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DUALITY PRINCIPLES AND REDUCTION THEOREMS

AMIRAN GOGATISHVILI AND LUBOŠ PICK

Abstract. We introduce a fairly general class of Banach function spaces ΛX given by ‖f ‖ΛX :=
‖f ∗μ ‖X , where f is defined on a totally σ –finite non-atomic measure space (R, μ) , f ∗μ is
the non-increasing rearrangement of f with respect to μ and X is certain rearrangement-
invariant space over the interval (0, μ(R)) . This class contains for example classical Lorentz
spaces. We prove a general duality principle for these spaces and present several applications. In
particular, we prove theorems which enable us to reduce weighted inequalities involving integral
operators restricted to monotone functions to certain more manageable weighted inequalities.
Reduction theorems are then applied to obtain a characterization of embeddings between ΛX
spaces.
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