athematical
nequalities
& Papplications
Volume 3, Number 4 (2000), 511-518

CONVERGENCE OF GENERALIZED SINGULAR
INTEGRALS TO THE UNIT, UNIVARIATE CASE

GEORGE A. ANASTASSIOU AND SORIN G. GAL

(communicated by J. Marshall Ash)

Abstract. In a recent paper, the second author (see [2]) studied the degree of uniform approx-
imation to the unit in terms of uniform moduli of smoothness, by the Jackson-type general-
izations of Picard and of Gauss-Weierstrass singular integrals. In this paper we consider the
LP -approximation, (1 < p < +o00) by the above singular integrals in terms of the LP -moduli
of smoothness, and both uniform and L -approximation (in terms of the corresponding moduli
of smoothness) by Jackson-type generalizations of the Poisson-Cauchy singular integrals.

1. Introduction

Let f be a function from R into itself. For r € N, the rth — L, -modulus of
smoothness over R (1 < p < 400) is defined by

o (f;8)x = sup. 1837 1%

A<

where
8w = S0, ren.

X=I’R) or X=15(R),

= ([ rra) . Wigw = ([ repa)”

Next, for £ > 0 we consider the Jackson-type generalizations of Picard, Poisson-
Cauchy and Gauss-Weierstrass singular integrals introduced in [2] by

. n+1 +1 +oo e
Pn,é(f? :7252 < > f(x+kt)e dt,

0.50/45) = - @tl @Z( ) [ e
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and

n+1 T

W,Lg(f;x) = —%(5) Z(_l)k <n ‘IL‘ 1) _ﬂf ()C + kl)e—rz/ézdt7

k=1
a 2 2
(&) = / e,
0

respectively (the above operators are introduced by generalizing the usual Picard,
Poisson-Cauchy and Gauss-Weierstrass singular integrals, by following the same idea
which is used to define the Jackson’s generalized operator in classical approximation
theory).

Here we consider only f such that P, ¢(f;x), Q,¢(fix), W,e(f;x) € R, forall
x€eR.

Uniform convergences to the unit of P, z, W, ¢ operators (as & — 0) have been
established in [2] and can be stated by the following

THEOREM 1.1. Let f € C(R). We have:
n+1

() I~ Poclh)l < [Z (" 1)/«!] oni(f:8), £ 0;

k=0

) 17 = Wasl < |1/ [ a | [ e e ] 018,

0< & <1, where || - | is the uniform norm on C,(R) and w,(f;&) is the rth
uniform modulus of smoothness.

In Section 2 we consider the L” -approximation, 1 < p < +oo,for P, g, Qp e, W, ¢
operators, while Section 3 contains uniform convergence for Q, ¢ operator (in order to
complete somehow the above Theorem 1.1).

2. [?-approximation, 1 < p < 400

The first main result of this section is

THEOREM 2.1. Here take X = L'(R) (for P,¢), X = L1 (R) (for W, z,0,¢ ),
E>0,neN, f eX. Then

n+1
Hf_Pn,éuX < [Z (n—]tl)k"| wn+l(f;é)X7 é >07 (1)
k=0
= Waslle < (17 [Te ] | [ e ] onn O,
0< &<, (2)
If = Que()llx < K(n, &)onn(F:8)n v, & >0, (3)

where K(n, &) = {l/tan_1 g] /Oﬂ/§ Mdu.

w2 +1
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Proof. We have (for X = L'(R))

P =P =8 [ oMW @)
which implies
I = Puelow = [ 0~ Pl
<o [ ][ T wie] e vt

400
< (28! / O (1) e/t

— 00

=(2€)*1[ Oownﬂ(f;é(\t|/§))L1(R>e*\tl/§dt

S (25)_1wn+1(f;5)L1(R)/ (|t]/& + 1)y tem /5 gy

— 00

+o0o
= 'f_lwnﬂ(f;é)y(n)/ [t/E 4+ 11" e/ ds
0
= Op1(f; 5)L1(R) / [u+ 1]n+leﬂtdu
0

= Lié (”: l)k!

O 1(f38) Ry

which proves (1).
Then,

F0) = Woe(fsx) = [1/2C(E)] / S A (e (5)

—T

and reasoning as above, we get (for 0 < & < 1)
n
Hf - Wn,é(f)”Lén(R) = lf(X) - Wn,é(f;x”dx
—n
n
<1/ ECENow Dy [ /& + 176

(see also e.g. [2, Lemma 3.2])
T +o00
< {1// e_"zdu} {/ (u+ 1)”16_”261”] Onr1(f3 8wy
0 0 "

which proves (2).
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Finally,

. _ 1 g (71)”+1 An+1 d 6
100 = Qustfin) = 5 | sy (©
¢ ¢
and as above, we obtain
1f = el ®) = 3 If (x) = Qne(fix)ldx
¢ /g 41!
Ewnﬂ(f;g)gn(k)/o Wdt

<

tan

1
= ——7 Wnt1 (fs 5)L;n(R) /0

tan—

n/§ (u+ 1)n+1

d
u? 41 "

which proves (3).
REMARK. For fixed n € N, by (1) and (2) it follows that

Hf _Pn,é(f)”X_)Q Hf _Wn,é(f)”X_)Q as & — 0.

On the other hand, because K(n,&) — +00, as £ — 0, by (3) we do not obtain,
in general, the convergence [|f — Q,¢(f)|lx — 0, as & — 0. However, in some
particular cases the convergence holds, as can be seen by the following.

COROLLARY 2.1. If f"*1) ¢ L} (R) and f") is absolutely continuous on R,
then

Hf - Qn,é(f)HL%ﬂ(R) < Cné> 0< é <1
where C, > 0 is a constant independent of f and & .
Proof. We have
wnH(ff)L;n(R) < Clé”““f(nH)HL;n(R)
andfor 0 < £ < 1,

n/§ 1) +! 1 1) +! n/& 1)1
0 0 +1 1

uz +1 u? u +1

/2 ntl n/& ntl
e P / (u+1) du] <o |o s / (u+1) du]
1 1

u? +1 u?

n+1 /&
Z 1

C2 n (n Z ) / l,tnkldlxi‘|
k=0 1

/&

n—1 n—k
n+1 n+1\ u
= C
£ 2+ Z( k )nkl

k=0

< 5n+1

which together with relation (3) proves the corollary.
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The second main result of the section is
THEOREM2.2. Letus consider X = LP(R) (for P,z ), X = L5 (R) (for Wyp, Q¢ ),
1 1
0<&<1,neN, 1 <p<+oo, I;+5:1,fex.

Then
I = Pue(F)llx < 2/a)llgllrw) @1 (3 E)x,
where g(u) = (u+1)"+e="/2,

7\ 1
If = Wae(f)llx < 2% /7:72||h||U’(R+>wn+l(f§§)x7
e “du

0
where h(u) = (u+ 1)"1e="/2
Hf - Qn,é‘(f)HX < KP(”v g)wnJrl(f; g)L’Z’n(R)v

1/p
L (1L
here K, = nHv d
where K,(n,&) - E/o (u+1) 2
Proof. Let X = I?(R) ! + ! 1 and C ! (45)17/(1 By (4) we
" = , — - = 1 = — .
P 4 8P \ ¢

obtain

+o00

If (x) = Pug(fsx)dx

— 00

< (by Holder’s inequality, see [1, proof of Theorem 5])
+oco +o0o
<G / ( / AT (x) |de> o 11p/28) 4y

+o0 p
/ (1A () 178 =118 gf | ax

— 00

+o0
< / (0ne1 (F 11 )xe /2Py

+o0o
<2000, (f: E)x /O (/& + 1) Dre—/C8) gy

. or—1 p 5 e 1 (n+1)p —pu/2d
_an+l<f’ )x | (u+ 1) Pe u,

which implies

1/q
2
I — Puc(f)lx < (5) gl @ (F: E)x

with g(u) = (u+1)""'e 2, u € R, .
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Now, let X =I5 (R), — +

1 1
—+-=1, Erf(x / ~“dt. By (5) we get
>t =7z y(5)weg

Y

If (x) — W, e(f 1 x)[Pdx

- peer

(by Holder’s inequality, see [1, proof of Theorem 5])
1 2\ 1\
q
S 2e@p ( 75> (E’f (”ﬁ | E)) :
X / " ( / " |Ar+Ly ()|de> e P/CE dt]
p/q pla
Denoting C, = m (ﬁé) (Erf <7r\/g %)) , we have

V

ﬂ P
/ (= 1AM (x)e /8710 gy gy

—T

If (x) = W (f3x)[Pdx < 2Ca0, (F3 §)x /0[;/5+ 1) e=p/(28%) gy

—T

/&
< 2C2(Df;+1(f; 5)X§ / [u 4 1]<”+1)p€7”21’/2du7
0
i.e.
n/g 1/p
2
I = Wagllig ) < [2025 JRERE ”/Zdu] Ons1(f3 E)r
" 0
But

g 1\ 2 Ve L g e L
(E’f(”\gf»_ﬁ/o as [ eTa

and by [2, Lemma 3.2] we have
1 1

< , 0<cxl1
C(&) ~ & [ e *du :
which implies
5 { 5 r/a
/)
2C25 » . = 5 ( _> 51’/@5
— q
Epr (/ e " du)
0
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and

V) 1
I = Was Pl < (/2

>1/q
—
9 / e du
0

||h||U’(R+)wn+1(f; é)X7

where h(u) = (u+ 1)/,

Finally, for X = L] (R), ! + o 1, by (6) we get
P 9
Y
| - usrinpas
—T
! v NG 1 1 !
=— —1)"A? . dt| d
27| AL g - g @
g g

< (by Hoélder’s inequality, see [1, proof of Theorem 5])

1 2w\t 1
(2 AT ()P s—sdx| d
E 12]”(5 g L rer e o

g

1 T 1 P
R it 3 [1Dx =377 | ¢
o Ll

- %/ {"’"“W)erdf

¢

tan™

N

N

1

——at

1
& /er+1

N

1 %wgﬂ(f;é)x/o [t/&E+ 1](n+1)p

1

n/& (nt1) 1
= ngﬂ(f;é))f/o [+ 17—

———du,
tan u-+1

which proves the theorem.

REMARK. Theorem 2.2 shows us that

If = Pue(F)llx < Crona (3 9)x,  [If = Wae(F)llx < Coonn (F58)x

where Cy, C; > 0 areindependentof f,n and &, while K,(n, &) in the third estimation
(in Theorem 2.2) tends to +oco with & — 0. In this case, as in Corollary 2.1 we can
improve the estimation of [|f — 0, #(f)||x -
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3. Uniform approximation by Q,  operator

By (6) we easily get (for X = Cp(R))

1 . 1
)= uelrinl < 57— [ Ml
;

g

< ! /n @1 (f5 |7]) ! dt
S %tan_l E . n+1 ) th + 52

el
— o [ W

tan™

which immediately implies
THEOREM 3.1. For 0 < £ < 1, n €N, f € X = Cz(R), we get the estimation

Hf - Qn,ﬁ(f)”x < K(l’l, g)wn+l (f; g)XW
where K(n, &) is given by Theorem 2.1.
Reasoning exactly as in Corollary 2.1, we immediately obtain

COROLLARY 3.2. If f"*1) € Cy,(R) = X, then

If = One(f)llx <C.E, 0<ELI,
where C, > 0 is independent of f and &.

REMARK. The results of this paper show us that while the generalized operators
P, and W, ¢ give better estimates than the classical operators of Picard and of Gauss-
Weierstrass, the same idea of generalization applied to the Poisson-Cauchy singular
integral, which produces the Q, ¢ -operator, does not give a better estimate.
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