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Abstract. In a recent paper, the second author (see [2]) studied the degree of uniform approx-
imation to the unit in terms of uniform moduli of smoothness, by the Jackson-type general-
izations of Picard and of Gauss-Weierstrass singular integrals. In this paper we consider the
Lp -approximation, (1 � p < +∞) by the above singular integrals in terms of the Lp -moduli
of smoothness, and both uniform and Lp -approximation (in terms of the corresponding moduli
of smoothness) by Jackson-type generalizations of the Poisson-Cauchy singular integrals.

1. Introduction

Let f be a function from R into itself. For r ∈ N , the rth − Lp -modulus of
smoothness over R (1 � p � +∞) is defined by

ωr(f ; δ)X = sup
|h|�δ

‖Δr
hf ‖X,

where

Δr
hf (x) =

r∑
i=0

(−1)i

(
r
i

)
f (x + ih), r ∈ N,

X = Lp(R) or X = Lp
2π(R),

‖f ‖Lp(R) =
(∫ +∞

−∞
|f (x)|pdx

)1/p

, ‖f ‖Lp
2π(R) =

(∫ π

−π
|f (x)|pdx

)1/p

.

Next, for ξ > 0 we consider the Jackson-type generalizations of Picard, Poisson-
Cauchy and Gauss-Weierstrass singular integrals introduced in [2] by

Pn,ξ (f ; x) = − 1
2ξ

n+1∑
k=1

(−1)k

(
n + 1

k

)∫ +∞

−∞
f (x + kt)e−|t|/ξdt,

Qn,ξ (f ; x) =
1

−
(

2
ξ

)
tan−1

(
π
ξ

) n+1∑
k=1

(−1)k

(
n + 1

k

)∫ π

−π

f (x + kt)
t2 + ξ 2

dt,
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and

Wn,ξ (f ; x) = − 1
2C(ξ)

n+1∑
k=1

(−1)k

(
n + 1

k

)∫ π

−π
f (x + kt)e−t2/ξ 2

dt,

C(ξ) =
∫ π

0
e−t2/ξ 2

dt,

respectively (the above operators are introduced by generalizing the usual Picard,
Poisson-Cauchy and Gauss-Weierstrass singular integrals, by following the same idea
which is used to define the Jackson’s generalized operator in classical approximation
theory).

Here we consider only f such that Pn,ξ (f ; x) , Qn,ξ (f ; x) , Wn,ξ (f ; x) ∈ R , for all
x ∈ R .

Uniform convergences to the unit of Pn,ξ , Wn,ξ operators (as ξ → 0 ) have been
established in [2] and can be stated by the following

THEOREM 1.1. Let f ∈ C2π(R) . We have:

(i) ‖f − Pn,ξ (f )‖ �
[

n+1∑
k=0

(
n + 1

k

)
k!

]
ωn+1(f ; ξ) , ξ > 0 ;

(ii) ‖f − Wn,ξ‖ �
[
1/

∫ π

0
e−u2

du

] [∫ +∞

0
(u + 1)n+1e−u2

du

]
ωn+1(f ; ξ) ,

0 � ξ � 1 , where ‖ · ‖ is the uniform norm on C2π(R) and ωr(f ; ξ) is the rth
uniform modulus of smoothness.

In Section 2we consider the Lp -approximation, 1 � p < +∞ , for Pn,ξ , Qn,ξ , Wn,ξ
operators, while Section 3 contains uniform convergence for Qn,ξ operator (in order to
complete somehow the above Theorem 1.1).

2. Lp -approximation, 1 � p < +∞

The first main result of this section is

THEOREM 2.1. Here take X = L1(R) (for Pn,ξ ), X = L1
2π(R) (for Wn,ξ , Qn,ξ ),

ξ > 0 , n ∈ N , f ∈ X . Then

‖f − Pn,ξ‖X �
[

n+1∑
k=0

(
n + 1

k

)
k!

]
ωn+1(f ; ξ)X , ξ > 0, (1)

‖f − Wn,ξ (f )‖X �
[
1/

∫ π

0
e−u2

du

] [∫ +∞

0
(u + 1)n+1e−u2

du

]
ωn+1(f ; ξ)L1

2π (R),

0 < ξ � 1, (2)
‖f − Qn,ξ (f )‖X � K(n, ξ)ωn+1(f ; ξ)L1

2π (R), ξ > 0, (3)

where K(n, ξ) =
[
1/ tan−1 π

ξ

]∫ π/ξ

0

(u + 1)n+1

u2 + 1
du .
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Proof. We have (for X = L1(R) )

f (x) − Pn,ξ (f ; x) = (2ξ)−1
∫ +∞

−∞
(−1)n+1Δn+1

t f (x)e−|t|/ξdt, (4)

which implies

‖f − Pn,ξ(f )‖L1(R) =
∫ +∞

−∞
|f (x) − Pn,ξ (f ; x)|dx

� (2ξ)−1
∫ +∞

−∞

[∫ +∞

−∞
|Δn+1

t f (x)|dx

]
e−|t|/ξdt

� (2ξ)−1
∫ +∞

−∞
ωn+1(f ; |t|)L1(R)e

−|t|/ξdt

= (2ξ)−1
∫ +∞

−∞
ωn+1(f ; ξ(|t|/ξ))L1(R)e

−|t|/ξdt

� (2ξ)−1ωn+1(f ; ξ)L1(R)

∫ +∞

−∞
(|t|/ξ + 1)n+1e−|t|/ξdt

= ξ−1ωn+1(f ; ξ)L1(R)

∫ +∞

0
[t/ξ + 1]n+1e−t/ξdt

= ωn+1(f ; ξ)L1(R)

∫ ∞

0
[u + 1]n+1e−udu

=

[
n+1∑
k=0

(
n + 1

k

)
k!

]
ωn+1(f ; ξ)L1(R),

which proves (1).
Then,

f (x) − Wn,ξ (f ; x) = [1/2C(ξ)]
∫ π

−π
(−1)n+1Δn+1

t f (x)e−t2/ξ 2

dt, (5)

and reasoning as above, we get (for 0 < ξ � 1 )

‖f − Wn,ξ (f )‖L1
2π (R) =

∫ π

−π
|f (x) − Wn,ξ (f ; x)|dx

� [1/(2C(ξ))]ωn+1(f ; ξ)L1
2π (R)

∫ π

0
[t/ξ + 1]n+1e−t2/ξ 2

dt

=
[

ξ
C(ξ)

]
ωn+1(f ; ξ)L1

2π (R)

∫ π/ξ

0
[u + 1]n+1e−u2

du

(see also e.g. [2, Lemma 3.2])

�
[
1/

∫ π

0
e−u2

du

] [∫ +∞

0
(u + 1)n+1e−u2

du

]
ωn+1(f ; ξ)L1

2π (R),

which proves (2).
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Finally,

f (x) − Qn,ξ (f ; x) =
1

2
ξ

tan−1 π
ξ

∫ π

−π

(−1)n+1

t2 + ξ 2
Δn+1

t f (x)dt, (6)

and as above, we obtain

‖f − Qn,ξ (f )‖L1
2π (R) =

∫ π

−π
|f (x) − Qn,ξ (f ; x)|dx

� ξ

tan−1 π
ξ

ωn+1(f ; ξ)L1
2π (R)

∫ π

0

[t/ξ + 1]n+1

t2 + ξ 2
dt

=
1

tan−1 π
ξ

ωn+1(f ; ξ)L1
2π (R)

∫ π/ξ

0

(u + 1)n+1

u2 + 1
du,

which proves (3).

REMARK. For fixed n ∈ N , by (1) and (2) it follows that

‖f − Pn,ξ (f )‖X → 0, ‖f − Wn,ξ (f )‖X → 0, as ξ → 0.

On the other hand, because K(n, ξ) → +∞ , as ξ → 0 , by (3) we do not obtain,
in general, the convergence ‖f − Qn,ξ (f )‖X → 0 , as ξ → 0 . However, in some
particular cases the convergence holds, as can be seen by the following.

COROLLARY 2.1. If f (n+1) ∈ L1
2π(R) and f (n) is absolutely continuous on R ,

then
‖f − Qn,ξ (f )‖L1

2π (R) � Cnξ , 0 < ξ � 1

where Cn > 0 is a constant independent of f and ξ .

Proof. We have

ωn+1(f ; ξ)L1
2π (R) � C1ξ n+1‖f (n+1)‖L1

2π (R)

and for 0 < ξ � 1 ,

ξ n+1
∫ π/ξ

0

(u + 1)n+1

u2 + 1
du = ξ n+1

[∫ 1

0

(u + 1)n+1

u2 + 1
du +

∫ π/ξ

1

(u + 1)n+1

u2 + 1
du

]

= ξ n+1

[
C2 +

∫ π/2

1

(u + 1)n+1

u2 + 1
du

]
� ξ n+1

[
C2 +

∫ π/ξ

1

(u + 1)n+1

u2
du

]

� ξ n+1

[
C2 +

n+1∑
k=0

(
n + 1

k

)∫ π/ξ

1
un−k−1du

]

= ξ n+1

⎧⎨
⎩C2 +

⎡
⎣n−1∑

k=0

(
n + 1

k

)
un−k

n − k

∣∣∣∣∣
π/ξ

1

+ (n + 1) ln u

∣∣∣∣∣
π/ξ

1

− 1
u

∣∣∣∣∣
π/ξ

1

⎤
⎦
⎫⎬
⎭ � Cξ ,

which together with relation (3) proves the corollary.
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The second main result of the section is

THEOREM2.2. Let us consider X = Lp(R) (for Pn,ξ ), X = Lp
2π(R) (for Wn,p, Qn,ξ ),

0 < ξ � 1 , n ∈ N , 1 < p < +∞ ,
1
p

+
1
q

= 1 , f ∈ X .

Then
‖f − Pn,ξ (f )‖X � (2/q)1/q‖g‖Lp(R+)ωn+1(f ; ξ)X ,

where g(u) = (u + 1)n+1e−u/2 ,

‖f − Wn,ξ (f )‖X �
(√

π
2q

)1/q 1∫ π

0
e−u2

du
‖h‖Lp(R+)ωn+1(f ; ξ)X ,

where h(u) = (u + 1)n+1e−u2/2 ,

‖f − Qn,ξ (f )‖X � Kp(n, ξ)ωn+1(f ; ξ)Lp
2π (R),

where Kp(n, ξ) =

⎡
⎢⎣ 1

tan−1 π
ξ

∫ π/ξ

0
(u + 1)(n+1)p 1

u2 + 1
du

⎤
⎥⎦

1/p

.

Proof. Let X = Lp(R) ,
1
p

+
1
q

= 1 and C1 =
1

(2ξ)p

(
4ξ
q

)p/q

. By (4) we

obtain ∫ +∞

−∞
|f (x) − Pn,ξ(f ; x)|pdx

=
1

(2ξ)p

∫ +∞

−∞

∣∣∣∣
∫ +∞

−∞
(−1)n+1Δn+1

t f (x)e−|t|/(2ξ)e−|t|/(2ξ)dt

∣∣∣∣
p

dx

� (by Hölder’s inequality, see [1, proof of Theorem 5])

� C1

∫ +∞

−∞

(∫ +∞

−∞
|Δn+1

t f (x)|pdx

)
e−|t|p/(2ξ)dt

� C1

∫ +∞

−∞
[ωn+1(f ; |t|)Xe−|t|/(2ξ)]pdt

� 2C1ωp
n+1(f ; ξ)X

∫ +∞

0
[t/ξ + 1](n+1)pe−tp/(2ξ)dt

=
2p−1

qp/q
ωp

n+1(f ; ξ)X

∫ +∞

0
(u + 1)(n+1)pe−pu/2du,

which implies

‖f − Pn,ξ (f )‖X �
(

2
q

)1/q

‖g‖Lp(R+)ωn+1(f ; ξ)X ,

with g(u) = (u + 1)n+1e−u/2 , u ∈ R+ .
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Now, let X = Lp
2π(R) ,

1
p

+
1
q

= 1 , Erf (x) =
2√
π

∫ x

0
e−t2dt . By (5) we get

∫ π

−π
|f (x) − Wn,ξ (f ; x)|pdx

=
1

[2C(ξ)]p

∫ π

−π

∣∣∣∣
∫ π

−π
(−1)n+1Δn+1

t f (x)e−t2/(2ξ 2)e−t2/(2ξ 2)dt

∣∣∣∣
p

dx

(by Hölder’s inequality, see [1, proof of Theorem 5])

� 1
[2C(ξ)]p

(√
2π
q
ξ

)p/q (
Erf

(
π
√

q
2
· 1
ξ

))p/q

×

×
[∫ π

−π

(∫ π

−π
|Δn+1

t f (x)|pdx

)
e−t2p/(2ξ 2)dt

]

Denoting C2 =
1

[2C(ξ)]p

(√
2π
q
ξ

)p/q (
Erf

(
π
√

q
2
· 1
ξ

))p/q

, we have

∫ π

−π
|f (x) − Wn,ξ (f ; x)|pdx � 2C2ωp

n+1(f ; ξ)X

∫ π

0
[t/ξ + 1](n+1)pe−t2p/(2ξ 2)dt

� 2C2ωp
n+1(f ; ξ)Xξ

∫ π/ξ

0
[u + 1](n+1)pe−u2p/2du,

i.e.

‖f − Wn,ξ‖Lp
2π(R) �

[
2C2ξ

∫ π/ξ

0
[u + 1](n+1)pe−u2p/2du

]1/p

ωn+1(f ; ξ)X .

But(
Erf

(
π
√

q
2
· 1
ξ

))
=

2√
π

∫ π
√

q
2 /ξ

0
e−t2dt � 2√

π

∫ +∞

0
e−t2dt = 1

and by [2, Lemma 3.2] we have

1
C(ξ)

� 1

ξ
∫ π

0 e−u2du
, 0 < ξ � 1,

which implies

2C2ξ � 2
2p

· 1

ξ p

(∫ π

0
e−u2

du

)p

(√
2π
q

)p/q

ξ p/qξ

=
1

2p−1

(∫ π

0
e−u2

du

)p

(√
2π
q

)p/q

,
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and

‖f − Wn,ξ (f )‖Lp
2π (R) �

(√
π
2q

)1/q 1∫ π

0
e−u2

du
‖h‖Lp(R+)ωn+1(f ; ξ)X ,

where h(u) = (u + 1)n+1e−u2/2 .

Finally, for X = Lp
2π(R) ,

1
p

+
1
q

= 1 , by (6) we get

∫ π

−π
|f (x) − Qn,ξ (f ; x)|pdx

=
1[

2
ξ

tan−1 π
ξ

]p

∫ π

−π

∣∣∣∣
∫ π

−π
(−1)n+1Δn+1

t f (x)
1

(t2 + ξ 2)1/p
· 1
(t2 + ξ 2)1/q

dt

∣∣∣∣
p

dx

� (by Hölder’s inequality, see [1, proof of Theorem 5])

� 1[
2
ξ

tan−1 π
ξ

]p

(
2
ξ

tan−1 π
ξ

)p/q ∫ π

−π

[∫ π

−π
|Δn+1

t f (x)|p 1
t2 + ξ 2 dx

]
dt

� 1[
2
ξ

tan−1 π
ξ

] ∫ π

−π

[
ωn+1(f ; |t|)X

1
(t2 + ξ 2)1/p

]p

dt

=
ξ

tan−1 π
ξ

∫ π

0

[
ωn+1(f ; t)X

1
(t2 + ξ 2)1/p

]p

dt

� ξ

tan−1 π
ξ

ωp
n+1(f ; ξ)X

∫ π

0
[t/ξ + 1](n+1)p 1

ξ 2
· 1
(t/ξ)2 + 1

dt

=
1

tan−1 π
ξ

ωp
n+1(f ; ξ)X

∫ π/ξ

0
[u + 1](n+1)p 1

u2 + 1
du,

which proves the theorem.

REMARK. Theorem 2.2 shows us that

‖f − Pn,ξ (f )‖X � C1ωn+1(f ; ξ)X , ‖f − Wn,ξ (f )‖X � C2ωn+1(f ; ξ)X

where C1, C2 > 0 are independentof f , n and ξ , while Kp(n, ξ) in the third estimation
(in Theorem 2.2) tends to +∞ with ξ → 0 . In this case, as in Corollary 2.1 we can
improve the estimation of ‖f − Qn,ξ (f )‖X .
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3. Uniform approximation by Qn,ξ operator

By (6) we easily get (for X = C2π(R) )

|f (x) − Qn,ξ (f ; x)| � 1
2
ξ

tan−1 π
ξ

∫ π

−π
|Δn+1

t f (x)| 1
t2 + ξ 2

dt

� 1
2
ξ

tan−1 π
ξ

∫ π

−π
ωn+1(f ; |t|)X

1
t2 + ξ 2

dt

=
ξ

tan−1 π
ξ

ωn+1(f ; ξ)X

∫ π

0
[t/ξ + 1]n+1 1

t2 + ξ 2
dt,

which immediately implies

THEOREM 3.1. For 0 < ξ � 1 , n ∈ N , f ∈ X = C2π(R) , we get the estimation

‖f − Qn,ξ (f )‖X � K(n, ξ)ωn+1(f ; ξ)X,

where K(n, ξ) is given by Theorem 2.1.

Reasoning exactly as in Corollary 2.1, we immediately obtain

COROLLARY 3.2. If f (n+1) ∈ C2π(R) = X , then

‖f − Qn,ξ (f )‖X � Cnξ , 0 < ξ � 1,

where Cn > 0 is independent of f and ξ .

REMARK. The results of this paper show us that while the generalized operators
Pn,ξ and Wn,ξ give better estimates than the classical operators of Picard and of Gauss-
Weierstrass, the same idea of generalization applied to the Poisson-Cauchy singular
integral, which produces the Qn,ξ -operator, does not give a better estimate.
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