−1/p

for α < a < t < β on U . Letting a → α shows that∫ t

α
r−1/p dτ � [v(α)]−1/p < ∞.
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We denote by H0 (resp. H0 ) the class of functions h ∈ AC(I) satisfying the
integral condition (7) and the limit condition

lim inf
t→α

|h| = 0 (resp. lim inf
t→β

|h| = 0). (22)

In the cases considered hereafter, the condition (22) is equivalent to

h(α) = 0 (resp. h(β) = 0). (23)

THEOREM 2. Let (r,ϕ) ∈ A .
(i) If s � 0 on I and v(β) � 0 then∫

I
s|h|p|h′| dt + lim

t→β
v|h|p+1 �

∫
I
r|h′|p+1 dt (24)

for every function h ∈ H0 .
Moreover, if v(β) > 0 , then there exists a finite limit value h(β) and (24) takes

the form ∫
I
s|h|p|h′| dt + v(β)|h(β)|p+1 �

∫
I
r|h′|p+1 dt (25)

If s > 0 on I and h �≡ 0 , then equality holds in (24), if and only if ϕ ∈ H0 and
h = cϕ , where c = const �= 0 .

(ii) If s � 0 on I and v(α) � 0 , then∫
I
|s||h|p|h′| dt − lim

t→α
v|h|p+1 �

∫
I
r|h′|p+1 dt (26)

for every function h ∈ H0 .
Moreover, if v(α) < 0 , then there exists a finite limit value h(α) and (26) takes

the form ∫
I
|s||h|p|h′| dt − v(α)|h(α)|p+1 �

∫
I
r|h′|p+1 dt. (27)

If s < 0 on I and h �≡ 0 , then equality holds in (26), if and only if ϕ ∈ H0 and
h = cϕ , where c = const �= 0 .

Proof. (i) Let v(β) � 0 and s � 0 on I . Then v � 0 on I and lim supt→β v|h|p+1 �
0 for every h ∈ AC(I) . If v(α) = 0 , then v ≡ 0 and s ≡ 0 on I and it is trivial
to show (24) holds. If v(α) > 0 , then by Lemma 1 (i) we have

∫ t
α r−1/p dτ < ∞

for some t ∈ I and v(t)
(∫ t

α r−1/p dτ
)p

= O(1) as t → α , since sv � 0 on I and

v(α) > 0 . Thus, if h ∈ H0 , then there exists a finite limit value h(α) and for every
h ∈ H0 we have limt→α v|h|p+1 = 0 .

Furthermore, let h+ ∈ H0 be such that h+ � 0 on I and h′+ � 0 a. e. on I .
Then

∫
shp

+h′+ � 0 and so the condition (8) is satisfied. It follows from previous
cosiderations that limt→α vhp+1

+ = 0 and lim supt→β vhp+1
+ � 0 and so h+ satisfies

(9). Thus h+ ∈ Ĥ and by Theorem 1 we get∫
I
shp

+h′+ dt + lim
t→β

vhp+1
+ �

∫
I
rh′+

p+1
dt. (28)
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Now, let h ∈ H0 and set h+ =
∫ t
α |h′| dτ on I . Then h+ ∈ AC(I) , h+(α) = 0 ,

h+ � 0 on I , h′+ = |h′| � 0 a. e. on I and∫
I
rh′+

p+1
dt =

∫
I
r|h′|p+1 dt < ∞. (29)

Thus h+ ∈ H0 and satisfies the inequality (28). Notice that

|h| =
∣∣∣∣
∫ t

α
h′ dτ

∣∣∣∣ �
∫ t

α
|h′| dτ = h+

on I . Hence we obtain∫
I
s|h|p|h′| dt + lim

t→β
v|h|p+1 �

∫
I
shp

+h′+ dt + lim
t→β

vhp+1
+ , (30)

since s � 0 and v � 0 on I . By virtue of (28) - (30) we get the inequality (24).
If v(β) > 0 , then by Lemma 1 (ii) we obtain

∫ β
t r−1/p dτ < ∞ and there exists a

finite limit value h(β) . Hence the inequality (24) takes the form of the inequality (25).
Finally, let s > 0 on I . Then by virtue of (6) we have ϕ′ > 0 on I , since v � 0

on I .
If both sides of (24) are equal for some non-vanishing function h ∈ H0 , then by

(28) – (30) it follows that for h+ =
∫ t
α |h′| dτ equalities hold in (28) and (30). Since

equality holds in (28), Theorem 1 now yields h+ = cϕ , where c = const > 0 and
ϕ ∈ Ĥ . Hence it follows that ϕ ∈ H0 . Furthermore, we have∫

I
s|h|p|h′| dt =

∫
I
shp

+h′+ dt,

because equality holds in (30), and s > 0 , v � 0 , |h| � h+ and |h′| = h′+ on I .
Therefore ∫

I
sϕ′[|h|p − (cϕ)p] dt = 0

and we obtain sϕ′[|h|p − (cϕ)p] = 0 a. e. on I . From this it follows that |h| = cϕ on
I , since s > 0 and ϕ′ > 0 on I . We thus get h = cϕ , where c = const �= 0 , since
h ∈ AC(I) and ϕ > 0 on I .

Conversely, if h = cϕ , where c = const �= 0 and ϕ ∈ H0 , then it follows from
previous considerations that limt→α v|h|p+1 = 0 and ϕ ∈ Ĥ . Thus by Theorem 1 it
follows that for the function h+ = |c|ϕ equality holds in (10). Hence the inequality
(24) becomes an equality for h since h+ = |h| and h′+ = |h′| .

From Theorem 2 we directly obtain, for any weight function s satisfying the
conditions s � 0 on I and v(β) � 0 or s � 0 on I and v(α) � 0 , Opial type integral
inequalities of the form∫

I
s|h|p|h′| dt �

∫
I
r|h′|p+1 dt, h ∈ H, (31)

where H = H0 if s � 0 on I and v(β) � 0 , or H = H0 if s � 0 on I and v(α) � 0 .
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Inequality (31) was derived by Beesack (Theorem 4.1 in [5]) with some additional
assumptions.

Now we determine an optimal or near optimal weight function s in the inequality
(31).

Let (r,ϕ) ∈ A and let s ∈ AC(I) satisfy the differential equation (5). Then

s(t) = s0 + (p + 1)
∫ t

t0

( r|ϕ′|psgnϕ′ )′ϕ−p dτ, t ∈ I, (32)

where t0 ∈ I and s0 is an arbitrary real number. From (6) and (32) integrating by parts
we obtain

v(t) = −(p + 1)−1s0 + ( r|ϕ′|psgnϕ′ ϕ−p)(t0) − p
∫ t

t0

r|ϕ′|p+1ϕ−(p+1) dτ (33)

for t ∈ I .
If the function s satisfies the conditions s � 0 on I and v(β) � 0 , then v � 0 on

I , since v is nonincreasing on I , also it follows from (6) that ϕ′ � 0 on I . Moreover,
by virtue of (33), from the condition v(β) � 0 we obtain∫ β

t0

r|ϕ′|p+1ϕ−(p+1) dτ < ∞.

Now let r and ϕ be the functions such that ϕ′ � 0 on I ,∫ β

t
r|ϕ′|p+1ϕ−(p+1) dτ < ∞

for some t ∈ I and

r|ϕ′|pϕ−p − p
∫ β

t
r|ϕ′|p+1ϕ−(p+1) dτ � 0

on I . Further let us set

ŝ = (p + 1)(r|ϕ′|pϕ−p − p
∫ β

t
r|ϕ′|p+1ϕ−(p+1) dτ) (34)

on I . The function ŝ satisfies the differential equation (5) as well as the conditions
ŝ � 0 on I and v̂(β) = 0 . If s ∈ AC(I) is an arbitrary weight function such that s � 0
on I and v(β) � 0 , then, by (32), (33) and (34), after simple calculations we get

ŝ(t) − s(t) = v(β) � 0

for t ∈ I . Therefore the weight function ŝ is the maximum weight function in the class
of weight functions satisfying the conditions s � 0 on I and v(β) � 0 .

In an analogous way we show that if ϕ′ � 0 on I , together with∫ t

α
r|ϕ′|p+1ϕ−(p+1) dτ < ∞
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for some t ∈ I and

r|ϕ′|pϕ−p − p
∫ t

α
r|ϕ′|p+1ϕ−(p+1) dτ � 0

on I , then the function

s̃ = (p + 1)(r|ϕ′|pϕ−p − p
∫ t

α
r|ϕ′|p+1ϕ−(p+1) dτ) � 0

is the maximum weight function in the class of weight functions |s| such that s � 0 on
I and v(α) � 0 , e.g.

s̃(t) − |s(t)| = |v(α)| � 0

for t ∈ I .
From the above considerations and Theorem 2 we directly obtain:

THEOREM 3. Let (r,ϕ) ∈ A .

(i) If ϕ′ � 0 on I , together with
∫ β

t r|ϕ′|p+1ϕ−(p+1) dτ < ∞ for some t ∈ I
and

s = (p + 1)(r|ϕ′|pϕ−p − p
∫ β

t
r|ϕ′|p+1ϕ−(p+1) dτ) � 0 (35)

on I , then ∫
I
s|h|p|h′| dt �

∫
I
r|h′|p+1 dt (36)

for every function h ∈ AC(I) such that h(α) = 0 and
∫

I r|h′|p+1 dt < ∞ .
If s > 0 on I and h �≡ 0 , then equality holds in (36), if and only if ϕ(α) = 0 ,∫

I r|ϕ′|p+1 dt < ∞ and, moreover,

lim
t→β

ϕp+1
∫ β

t
r|ϕ′|p+1ϕ−(p+1) dτ = 0

provided ϕ(β) = ∞ and h = cϕ , where c = const �= 0 .
(ii) If ϕ′ � 0 on I ,

∫ t
α r|ϕ′|p+1ϕ−(p+1) dτ < ∞ for some t ∈ I and

s = (p + 1)(r|ϕ′|pϕ−p − p
∫ t

α
r|ϕ′|p+1ϕ−(p+1) dτ) � 0 (37)

on I , then for every function h ∈ AC(I) such that h(β) = 0 and∫
I
r|h′|p+1 dt < ∞

the inequality (36) holds.
If s > 0 on I and h �≡ 0 , then equality holds in (36), if and only if ϕ(β) = 0 ,∫

I r|ϕ′|p+1 dt < ∞ and, moreover,

lim
t→α

ϕp+1
∫ t

α
r|ϕ′|p+1ϕ−(p+1) dτ = 0
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provided ϕ(α) = ∞ and h = cϕ , where c = const �= 0 .

EXAMPLE 1. Take I = (0, β) , 0 < β � ∞ , and let r be an arbitrary function

absolutely continuous on I such that r > 0 on I and
∫ β

0 r−1/p < ∞ .

Let ϕ =
∫ t

0 r−1/p dτ on I . Then ϕ′ = r−1/p > 0 on I and from (35) we get

s = (p + 1)

{(∫ t

0
r−1/pdτ

)−p

− p
∫ β

t

[
r−1/p

(∫ σ

0
r−1/pdτ

)−(p+1)
]

dσ

}

= (p + 1)

{(∫ t

0
r−1/pdτ

)−p

+
∫ β

t

[(∫ σ

0
r−1/pdτ

)−p
]′

dσ

}

= (p + 1)

(∫ β

0
r−1/p dτ

)−p

> 0.

Simultaneously, we have ϕ(α) = 0 and∫ β

0
r|ϕ′|p+1 dt =

∫ β

0
r−1/p dt < ∞.

Now let ϕ =
∫ β

t r−1/p dτ on I . Then ϕ′ = −r−1/p < 0 on I and, in a similar
way, by virtue of (37) we obtain

s = (p + 1)

(∫ β

0
r−1/p dτ

)−p

> 0.

We also have ϕ(β) = 0 and
∫ β

0 r|ϕ′|p+1 dt < ∞.
Now, applying Theorem 3 we get:
For an arbitrary p > 0 and every function h absolutely continuous on the interval

(0, β) , 0 < β � ∞ , satisfying the integral condition∫ β

0
r|h′|p+1 dt < ∞

and one of the limit conditions h(0) = 0 or h(β) = 0 the inequality

∫ β

0
|h|p|h′| dt � 1

p + 1

(∫ β

0
r−1/p dt

)p ∫ β

0
|h′|p+1 dt (38)

holds.
The inequality (38) becomes an equality, if and only if h = c

∫ t
0 r−1/p dτ or

h = c
∫ β

t r−1/p dτ , where c is an arbitrary constant ( cf. Beesack [4], Calvert [10],
Beesack and Das [6]).

In the case 0 < β < ∞ and r = 1 on (0, β) we obtain the inequality∫ β

0
|h|p|h′| dt � βp

p + 1

∫ β

0
|h′|p+1 dt, (39)
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which holds for all h ∈ AC((0, β)) , such that
∫ β

0 |h′|p+1 dt < ∞ and either h(0) = 0
or h(β) = 0 . Equality holds in (39), if and only if h = ct or h = c(β − t) , where
c = const (cf. Yang [23], Wong [22], Boyd [8], Shum [19]).

If p = 1 , then the inequality (39) becomes the original Opial Inequality ([17]).

EXAMPLE 2. Let I = (0,∞) . Let r = ta and ϕ = tk on I , where a �= p and
k �= 0 are arbitrary constants. Then we have ϕ′ > 0 , if k > 0 and ϕ′ < 0 , if k < 0 .∫∞

t r|ϕ′|p+1ϕ−(p+1) dτ < ∞ , if a < p and
∫ t

0 r|ϕ′|p+1ϕ−(p+1) dτ < ∞ , if a > p .
Futhermore from (35) or (37) we get

s = (p + 1)
(
|k|p − p

|a − p| |k|
p+1

)
ta−p

on I . The expression |k|p − p
|a−p| |k|p+1 takes its maximum value when |k| = |a−p|

p+1
and then

s =
( |a − p|

p + 1

)p

ta−p > 0.

Now, applying Theorem 3 we infer the following:
For arbitrary p > 0 and a �= p and for every function h ∈ AC((0,∞)) and

h �≡ 0 satisfying the integral condition∫ ∞

0
ta|h′|p+1 dt < ∞

and the limit condition h(0) = 0 , if a < p and h(∞) = 0 , if a > p , the inequality( |a − p|
p + 1

)p ∫ ∞

0
ta−p|h|p|h′| dt <

∫ ∞

0
ta|h′|p+1 dt (40)

is valid.
The inequality (40) is some new Opial type inequality which is a homologue of

the well-known Hardy Integral Inequality ([16]).
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