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ON MIXED HÖLDER–MINKOWSKI INEQUALITIES AND

TOTAL CONVEXITY OF CERTAIN FUNCTIONS IN L p(Ω)

C. A. ISNARD AND A. N. IUSEM ∗

Abstract. We prove the following mixed Hölder-Minkowski-type inequalities for all x, z ∈
L p(Ω) :
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� ||x||p ||y||q − Re(〈 x, y〉 ) if 1 � s � p � 2,
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� ||x||p ||y||q − Re(〈 x, y〉 ) � 0 if 2 � p � s,

where y ∈ L q(Ω) is defined as y(ξ) = |z(ξ)|p−2z(ξ) , if z(ξ) �= 0 , y(ξ) = 0 otherwise,
and 1/p + 1/q = 1 . Next we consider the Bregman distance Df : L p(Ω) × L p(Ω) → R
defined as Df (x, y) = f (x) − f (y) − 〈 f ′(y), x − y〉 , with f (x) = ||x||sp ( s, p > 1 ), and prove
that inf{Df (u, z) : ||u − z||p = t} > 0 , sup{Df (u, z) : ||u − z||p = t} < ∞ , for all p, s > 1 ,
all z ∈ L p(Ω) and all t > 0 , so that the Bregman distance induced by f (x) = ||x||sp and
the metric distance d(x, y) = ||x − y||p are topologically equivalent. As a consequence, this f
can be used in projection algorithms for the convex feasibility problem and generalized proximal
point methods for convex optimization in L p(Ω) .
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