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ON MIXED HÖLDER–MINKOWSKI INEQUALITIES AND

TOTAL CONVEXITY OF CERTAIN FUNCTIONS IN L p(Ω)

C. A. ISNARD AND A. N. IUSEM ∗

(communicated by J. Borwein)

Abstract. We prove the following mixed Hölder-Minkowski-type inequalities for all x, z ∈
L p(Ω) :

0 � ||z||p−s
p

s

[(
||x||p + ||z||p

)s − ||x + z||sp
]

� ||x||p ||y||q − Re(〈 x, y〉 ) if 1 � s � p � 2,

||z||p−s
p

s

[(
||x||p + ||z||p

)s − ||x + z||sp
]

� ||x||p ||y||q − Re(〈 x, y〉 ) � 0 if 2 � p � s,

where y ∈ L q(Ω) is defined as y(ξ) = |z(ξ)|p−2z(ξ) , if z(ξ) �= 0 , y(ξ) = 0 otherwise,
and 1/p + 1/q = 1 . Next we consider the Bregman distance Df : L p(Ω) × L p(Ω) → R
defined as Df (x, y) = f (x) − f (y) − 〈 f ′(y), x − y〉 , with f (x) = ||x||sp ( s, p > 1 ), and prove
that inf{Df (u, z) : ||u − z||p = t} > 0 , sup{Df (u, z) : ||u − z||p = t} < ∞ , for all p, s > 1 ,
all z ∈ L p(Ω) and all t > 0 , so that the Bregman distance induced by f (x) = ||x||sp and
the metric distance d(x, y) = ||x − y||p are topologically equivalent. As a consequence, this f
can be used in projection algorithms for the convex feasibility problem and generalized proximal
point methods for convex optimization in L p(Ω) .

1. Introduction

The purpose of this paper is twofold. In section 2. we consider the space L p(Ω)
of measurable complex valued functions defined on a measure space (Ω , A , μ ) with

the p -norm given by ||x||p =
[ ∫

Ω |x(ξ)|pdμ(ξ)
]1/p

< ∞ and prove that the following
inequalities hold for all x, z ∈ L p(Ω) , with p � 1 :

0 � ||z||p−s
p

s

[(||x||p + ||z||p
)s−||x+z||sp

]
� ||x||p||y||q−Re(〈 x, y〉 ) if 1 � s � p � 2,

||z||p−s
p

s

[(||x||p + ||z||p
)s − ||x + z||sp

]
� ||x||p||y||q − Re(〈 x, y〉 ) � 0 if 2 � p � s,

where y ∈ L q(Ω) is defined as y(ξ) = |z(ξ)|p−2z(ξ) if z(ξ) �= 0 , y(ξ) = 0
otherwise, 1/p + 1/q = 1 , and 〈 x, y〉 =

∫
Ω x(ξ)y(ξ)dμ(ξ) . These inequalities relate
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Hölder’s and Minkowski’s ones and are in fact stronger than these. The particular case
of s = p has been previously considered in [16].

In section 3. we use these inequalities to prove that the function f (x) = ||x||sp in
L p(Ω) with p, s > 1 enjoys the property of total convexity, which we describe next
(a complete development appears in section 3). If f is a Fréchet differentiable and
convex real function defined in a Banach space B , then Df : B × B → R , defined as
Df (x, y) = f (x)− f (y)−〈 f ′(y), x− y〉 , where f ′(y) ∈ B∗ is the Fréchet derivative of
f at y , introduces a sort of “distance” in B , called Bregman distance. This notion has
its origin in [4] and has been extensively used in its finite dimensional version for convex
optimization algorithms (e.g. [9], [13], [18]), and in particular, and more recently, for
extensions of the proximal point method (e.g. [10], [11], [14], [15], [17]). Bregman
distances have been considered in Hilbert spaces in [5], and in Banach spaces in [6], [7]
and [8].

It is natural to compare the Bregman distance with the distance induced by the
norm of the Banach space, which leads to the notion of local modulus of convexity of
f , introduced in [6] and defined as νf (x, t) = inf{Df (u, x) : ||u− x|| = t} . A function
f is said to be totally convex if and only if νf (x, t) > 0 for all x ∈ B and all t > 0 .
Total convexity is a necessary assumption for convergence of projection algorithms for
the convex feasibility problem ([6] and [8]) and of the proximal point method in Banach
spaces ([2] and [7]), which use, as an auxiliary device, the Bregman distance associated
with f . Therefore, it is important to identify totally convex functions which can be
used in these algorithms, for relevant Banach spaces like L p(Ω) .

Total convexity is a more demanding property that strict convexity (in fact it is
equivalent to strict convexity in finite dimension) but it is weaker that either uniform
or strong convexity (see definitions in section 3). Since there are no strongly convex
and smooth functions in Banach spaces which are not Hilbert ones (e.g. L p(Ω) with
p �= 2 , see section 3), and even uniformly convex functions are scarce in these spaces
(e.g. f (x) = ||x||pp is uniformly convex in L p(Ω) for p � 2 , but not for p < 2 ),
totally convex functions seem to be the right cathegory which extends the notion of
strict convexity to infinite dimensional spaces.

Total convexity of f (x) = ||x||pp in L p(Ω) with p > 1 has been proved, with
arguments different from those used in this paper, in [6]. Here we establish total
convexity of f (x) = ||x||sp for all p, s > 1 , providing closed formulae or explicit lower
bounds for νf (x, t) in terms of p , s , ||x||p and t . As a consequence, this familiy of
functions can be used in the algorithms studied in [6], [7] and [8].

Throughout the paper Rn
+ = {x ∈ Rn : xj � 0 (1 � j � n)} and Rn

++ = {x ∈
Rn : xj > 0 (1 � j � n)} .

2. Some Hölder-Minkowski-type inequalities in L p(Ω)

We will prove the following Hölder-Minkowski-type inequalities. Take p � 1 ,
x, z ∈ L p(Ω) , and define y ∈ L q(Ω) as y(ξ) = |z(ξ)|p−2z(ξ) if z(ξ) �= 0 , y(ξ) = 0
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otherwise, with 1/p + 1/q = 1 . Then

0 � ||z||p−s
p

s

[(||x||p + ||z||p
)s−||x+z||sp

]
� ||x||p||y||q−Re(〈 x, y〉 ) if 1 � s � p � 2,

(2.1)
||z||p−s

p

s

[(||x||p + ||z||p
)s − ||x + z||sp

]
� ||x||p||y||q − Re(〈 x, y〉 ) � 0 if 2 � p � s,

(2.2)
(2.1)–(2.2) generalize the inequalities established in [16], which correspond to the

case of s = p . We prove first a result in finite dimension, and then get (2.1)–(2.2)
through a standard limiting argument. We recall that for x ∈ Cn the p -norm is defined

as ||x||p =
[ ∑n

j=1 |xj|p
]1/p

, and 〈 x, y〉 =
∑n

j=1 xjyj . We exclude for the time being
the case of s = 1 for which a simple proof will be given in Theorem 2.1 (in fact the
argument in the proof of the following proposition does not apply to this case).

PROPOSITION 2.1. Take x, z ∈ Cn , p, q > 1 such that 1/p + 1/q = 1 and define
y ∈ Cn as yj = |zj|p−2zj if zj �= 0 , yj = 0 otherwise. Then

0 � sup
t>0

{ ||z||p−s
p

st

[(
t||x||p + ||z||p

)s − ||tx + z||sp
]}

= ||x||p||y||q − Re(〈 x, y〉 ) (2.3)

if 1 < s � p � 2 , and

inf
t>0

{ ||z||p−s
p

st

[(
t||x||p + ||z||p

)s − ||tx + z||sp
]}

= ||x||p||y||q − Re(〈 x, y〉 ) � 0 (2.4)

if 2 � p � s .

Proof. The result holds trivially if either x or z vanish. Thus, we assume that
x �= 0 �= z .

Define ψ : R+ → R as

ψ(t) =
(
t||x||p + ||z||p

)s − ||tx + z||sp. (2.5)

We will prove that ψ is concave when 1 < s � p � 2 and convex when
2 � p � s . Let I = {j : xj = zj = 0} and J = {1, . . . , n} \ I . Then (2.5) can be
rewritten as

ψ(t) =
(
t||x||p + ||z||p

)s − ( ∑
j∈J

|txj + zj|p
)s/p

. (2.6)

It is easy to check that ψ is differentiable in R+ and that

ψ ′(t) = s
(
t||x||p + ||z||p

)s−1||x||p− s||tx+ z||s−p
p

∑
j∈J

|txj + zj|p−2Re[(txj + zj)xj], (2.7)

with the convention that if txj + zj = 0 then the j -th term in the summation vanishes,
and if tx + z = 0 then

ψ ′(t) = s
(
t||x||p + ||z||p

)s−1||x||p.



522 C. A. ISNARD AND A. N. IUSEM

We claim now that ψ ′ is continuous in R+ . Note that

|txj + zj|p−2Re[(txj + zj)xj] � |txj + zj|p−1|xj|, (2.8)

so that when t approaches a value such that txj + zj = 0 (if any) then the j -th term
in the summation of (2.7) approaches 0, because p > 1 . In view of (2.8), the second
term in the right hand side of (2.7) is bounded above by s||tx + z||s−1

p ||x||1 , and as a
consequence, since s > 1 , this second term approaches 0 as t approaches a value such
that tx + z = 0 (if any). This settles the issue for these exceptional values of t , and the
right hand side of (2.7) is clearly continuous for values of t other than these.

On the other hand, the second derivative of ψ is not defined at such exceptional
values. Let T = {t > 0 : txj + zj = 0 for some j} . It is clear that T is either empty
of finite. For t /∈ T , ψ ′′ can be computed as

ψ ′′(t) = s(s − 1)(t||x||p + ||z||p)s−2||x||2p

−s(s − p)||tx + z||s−2p
p

{ ∑
j∈J

|txj + zj|p−2Re[(txj + zj)xj]
}2

−s||tx+z||s−p
p

∑
j∈J

{
(p−2)|txj+zj|p−4

[
Re((txj+zj)xj)

]2+|txj+zj|p−2|xj|2
}

. (2.9)

We consider first the case of 2 � p � s . Since s − p � 0 , p − 2 � 0 and
Re (a) � |a| for all a ∈ C , we get from (2.9),

ψ ′′(t)�s(s−1)
(
t||x||p+||z||p)s−2||x||2p−s(s−p)||tx+z||s−2p

p

[ ∑
j∈J

|txj+zj|p−1|xj|
]2

−s(p−1)||tx + z||s−p
p

∑
j∈J

|txj+zj|p−2|xj|2. (2.10)

Take vectors v , w , v̂ , ŵ ∈ R|J|
+ defined as vj = |txj + zj|p−2 , wj = |xj|2 ,

v̂j = |txj + zj|p−1 , ŵj = |xj| .
By Hölder’s inequality,∑

j∈J

|txj + zj|p−1|xj| = 〈 v̂, ŵ〉 � ||v̂||q||ŵ||p = ||tx + z||p−1
p ||x||p. (2.11)

and, if p > 2 ,∑
j∈J

|txj + zj|p−2|xj|2 = 〈 v, w〉 � ||v||p/(p−2)||w||p/2 = ||tx + z||p−2
p ||x||2p, (2.12)

If p = 2 , then ∑
j∈J

|txj + zj|p−2|xj|2 = ||x||22 = ||tx + z||p−2
p ||x||2p. (2.13)
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Since s− p � 0 and p− 1 � 0 , we get from (2.10), using (2.11) and (2.12) or (2.13),

ψ ′′(t)�s(s − 1)
(
t||x||p + ||z||p

)s−2||x||2p
−s(s − p)||tx + z||s−2

p ||x||2p − s(p − 1)||tx + z||s−2
p ||x||2p

=s(s − 1)||x||2p
[(

t||x||p + ||z||p
)s−2 − ||tx + z||s−2

p

]
� 0, (2.14)

uisng Minkowski’s inequality, since s − 2 � 0 . So ψ ′′(t) � 0 for t ∈ R+ \ T . Since
ψ ′ is continuous in R+ and its derivative is nonnegative excepting at most at a finite
set of points, we conclude that ψ ′ is nondecreasing in R+ . Noting that ψ(0) = 0 , we
have, by the Mean Value Theorem,

ψ(t)
t

=
ψ(t) − ψ(0)

t
= ψ ′(t̂),

for some t̂ ∈ (0, t) . Since ψ ′ is nondecreasing in R+ , we get

ψ(t)
t

� ψ ′(0) (2.15)

for all t � 0 . Observe that limt→0+ ψ(t)/t = limt→0+(ψ(t) − ψ(0))/t = ψ ′(0) . In
view of (2.15) we conclude that

inf
t>0

{
ψ(t)

t

}
= ψ ′(0) = s||z||s−1

p ||x||p − s||z||s−p
p

∑
j∈J

|zj|p−2Re(zjxj)

= s||z||s−1
p ||x||p − s||z||s−p

p Re

[ n∑
j=1

|zj|p−2zjxj

]
= s||z||s−p

p

[||z||p−1
p ||x||p − Re(〈 y, x〉 )

]
= s||z||s−p

p

[||y||q||x||p − Re(〈 x, y〉 )
]
, (2.16)

using (2.7) in the second equality. Now the equality in (2.4) follows immediately from
(2.16). The inequality in (2.4) is Hölder’s inequality, and so (2.4) holds.

Next we consider the case of 1 < s � p � 2 . In this case s − p � 0 , p − 2 � 0 ,
and so the inequality in (2.10) is reversed. (2.11) and (2.13) still hold but the inequality
in (2.12) is reversed as a consequence of Hölder’s reverse inequality (e.g. [19], p. 99),
which can be applied because p/(2− p) < 0 and v , w are nonnegative vectors. Since
now we have p − 1 � 0 , s − p � 0 and s − 2 � 0 , the inequalities in (2.14) are
reversed, and we conclude that ψ ′ is nonincreasing in R+ . It follows that the inequality
in (2.15) is reversed, and, using again the fact that limt→0+ ψ(t)/t = ψ ′(0) , we get

sup
t>0

{
ψ(t)

t

}
= s||z||s−p

p

[||x||p||y||q − Re(〈 x, y〉 )
]
. (2.17)

The equality in (2.3) follows immediately from (2.17) and the inequality is a conse-
quence of Minkowski’s inequality. �
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COROLLARY 2.1. (2.1) and (2.2) hold for x, z ∈ Cn with y ∈ Cn defined as
yj = |zj|p−2zj if zj �= 0 , yj = 0 otherwise.

Proof. Take t = 1 in (2.3)–(2.4). �

We proceed now to extend (2.1)–(2.2) from C n to L p(Ω) , L q(Ω) . We remark
that there are several technical difficulties to go through the proof of Proposition 2.1
directly in these spaces, in the case 1 < s � p � 2 . Basically, the set T of singularities
of ψ ′′ may be infinite: ψ ′′ diverges for all t such that tx(ξ)+ z(ξ) = 0 for ξ in some
subset of Ω of positive measure (if any), and, even if tx(ξ) + z(ξ) �= 0 for all ξ ∈ Ω ,
the scalar product 〈 v, w〉 may diverge for certain values of t . Next we shall prove the
infinite dimensional case by using the Dominated Convergence Theorem. We need first
a preliminary lemma. A function h : Ω →C is said to be simple if it is measurable and
its image is finite.

LEMMA 2.1. Given any complex valued and measurable function h : Ω →C,
there exists a sequence of simple functions hn : Ω →C such that for each ξ ∈ Ω it holds
that limn→∞ hn(ξ) = h(ξ) and additionally |Re hn(ξ)| � |Re h(ξ)| , |Im hn(ξ)| �
|Im h(ξ)| (and therefore |hn(ξ)| � |h(ξ)| ) for all ξ ∈ Ω and all n .

Proof. The result is well known at least when h is real valued and nonnegative, in
which case the domination condition reduces to 0 � hn(ξ) � h(x) . The general case
for real valued h can be proved by considering the restrictions of h and −h to the sets
{ξ ∈ Ω : h(ξ) > 0} and {ξ ∈ Ω : h(ξ) < 0} respectively, and the complex case
by considering separately the real and imaginary parts, since any linear combination of
simple functions is still a simple function. �

THEOREM 2.1. Take p � 1 and x, z ∈ L p(Ω) . Define y : Ω →C as y(ξ) =
|z(ξ)|p−2z(ξ) if z(ξ) �= 0 , y(ξ) = 0 otherwise. Then y ∈ L q(Ω) with 1/p+1/q = 1 ,
and (2.1)–(2.2) hold.

Proof. The fact that y belongs to L q(Ω) is immediate from the definition of
y . We proceed to prove the inequalities. For (2.1) we consider first the case of
1 < s � p � 2 , i.e. we leave aside the case of s = 1 , which will be considered later
on.

We start with the case when x and z are simple functions. In this situation there
exists a partition Ω = ∪m

i=0Ωi in pairwise disjoint measurable sets such that both x
and z are constant on each Ωi . By convention, Ω0 = {ξ ∈ Ω : x(ξ) = 0 = z(ξ)}
(Ω0 is possibly empty). Let αi , βi be the values of x and z respectively in the set
Ωi , and γi = βi|βi|p−2 if βi �= 0 , γi = 0 otherwise. Then ||x||pp =

∑n
i=1 αiμ(Ωi) ,

||z||pp =
∑n

i=1 βiμ(Ωi) so that μ(Ωi) < ∞ for i � 1 , because αi �= 0 or βi �= 0 .
By definition of y , we have y(ξ) = γi for all ξ ∈ Ωi . Now define x̂ , ŷ , ẑ ∈ Cm

as x̂i = αiμ(Ωi)1/p , ẑi = βiμ(Ωi)1/p and ŷi = γiμ(Ωi)1/q . ŷ and ẑ are related as
requested in the assumptions of Corollary 2.1 and so (2.1) and (2.2) hold with x̂ , ŷ
and ẑ substituting for x , y and z . We observe that ||x||p = ||x̂||p , ||y||q = ||ŷ||q ,
||z||p = ||ẑ||p , 〈 x, y〉 = 〈 x̂, ŷ〉 and conclude that (2.1) and (2.2) hold for x , y and z .
This settles the issue for simple functions. Now we consider arbitrary x, z ∈ L p(Ω) .
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By Lemma 2.1 there exist sequences of simple functions {xn} and {zn} defined on Ω
such that for all ξ ∈ Ω it holds that limn→∞ xn(ξ) = x(ξ) and limn→∞ zn(ξ) = z(ξ) ,
with |xn(ξ)| � |x(ξ)| , |zn(ξ)| � |z(ξ)| for all ξ ∈ Ω and all n . By Lebesgue’s
Dominated Convergence Theorem we have

lim
n→∞ ||xn||p = ||x||p, lim

n→∞ ||zn||p = ||z||p, lim
n→∞ ||xn + zn||p = ||x + z||p, (2.18)

because |xn(ξ) + zn(ξ)| � |x(ξ)| + |z(ξ)| . Let now yn(ξ) = |zn(ξ)|p−2zn(ξ) if
zn(ξ) �= 0 , yn(ξ) = 0 otherwise. Then

|yn(ξ)| = |zn(ξ)|p−1 � |z(ξ)|p−1 = y(ξ).

Hence, by the Dominated Convergence Theorem again, we have

lim
n→∞ ||yn||q = ||y||q, lim

n→∞〈 xn, yn〉 = 〈 x, y〉 , (2.19)

because |xn(ξ)yn(ξ)| � |x(ξ)y(ξ)| . Since the result holds for simple functions, we
know that (2.1) and (2.2) hold with xn , yn and zn substituting for x , y and z
respectively. The required inequalities (excepting for the case of s = 1 ) follow by
taking limits as n goes to ∞ , in view of (2.18) and (2.19).

Finally, we consider the case of s = 1 . First, we remark that for p = 1 we get
y ∈ L ∞(Ω) . Note that ||y||q = ||z||p−1

p and |z(ξ)|p = y(ξ)z(ξ) for all ξ ∈ Ω , so
that

〈 z, y〉 = ||z||pp = ||z||p||y||q. (2.20)

Since s = 1 , (2.1) is equivalent to

Re(〈 x, y〉 ) + ||z||p||y||q � ||x + z||p||y||q. (2.21)

In view of (2.20), we have

Re(〈 x, y〉 ) + ||y||q||z||p = Re(〈 x + z, y〉 ) � ||x + z||p||y||q,
by Hölder’s inequality, so that (2.21) (and consequently (2.1) for the case s = 1 ) holds.
�

3. Total convexity of f (x) = ||x||sp in L p(Ω)

Let B be a Banach space, B∗ its dual, f : B → R a convex function and
∂f (x) ⊂ B∗ the subdifferential of f at x , i.e.

∂f (x) = {η ∈ B∗ : 〈η, x − y〉 � f (y) − f (x) for all y ∈ B},
where 〈 ·, ·〉 : B∗ × B → R denotes the usual duality pairing.

By convexity of f , ∂f (x) is nonempty and bounded for all x ∈ B (see [12]). We
define Df : B × B → R as

Df (x, y) = f (x) − f (y) − inf{〈η, x− y〉 : η ∈ ∂f (y)}.
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Boundedness of ∂f (y) guarantees that Df (x, y) is well defined for all (x, y) ∈ B × B .
If f is Fréchet differentiable, then

Df (x, y) = f (x) − f (y) − 〈 f ′(y), x − y〉 , (3.1)

where f ′(y) is the Fréchet derivative of f at y . By definition of ∂f , Df (x, y) � 0
for all x, y ∈ B and Df (x, x) = 0 for all x ∈ B . In general, it is not true that
Df (x, y) = Df (y, x) and the triangular inequality does not hold. Df is called the
Bregman distance associated with f .

The local modulus of convexity of f , denoted as νf : B × R+ → R has been
defined in [6] as

νf (z, t) = inf{Df (u, z) : ||u − z|| = t}, (3.2)

and f is said to be totally convex if and only if νf (x, t) > 0 for all z ∈ B and all t > 0 .
We comment next on the relation between total convexity and other variations of

convexity.
f is said to be strictly convex if and only if f (x) − f (y) − 〈η, x − y〉 > 0 for all

x, y ∈ B such that x �= y and all η ∈ ∂f (y) .
f is said to be uniformly convex if and only if 〈 ξ − η, x − y〉 > γ ||x − y||p for

all x, y ∈ B , all ξ ∈ ∂f (x) , all η ∈ ∂f (y) and some γ > 0 , some p > 1 (see [1]
for a slightly less restrictive definition of uniform convexity, and [20] for a related but
different definition).

f is said to be strongly convex if and only if 〈 ξ − η, x − y〉 > γ ||x − y||2 for all
x, y ∈ B , all ξ ∈ ∂f (x) , all η ∈ ∂f (y) and some γ > 0 .

Clearly, strong convexity implies uniform convexity. It has been proved in [6] that
uniform convexity implies total convexity, and the fact that total convexity implies strict
convexity is immediate. In finite dimension, a simple compactness argument shows
that strict convexity is equivalent to total convexity, but in infinite dimensional spaces
there are strictly convex functions which are not totally convex (see [6]). In Banach
spaces which are not Hilbert ones, there are no strongly convex functions which are
sufficiently smooth: it has been proved in [3] that if f : B → R is a strongly convex
function which is twice differentiable at least at some z ∈ B , then B is isomorphic to a

Hilbert space, because
[
D2f (z)(x, x)

]1/2 (where D2f (z) denotes the bilinear form of
the second derivative of f at z ) defines a Hilbertian norm which is equivalent to the
given norm in B . In view of this result, it is relevant to study the existence of totally
convex functions in Banach spaces which are not Hilbert, e.g. in L p(Ω) . Also, total
convexity if necessary for convergence of several algorithms in Banach spaces. As
an example, we mention the proximal point method for minimizing a convex function
g : B → R . This method starts with some x0 ∈ B and generates a sequence {xk} ⊂ B
through the iteration

xk+1 = argmin
{
g(x) + Df (x, xk)

}
,

where f is an auxiliary convex function, and Df is as in (3.1). Convergence of {xk}
to a minimizer of g is established in [7] under hypotheses on f which include total
convexity.

In this section we will prove that f : L p(Ω) → R defined as f (x) = ||x||sp is
totally convex for all s, p > 1 . We consider the case of the space L p(Ω) of complex
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valued functions from Ω to R . We present closed formulae or explicit lower bounds
for νf (x, t) in terms of p , s , ||x||p and t . Obviously, these bounds are also valid for
the real case.

We will consider several cases, depending on the values of s and p . The first
one corresponds to 1 < s � p � 2 . In this case we give a closed formula for νf (x, t)
and the point u∗ which realizes the infimum in the definition of νf . This result is a
consequence of Theorem 2.1. The formula of νf extends the one established in [6] for
the particular case of s = p .

From now on we will use the following notation: νps(z, t) = νf (z, t) and
Dps(x, y) = Df (x, y) for f (x) = ||x||sp in L p(Ω) , and Ut = {x ∈ L p(Ω) : ||x||p = t}
for t ∈ R+ .

PROPOSITION 3.1. Take s , p such that 1 < s � p � 2 . Then
i) νps(z, t) =

(
t + ||z||p

)s − ||z||sp − s||z||s−1
p t = Dϕ

(
t + ||z||p, ||z||p

)
> 0 for all

t > 0 with ϕ : R+ → R defined as ϕ(t) = ts ,
ii) if z �= 0 then νps(z, t) = Dps(u∗, z) with u∗ =

(
1 + t/||z||p

)
z .

Proof. A simple computation, using (3.1), shows that

Dps(u∗, z) =
(
t + ||z||p

)s − ||z||sp − s||z||s−1
p t = Dϕ

(
t + ||z||p, ||z||p

)
,

if z �= 0 . The rightmost inequality in (i) follows from strict convexity of ϕ in R++ .
It suffices therefore to prove that Dps(u, z) � Dps(u∗, z) for all u ∈ B such that
||u − z||p = t , or equivalently

Dps(x + z, z) �
(
t + ||z||p

)s − ||z||sp − s||z||s−1
p t (3.3)

for all x ∈ Ut . It is easy to get from (3.1) the explicit expression for the left hand side
of (3.3), namely

Dps(x + z, z) = ||x + z||sp − ||z||sp − s||z||s−p
p Re(〈 y, x〉 ), (3.4)

with y(ξ) = |z(ξ)|p−2z(ξ) if z(ξ) �= 0 , y(ξ) = 0 otherwise. In view of (3.4), it turns
out that, since ||x||p = t and ||z||p−1

p = ||y||q , (3.3) is a direct consequence of (2.1),
which holds by virtue of Theorem 2.1. �

The computation of νps for values of s , p other than those considered in Proposi-
tion 3.1 is much harder, and we will not obtain a closed formula for νps(z, t) , but rather
a positive lower bound. We start with a lower bound for νpp with p � 2 .

As discussed in [6], f (x) = ||x||pp is totally convex for p � 2 , because it is
uniformly convex, as proved in [20]. Our next proposition gives an explicit positive
lower bound for νpp(z, t) with p � 2 . We need first two elementary results, the first of
which can be seen as a chain rule for Df .

LEMMA 3.1. Take ϕ : R → R convex, differentiable and nondecreasing, and
g : B → R convex. Define f : B → R as f (x) = ϕ(g(x)) . Then

Df (x, y) = Dϕ(g(x), g(y)) + ϕ′(g(y))Dg(x, y). (3.5)

Proof. See [16], Proposition 3. �
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LEMMA 3.2. Take p � 2 and define φp : C → R as φp(t) = |1 + t|p −
|t|p − p|t|p−2Re(t) . Let cp = inft∈C φp(t) . Then, cp = min||t||�1/2 φp(t) > 0 and
p21−p � cp , so that cp < 1 if p > 2 .

Proof. For p = 2 we compute cp = φ2(t) = 1 via |1+t|2 = 1+2Re(t)+|t|2 . For
p > 2 we define gp : C → R as gp(t) = |t|p . It follows that φp(t) = Dgp(1 + t, t) and

gp(t) =
(
g2(t)

)p/2
. Since p/2 > 1 , the function ψ : R → R defined by ψ(r) = rp/2

is convex. Therefore, we get from Lemma 3.1

φp(t) = Dgp(1 + t, t) � ψ ′(g2(t)
)
Dg2(1 + t, t) =

p
2

(|t|2)p/2−1φ2(t) =
p
2
|t|p−2. (3.6)

By (3.6),
inf

|t|�1/2
φp(t) � p

2
22−p = p21−p � min

|t|�1/2
φp(t) = cp. (3.7)

It follows from (3.7) that cp > 0 , because {t ∈ C : |t| � 1/2} is compact, φp(t) is
continuous, φp(t) � (p/2)|t|p−2 > 0 if t �= 0 and φp(0) = 1 .

If p > 2 we have 2p−1 > p , because the function β : R → R defined as
β(r) = rp−1 is strictly convex in (0, +∞) , and so we have β(2) > β(1)+β ′(1) = p .
It follows that cp < 1 . �

REMARK 3.1. In the Appendix we establish the following estimate:

p21−p � cp >

[
1 + (2p − 1)1/(1−p)

]1−p

� 21−p(2 − 1/p),

which gives also lower bounds for cp .

PROPOSITION 3.2. If p � 2 then νpp(z, t) = cptp > 0 , with cp > 0 as given by
Lemma 3.2.

Proof. By (3.1), for all x, z ∈ L p(Ω)

Dpp(x+ z, z) =
∫
Ω

[|x(ξ)+ z(ξ)|p − |z(ξ)|p − p|z(ξ)|p−2Re
(
z(ξ)x(ξ)

)]
dμ(ξ). (3.8)

Let Ω(x) = {ξ ∈ Ω : x(ξ) �= 0} and u(ξ) = z(ξ)/x(ξ) for ξ ∈ Ω(x) . Since x ∈
L p(Ω) , Ω(x) is measurable, and, since the integrand in (3.8) vanishes for ξ /∈ Ω(x) ,
we get

Dpp(x + z, z)=
∫
Ω(x)

|x(ξ)|p[|1 + u(ξ)|p − |u(ξ)|p − p|u(ξ)|p−2Re
(
u(ξ)

)]
dμ(ξ)

=
∫
Ω(x)

|x(ξ)|pφp(u(ξ))dμ(ξ), (3.9)

with φp as in Lemma 3.2. By Lemma 3.2, for all x ∈ Ut ,

Dpp(x + z, z) � cp

∫
Ω(x)

|x(ξ)|pdμ(ξ) = cpt
p, (3.10)
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with equality occurring if φp
(
u(ξ)

)
= cp for ξ ∈ Ω(x) , i.e. if x(ξ) = λ−1u(ξ) ,

where, for p > 2 , λ �= 0 is such that φp(λ ) = cp and, for p = 2 , λ is arbitrary,
because in such cases we have φp(t) = 1 > cp by Lemma 3.2 for p > 2 and
φ2(t) = 1 = c2 for all t .

The result follows by taking infimum over x ∈ Ut in (3.10). �

We mention that, though in this case we have a lower bound for νps rather than an
exact formula, the result is in some sense stronger than for the case of 1 < s � p � 2 ,
because our lower bound for p � 2 is independent of z , so that νpp(z, t) is a global,
rather than local, modulus of convexity, confirming the fact that f (x) = ||x||pp is
uniformly convex for p � 2 (see [20]). It is not possible to get a positive lower bound
independent of z for νps(z, t) with 1 < s � p � 2 because for any fixed t > 0 the
value of νps(z, t) given by Proposition 3.1(i) converges to 0 as ||z||p goes to ∞ , as can
be easily verified.

We will use the values of νps obtained in Propositions 3.1 and 3.2 in order to
compute lower bounds for νps with values of p and s not covered in these propositions.
The first case is s � p , for which we will use Lemma 3.1.

PROPOSITION 3.3. If s � p > 1 and t > 0 then

νps(0, t) = ts > 0, (3.11)

νps(z, t) � s
p
||z||s−p

p νpp(z, t) > 0 if z �= 0. (3.12)

Proof. The formula for Dps given in (3.4) holds in fact for all p, s > 1 . (3.11)
is a direct consequence of (3.2) and (3.4). The rightmost inequality in (3.12) follows
from Proposition 3.2 for p > 2 and from Proposition 3.1 with s = p for p � 2 . We
proceed to establish the leftmost inequality in (3.12). Take ϕ(t) = ts/p , f (x) = ||x||sp
and g(x) = ||x||pp . Since s � p , ϕ is convex and nondecreasing. Thus, we can apply
Lemma 3.1, getting

Dps(x + z, z) = Dϕ(||x + z||pp, ||z||pp) +
s
p
||z||s−p

p Dpp(x + z, z). (3.13)

Since Dϕ(||x + z||pp, ||z||pp) � 0 by convexity of ϕ , we get from (3.13)

Dps(x + z, z) � s
p
||z||s−p

p Dpp(x + z, z), (3.14)

and the result follows taking infima over x ∈ Ut on both sides of (3.14). �

The remaining case, i.e. p > max{s, 2} , is the hardest, and we will estimate νps

by partitioning Ut into three subsets and getting lower bounds for Dps(x + z, z) with
x in each one of them separately. Let y(ξ) = |z(ξ)|p−2z(ξ) if z(ξ) �= 0 , y(ξ) = 0
otherwise, and define, for t > 0 :

V1
t = {x ∈ Ut : Re(〈 x, y〉 ) � 0}, (3.15)
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V2
t = {x ∈ Ut : ||x + z||p � ||z||p, Re(〈 x, y〉 ) < 0}, (3.16)

V3
t = {x ∈ Ut : ||x + z||p < ||z||p}. (3.17)

It is clear that Ut = ∪3
i=1V

i
t . We remark that V3

t might be empty, e.g. if t > 2||z||p .
We need next a preliminary result.

LEMMA 3.3. Let φ : R+ → R be a convex and differentiable function. Then,
for any fixed t0 ∈ R+ the function t 
→ Dφ(t, t0) is nonincreasing in [0, t0] and
nondecreasing in [t0, +∞)

Proof. By (3.1)
d
dt

Dφ (t, t0) = φ ′(t) − φ ′(t0). (3.18)

By convexity of φ the right hand side of (3.18) is nonpositive if t � t0 and nonnegative
if t � t0 . �

PROPOSITION 3.4. If 1 < s � p and p � 2 then, for all x ∈ V1
t ,

||x + z||p �
(||z||p + cpt

p
)1/p

, (3.19)

Dps(x + z, z) � Dϕ

([
21−ptp + ||z||pp

]1/p
, ||z||p

)
, (3.20)

with ϕ : R+ → R defined as ϕ(t) = ts and cp as in Lemma 3.2.

Proof. Take x ∈ V1
t . Since Re (〈 x, y〉 ) � 0 by (3.15), we get from Proposition

3.2 and (3.4) with s = p ,

||x + z||pp � Dpp(x + z, z) + ||z||pp � νpp(z, t) + ||z||pp � cpt
p + ||z||pp. (3.21)

By (3.21),

||x + z||p �
(
cpt

p + ||z||pp)1/p, (3.22)

and thus (3.19) holds. Now we use Lemma 3.1 with f (x) = ||x||sp , g(x) = ||x||p and
ϕ(t) = ts . Since g is convex, Dg(x + z, z) � 0 , and also ϕ′(||z||p) � 0 , because
s > 0 . Therefore

Dps(x + z, z) = Dϕ(||x + z||p, ||z||p) + ϕ′(||z||p)Dg(x + z, z) � Dϕ(||x + z||p, ||z||p).
(3.23)

By Lemma 3.3 and (3.22),

Dϕ(||x − z||p, ||z||p) � Dϕ
(
cpt

p + ||z||pp)1/p, ||z||p
)
. (3.24)

(3.20) follows from (3.19), (3.24) and (3.23). �
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PROPOSITION 3.5. If 1 < s � p , p � 2 , then, for all x ∈ V2
t ,

Dps(x + z, z) � s
p

(
t + ||z||p)s−p

cpt
p, (3.25)

with cp as in Lemma 3.2.

Proof. Take x ∈ V2
t . Let a = ||x + z||pp , b = ||z||pp , c = p||z||−p

p Re(〈 x, y〉 ) and
r = s/p , with y as in the definition of the sets Vi

t . Then, by (3.4),

Dps(x + z, z) = ar − br − rbrc, (3.26)

Dpp(x + z, z) = a − b − bc. (3.27)
Let ψ(t) = tr . Note that r ∈ (0, 1] because s � p , so that ψ is concave in R+ . It
follows that ψ(b) � ψ(a) + ψ ′(a)(b − a) , implying

ar − br � rar−1(a − b). (3.28)

By (3.26), (3.27) and (3.28),

Dps(x + z, z)�rar−1(a − b) − rbrc = rar−1(a − b − bc) + rar−1bc − rbrc

=rar−1Dpp(x + z, z) + rbc(ar−1 − br−1). (3.29)

Since x ∈ V2
t , we have that a � b and c < 0 , so that ar−1 � br−1 , because r−1 � 0 ,

and hence rbc(ar−1 − br−1) � 0 . Therefore, using (3.29) and Proposition 3.2,

Dps(x + z, z)�rar−1Dpp(x + z, z)

� s
p
||x + z||s−p

p νpp(z, t) =
s
p
||x + z||s−p

p cpt
p. (3.30)

Since s − p � 0 , Minkowski’s inequality implies that

||x + z||s−p
p �

(||x||p + ||z||p
)s−p =

(
t + ||z||p

)s−p
. (3.31)

The result follows from (3.30) and (3.31). �

Finally, we establish a lower bound for Dps(x + z, z) over x ∈ V3
t . We need first

an elementary result.

LEMMA 3.4. Define τ : R++ → R as τ(t) = β + (α t − 1)/t , with α ∈ R++ ,
β ∈ R . Then τ is concave if α � 1 and convex if α � 1 .

Proof. Consider γ : R++ → R defined as γ (t) = t(log t)2 − 2t log t + 2t − 2 .
Since γ ′(t) = (log t)2 > 0 , we get

γ (t) � γ (1) = 0 if t ∈ (0, 1], (3.32)

γ (t) � γ (1) = 0 if t � 1. (3.33)
On the other hand, differentiating τ ,

τ′′(t) = t−3

[
α t

(
logα t

)2 − 2α t logα t + 2α t − 2

]
= t−3γ (α t). (3.34)

Since t > 0 , we have that α t � 1 if and only if α � 1 . The result follows from
(3.32), (3.33) and (3.34). �
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PROPOSITION 3.6. If 1 < s � p , p � 2 , then for all z �= 0 and all x ∈ V3
t ,

Dps(x + z, z) � s(s − 1)
p(p − 1)

||z||s−p
p cpt

p. (3.35)

Proof. Take x ∈ V3
t . We remark that (3.4) holds also for s = 1 when z �= 0 ,

because || · ||p is differentiable everywhere except at 0 . We consider τ as in Lemma
3.4 with α = ||x + z||p/||z||p , β = −||z||−p

p Re(〈 x, y〉 ) and y as in the definition of
the sets Vi

t . It follows easily from (3.4) that

Dps(x + z, z) = s||z||spτ(s). (3.36)

Observe that s = p−s
p−1 +

(
s−1
p−1

)
p with p−s

p−1 ∈ [0, 1) and p−s
p−1 + s−1

p−1 = 1 . Since

||x+ z||p/||z||p ∈ (0, 1) by definition of V3
t , τ is concave by Lemma 3.4, and therefore

τ(s) �
(

p − s
p − 1

)
τ(1) +

(
s − 1
p − 1

)
τ(p). (3.37)

By (3.36) and (3.37),

||z||−s
p

s
Dps(x + z, z) �

(
p − s
p − 1

)
||z||−1

p Dp1(x + z, z) +
(

s − 1
p − 1

) ||z||−p
p

p
Dpp(x + z, z)

� (s − 1)
p(p − 1)

||z||−p
p Dpp(x + z, z), (3.38)

using nonnegativity of Dp1 , which follows from convexity of g(x) = ||x||p , in the
rightmost inequality of (3.38). By (3.38), using Proposition 3.2,

Dps(x + z, z) � s(s − 1)
p(p − 1)

||z||s−p
p Dpp(x + z, z)

� s(s − 1)
p(p − 1)

||z||s−p
p νpp(z, t) � s(s − 1)

p(p − 1)
||z||s−p

p cpt
p.

�

Now we establish a common lower bound for those found in Propositions 3.4, 3.5
and 3.6.

PROPOSITION 3.7. If 1 < s � p , p � 2 and t > 0 then

νps(0, t) = ts > 0, (3.39)

νps(z, t) �
(

1 +
t

||z||p

)s−p

Dϕ
([

cpt
p + ||z||pp

]1/p
, ||z||p

)
> 0 if z �= 0, (3.40)

with ϕ(t) = ts and cp as in Lemma 3.2.

Proof. (3.39) holds with the same proof as in Proposition 3.3. We proceed to prove

(3.40). Let ρ1(z, t) = Dϕ
([

cptp + ||z||pp
]1/p

, ||z||p
)
, ρ2(z, t) =

(
t + ||z||p

)s−p
cptp and
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ρ3(z, t) = s(s−1)
p(p−1) ||z||s−p

p cptp . By Propositions 3.4, 3.5 and 3.6, since Ut = ∪3
i=1V

i
t , in

order to establish the leftmost inequality in (3.40) it suffices to prove that

min
1�i�3

ρi(z, t) �
(

1 +
t

||z||p

)s−p

ρ1(z, t). (3.41)

Let δ = 1 + t/||z||p . Note that

ρ2(z, t) = δ s−p p(p − 1)
s(s − 1)

ρ3(z, t) � δ s−pρ3(z, t), (3.42)

because [p(p − 1)]/[s(s − 1)] � 1 . We claim that

ρ3(z, t) � ρ1(z, t). (3.43)

We proceed to prove the claim. Let α =
(
1 + cptp/||z||pp

)1/p
. By (3.1),

ρ1(z, t)=Dϕ
([

cpt
p + ||z||pp

]1/p
, ||z||p

)
=

(
cpt

p + ||z||pp
)s/p − ||z||sp − s||z||s−1

p

[(
cpt

p + ||z||pp
)1/p − ||z||p

]
= ||z||sp

[
αs − 1 − s(α − 1)

]
. (3.44)

On the other hand,

ρ3(z, t) =
s(s − 1)
p(p − 1)

||z||sp
(

cptp

||z||pp

)
=

s(s − 1)
p(p − 1)

||z||sp
(
αp − 1

)
. (3.45)

Consider τ as in Lemma 3.4 with α =
(
1 + cptp/||z||pp

)1/p
, β = 0 . Then, by (3.44)

and (3.45),

ρ3(z, t) − ρ1(z, t)=s||z||sp
[(

s − 1
p − 1

)
τ(p) − τ(s) + τ(1)

]

�s||z||sp
[(

s − 1
p − 1

)
τ(p) − τ(s) +

(
p − s
p − 1

)
τ(1)

]
, (3.46)

because (p − s)/(p − 1) � 1 , since s > 1 , and τ(1) = α − 1 > 0 . τ is convex by
Lemma 3.4, because α � 1 , and therefore, writing s as

(
s−1
p−1

)
p +

( p−s
p−1

)
,

τ(s) �
(

s − 1
p − 1

)
τ(p) +

(
p − s
p − 1

)
τ(1). (3.47)

By (3.46) and (3.47), ρ3(z, t) − ρ1(z, t) � 0 and the claim is established.
Since δ � 1 and s − p � 0 , we have that 1 � δ s−p . Therefore, by (3.42) and

(3.43),
ρ3(z, t) � ρ1(z, t) � δ s−pρ1(z, t), (3.48)

ρ2(z, t) � δ s−pρ3(z, t) � δ s−pρ1(z, t). (3.49)
In view of the definition of δ , (3.41) follows from (3.48) and (3.49), so that the leftmost
inequality in (3.40) holds. The rightmost one follows from positivity of cptp and strict
convexity of ϕ , which implies that Dϕ(t̂, t) > 0 for t̂ �= t . �
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COROLLARY 3.1. Take p, s > 1 and consider f : L p(Ω) → R defined as
f (x) = ||x||sp . Then f is totally convex.

Proof. Follows from Propositions 3.2, 3.3 and 3.7, and the definition of total
convexity. �

For the sake of completeness, we analyze now μf (z, t) := sup{Df (u, z) : ||u −
z||p = t} , for f (x) = ||x||sp . We will prove that μf (z, t) < ∞ for all z ∈ L p(Ω)
and all t ∈ R+ . While positivity of νf (z, t) says that each metric ball (i.e. a ball
induced by the p -norm) contains a Bregman ball (i.e. one induced by the Bregman
distance associated with f (x) = ||x||sp ), finiteness of μf (z, t) says that each metric ball
is contained in a Bregman ball. As a consequence the metric distance and the Bregman
distance associated with this f are topologically equivalent, in the sense that for any
sequence {xk} ⊂ L p(Ω) and any x ∈ L p(Ω) it holds that limk→∞ Df (xk, x) = 0 if
and only if limk→∞ ||xk − x||p = 0 . Reversing the situation of νf , we obtain a closed
formula for μf when 2 � p � s and a finite upper bound otherwise.

PROPOSITION 3.8. i) For 2 � p � s , the supremum of Df (u, z) over the
set {u ∈ L p(Ω) : ||u − z|| = t} is attained at u∗ = (1 + t/||z||p)z with value
Df (u∗, z) = μf (z, t) =

(
t + ||z||p

)s − ||z||sp − s||z||s−1t .

ii) For all p, s > 1 , μf (z, t) �
(
t + ||z||p

)s − ||z||sp − s||z||s−1
p t < ∞ .

Proof. i) The argument in the proof of Proposition 3.1, with the inequalities
reversed, and using (2.2) instead of (2.1) in the final step, establishes the result.

ii) By (3.4), with x ∈ Ut and y(ξ) = |z(ξ)|p−2z(ξ) if z(ξ) �= 0 , y(ξ) = 0
otherwise,

Dps(x + z, z)= ||x + z||sp − ||z||sp − s||z||s−p
p Re(〈 y, x〉 )

�
(||x||p + ||z||p

)s − ||z||sp + s||z||s−p
p |〈 y, x〉 |

�
(
t + ||z||p

)s − ||z||sp + s||z||s−p
p ||y||q||x||p

=
(
t + ||z||p

)s − ||z||sp + s||z||s−1
p t < ∞, (3.50)

using Minkowski’s inequality in the first inequality and Hölder’s one in the second one.
The result follows by taking supremum over x ∈ Ut in (3.50). �

4. Appendix

We present here some estimates of cp which provide a more explicit lower bound
for νps in terms of s , p , ||z||p and t , when substituted in the bound given in Proposition
3.7.

LEMMA 4.1. Take p � 2 and define φp as in Lemma 3.2, cp = infz∈C φp(z) .
Then

p21−p�cp = inf
{
φp(x) : x ∈ R,−1/2 � x < 0

}
�

[
1 + (2p − 1)−1/(p−1)]1−p � 21−p(2 − 1/p). (4.1)
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Proof. The leftmost inequality in (4.1) has been established in Lemma 3.2. We
prove first the equality. Since φ2(z) = 1 for all z ∈ C , we may assume that p > 2 .
From Lemma 3.2 we have that cp = min{φp(z) : z ∈ C, |z| � 1/2} . Let z = x + yi ,
with x and y real. Then, from |z|2 = x2 + y2 and |1 + z|2 = (1 + x)2 + y2 , we get

∂

∂x

(|z|p) = p|z|p−2x,
∂

∂y

(|z|p) = p|z|p−2y,

∂

∂x

(|1 + z|p) = p|1 + z|p−2(1 + x),
∂

∂y

(|1 + z|p) = p|1 + z|p−2y.

As a consequence,

∂

∂x
φp(z) = p

(|1 + z|p−2 − |z|p−2
)
(1 + x) − p(p − 2)|z|p−4x2, (4.2)

∂

∂y
φp(z) = p

(|1 + z|p−2 − |z|p−2
)
y − p(p − 2)|z|p−4xy. (4.3)

At the point z where φp attains its minimum on C we have

0 =
∂

∂x
φp(z) =

∂

∂y
φp(z), (4.4)

so that we get from (4.3) that either y = 0 or

|1 + z|p−2 − |z|p−2 = (p − 2)|z|p−4x. (4.5)

If (4.5) holds, then, substituting (4.5) in (4.2) and (4.4), we obtain

0 =
∂

∂x
φp(z) = p(p − 2)|z|p−4x(1 + x) − p(p − 2)|z|p−4x2,

so that either z = 0 or x(1 + x) − x2 = 0 . It follows that in any case x = 0 , which,
substituted in (4.5), gives |1 + z|p−2 = |z|p−2 , implying that |1 + z|2 = |z|2 . Since
x = 0 , we conclude that 1 + y2 = y2 , which is a contradiction. Thus (4.5) cannot hold
and therefore we have y = 0 , i.e. z = x ∈ R .

Suppose now that z = x � 0 . From (4.2) and (4.4) we get

0 =
[
(1 + x)p−2 − xp−2

]
(1 + x) − (p − 2)xp−2 = (x + 1)p−1 − xp−1 − (p − 1)xp−2,

which is a contradiction, because the function x 
→ xp−1 is strictly convex in (0, +∞) .
From this contradiction and Lemma 3.2 we conclude that z = x ∈ [−1/2, 0) , which
proves the equality in (4.1).

We proceed to prove the second and third inequalities in (4.1). Let x = −ξ with
ξ ∈ (0, 1/2] . Then,

φp(−ξ) = (1 − ξ)p − ξ p + pξ p−1.

Since pξ p−1 � 2pξ p , because 1 � 2ξ , we get, defining α(ξ) = (1−ξ)p+(2p−1)ξ p ,

φp(−ξ) � α(ξ). (4.6)
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Observe that

α′(ξ) = −p(1 − ξ)p−1 + (2p − 1)pξ p−1. (4.7)

It follows easily from (4.7) that α′(ξ) � 0 if and only if ξ � ξ∗ , with ξ∗ =[
1 + (2p − 1)1/(p−1)

]−1
. So, we get from (4.6)

α(ξ∗) = min{α(z) : ξ ∈ (0, 1/2]} � cp. (4.8)

The definitions of α and ξ∗ give, after some simple algebra,

α(ξ∗) =
[
1 + (2p − 1)−1/(p−1)]1−p

. (4.9)

Take r such that (1/r) + [1/(p − 1)] = 1 . Since p − 1 > 1 , we get by Hölder’s
inequality applied to

(
1, (2p − 1)−1/(p−1)

) ∈ R2 and (1, 1) ∈ R2 ,

1 + (2p − 1)−1/(p−1) �
[
1 + (2p − 1)−1]1/(p−1)

21/r = 2

(
p

2p − 1

)1/(p−1)

, (4.10)

using the definition of r in the equality. By (4.9) and (4.10)

α(ξ∗) � 21−p

(
2p − 1

p

)
= 21−p(2 − 1/p). (4.11)

The second and third inequalities in (4.1) follow from (4.8), (4.9) and (4.11), observing
that φp(−1/2) = p21−p � cp . �
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the American Mathematical Society 127 (1999), 2405–2415.
[17] KIWIEL, K. C., Proximal minimization methods with generalized Bregman functions, SIAM Journal on

Control and Optimization 35 (1997) 1142–1168.
[18] KIWIEL, K. C., Free-steering relaxations methods for problems with strictly convex costs and linear

constraints, Mathematics of Operations Research 22 (1997) 326–349.
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