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INEQUALITIES FOR POSITIVE LINEAR
MAPS ON HERMITIAN MATRICES

J. MICIC, J. PECARIC, Y. SEO AND M. TOMINAGA

(communicated by S. Saitoh)

Abstract. The aim of this work is to generalize the main inequalities in [9] as follows: Let A
be a Hermitian matrix, let @ be a normalized positive linear map, let f and g be real valued
continuous functions and let F(u,v) be a real valued function matrix non-decreasing in its first
variable. Real constants o and 8 such that

al SF®(f(A)),g(P(A)] <Pl

are determined. If f is a concave (resp. convex) function then the determination of f3 (resp.
o) is reduced to solving a single variable maximization (resp. minimization) problem. Some
applications of these results to the power function, the means and the Hadamard product are also
given.

1. Introduction

Let A be a Hermitian matrix with spectrum in [m, M], let f(¢) be a real valued
continuous function on [m, M| and let ® be a normalized positive linear map. In [9],
Li and Mathias determined real constants o4 and f3; (i = 1,2) such that

@ (f(A)) <f (®(A) <Bi®(F(A)), (L.1)
ol <f (®(A)) — @ (f(A) < Bl (1.2)

Also, Mond and Pecarié¢ [11, 13] showed the following theorem for operator convex
functions, which is an extension of the converses of Jensen’s inequality: Let A; be
positive operators on a Hilbert space H satisfying ml < A; < MI (i = 1,2,...,n),
where 0 < m < M, ¢ (i = 1,2,...,n) normalized positive linear maps and «;
(i=1,2,...,n) positive numbers such that " ; @; = 1. Let f be a operator convex
function on [m, M]. If F(u,v) is a real valued function operator monotone in its first
variable, then

F Z wi9i (f (A1) .f Z ;i (Ay)
i=1 i=1
f(M) —f(m)
< {mrilngF {f(m) + W(f - m)’f(f)} }I- (1.3)
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Asaresultof it, if we put F(u,v) = v 2uv=2 or F(u,v) = u—v, then the upper bounds
in the ratio and difference inequalities were given for the power function f (r) = #.
Similarly, Mond and Pecari¢ [12, 14] gave the upper bounds in the ratio and difference
inequalities of means: If r < s and either s ¢ (—1,1) or r & (—1,1), then

MY (A; 0, w) < AMJ(A; ¢, w) (1.4)
and
ME(As 9, w) — MU (A 9, w) < AL (1.5)
where y
Lo (ADY
M A 9, w) = (Z—li) (r#0, reR),
Do O

and the upper bounds A and A are explicitly determined. Moreover, in [15] they gave
some other extensions of Ando’s results [1] to self-adjoint operators.

In [16, 17] Mond and Pecari¢ considered the following mean and estimated the
difference and ratio inequalities analogous to (1.4) and (1.5):

k 1/r
M (A U) = (Z U,-A;Uf> (r #0),
i=1

where A;(i = 1,...,k) are positive definite Hermitian matrices of order n, with
eigenvalues contained in the interval [m, M] (0 < m < M) and U; are ¢ X n matrices
such that Zf:l uu; =1.

On the other hand, Mond and Pecari¢ showed a general inequality for positive
operators including real valued convex functions. Furthermore, Furuta [7, 8] gave
extensions of inequalities due to Ky Fan, Mond and Pecari¢ which are associated with
Hoélder-McCarthy and Kantorovich type inequalities. Inspired by Furuta’s ideas, Mici¢,
Seo, Takahasi and Tominaga in [19] generalized a theorem by Mond and Pecari¢ on
the converses of Jensen’s inequality: Let A; be positive operators on a Hilbert space
H satisfying ml < A; < MI (i = 1,2,---n), where 0 < m < M. Let f(t) be a
real valued continuous convex function on [m, M| and let x,xz,--- ,x, be any finite
number of vectors in H such that "7 | [lx;]|> = 1. If g(¢) is a real valued continuous
function and F(u,v) is a real valued function non-decreasing in u, then

Z(f (Ai) xi,xi) , 8 (Z (Aixi,xi)>]

i=1

F

< { max F {f(m) +M(I—m),g(t)] }1. (1.6)

m<t<M M—m

In this paper, based on ideas due to Mond-Pecari¢ and Furuta, we shall generalize
a theorem of Li-Mathias, that is, we shall determine real constants ¢« and 8 such that
the following inequality holds

al <F[®(f(A)),g(P(A))] < BI. (1.7)
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Similarly to [9], the problem of bounds determination in (1.7) is reduced to a problem of
approximation of a function f by a matrix convex or a matrix concave function (Section
3). In the case f is a concave (resp. a convex) function this problem is reduced to
solving a single variable maximization (resp. minimization) problem (Section 4). In
these cases the inequality is sharp and then a non-trivial positive linear map attaining
the equality is given. As applications we shall show general difference and ratio sharp
inequalities, and inequalities related to the power functions, the means of operators and
the Hadamard product.

2. Preliminaries

We use H), to denote the space of n x n Hermitian matrices and use > to denote
the positive semi-definite partial order, so that A > B means that A — B is positive
semi-definite, i.e. X*(A — B)X > 0 for all n-vectors X.

If A € H,, then there exists a unitary matrix U such that

A= U*AU,

where A = diag(A1,42,...,A,) and the A; are the eigenvalues of A. Assume now
that f (4;) € C,i € {1,2,...,n} is well defined. Then f (A) may be defined by

f(A) = Urdiag(f (A41).f (A2), - - .f (An))U.

f | H, is called a matrix function.
A matrix function f is called matrix monotone on an interval [m,M] if for
n=1,2,... and forall A,B € H, with spectra in [m, M]

AZ2B=f(A)>f(B)

and it is called matrix convex on [m,M] if for n =1,2,... and for all A, B € H, with
spectra in [m, M]

F(1=DA+B) <(1—0)f () +1f(B) 0<r<L (2.1)

We say that f is matrix concave if the reverse inequality in (2.1) holds for n = 1,2, ...
See [2] or [10, Part V] for more information about matrix monotone and matrix convex
(concave) functions.

A linear map ® from H, to Hj is said to be positive if it transforms H,| to H7 ,
where H; is the open cone of positive definite matrices. It follows that a positive linear
map ® is monotone in the sense that A > B implies ®(A) > ®(B). A positive linear
map is said to be normalized if it maps the identity matrix I, to the identity matrix 7,, .
See [9] for some common examples of normalized positive linear maps.

If A € H, hasaspectrumin [m, M] thenso does ®(A) for any normalized positive
linear map ® and so matrix function f (®(A)) is also defined.

For the sake of convenience, we prepare some notations. We denote

_SM) —f(m) _ Mf(m) — mf (M)
T M-m T M—m
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for a real valued continuous function f on the interval [m, M] and particularly

MP — mP MmP — mMP
Vp = ———

S M= m

for the power function f (¢) = # . Also, we introduce the following constant by Furuta

(see [8] and [20)):
q
Qﬁme)zlw (L—2ﬂ>,
-4\ 49 V
where ¢ is a real number such that ¢ > 1 or g < 0.
We denote {conx.} (resp. {conc.}) the set of continuous matrix convex (resp.
concave) functions defined on [m, M].

We shall use the following Jensen’s inequality (cf. [1, Theorem 4], [3, 4], [9,
Theorem 2.1]):

JENSEN’S INEQUALITY. Let f be a matrix concave function on [m,M] and let
A € H, with spectrum in [m,M]. If ® is a normalized positive linear map, then

[ (@A) 2 @ (F(A)).

3. A general theorem

We shall first generalize a theorem of Li-Mathias, which is based on the ideas due
to Mond-Pecari¢ and Furuta.

THEOREM 3.1. Let A be a Hermitian matrix with spectrum contained in [m,M].
Let ® be anormalized positive linear map from H, to H;. Let f and g be real valued
continuous functions on [m,M|. Let F(u,v) be a real valuedfunction definedon UXV,
matrix non-decreasing in u, where U and V are intervals such that U D f [m, M| and
V D g[m, M]. Then the following inequalities hold

s min FIKO.g()) 1< FIO (F(4) ¢ (9(4)
k<f

< i . .
S ,omin (max Fk(r),g(r)] 01 (3.1)
k>f

Proof. We prove the right-hand side of the inequality (3.1). Let k be a matrix
concave function on [m, M] such that f(r) < k() forall ¢ € [m,M]. It follows from
the spectral theorem that f (A) < k(A) . Using the positivity of ® we have ® (f (4)) <
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® (k(A)). Furthermore, by Jensen’s inequality, we have @ (k(A)) < k(P(A)) and
it follows that @ (f (A)) < k(®(A)). Using the matrix non-decreasing character of
F(-,v), we have

Fl®(f(A)), 8 (P(A))] < Fk(P(A)), g (D(A))]

g{ max F[k(t),g(t)}}l

teo(®d(A))

< { max F[k(;),g(t)}}z.

m<t<M
Therefore, we minimize this bound over all matrix concave functions k£ to obtain the
upper bound in the inequality (3.1).
As a complementary result, we cite the following theorem:

THEOREM 3.2. Under the same hypothesis as in Theorem 3.1, except that F is
matrix non-increasing in its first variable, the following inequalities hold

kerglax }mrgntignMF [k(2),g(t)] p I < F[®(f(A)),g(P(A))]
k>f

< i . .
< kel{lziilx,}mgngF [k(1),8(1)] ¢ 1 (3.2)
k<

Proof. We prove this theorem by replacing F by —F in Theorem 3.1.

If we put g =f in Theorem 3.1, then we have the following corollary:

COROLLARY 3.3. Let A, ®, f and F be as in Theorem 3.1, the following
inequalities hold

max min F[k(z).f (1)] p I < F[®(f(A)).f (D(A))]

ke{conx.} MSEM

k<f

< i . .

< ker{fifa}mrg&xMF [k(2),f (1)] ¢ 1 (33)
k>f

REMARK 3.4. Notice that the constant function k(f) = max,,<s<mf (s) for all
t € [m,M] is a matrix concave function that bounds the function f from above. Since
we are optimizing over the right-hand side of (3.1) matrix concave functions, we can
show that there are indeed a function & that attains the extreme.
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THEOREM 3.5. Let the hypothesis of Theorem 3.1 be satisfied. If f is a real
valued continuous convex function on [m, M| then the following inequality holds

F[®(f(A)), 8 (D(4))]

N

{ max Fus -1+ vf,g(t)]}l. (3.4)

m<t<M

If f is a concave function on [m, M) then the following inequality holds

FI®(F(4)) g (@(A))] > { min Fly -1+ vf,g<r>1}z. (3.5)

m<t<M

Proof. We prove only inequality (3.4). If we put h(r) = ur -t + vy, then h
is matrix concave function. The convexity of f ensures that f(r) < h(¢) for all
t € [m,M]. If k is a matrix concave function and f (¢) < k() for all 7 € [m,M] then
h(m) = f(m) < k(m) and h(M) = f (M) < k(M) . Since a matrix concave function
is necessarily concave, we have h(f) < k(¢) for all z € [m,M]. Using the matrix
non-decreasing character of F(-,v), we have

Flh(t),g(t)] < Fk(2),g(r)] forall z € [m,M].

It follows that the minimum in the right-hand side of (3.1) is attained at %. Thus we
proved the inequality (3.4).

REMARK 3.6. The bounds in Theorem 3.1 are rather hard to be evaluated in
general. One may consider only linear function k£ instead of all matrix concave or
matrix convex functions. This simplifies the evaluation of the bounds at the cost of the
possibility to weaken them. Obviously, if f = g is a concave (resp. convex) function
on [m, M] then the graph of the linear function k which satisfies k > f (resp. k <f )
and

min  max Fk(7),f(t)] < max F[k.(1),f(1)]

ke{conc.} MSISM m<t<M
k>f
(resp. min F[k:(r).f(1)] < kelgg}w}mg}igMF [k(2).f (0)])
k<f

is tangent to the graph of y = f(#) passing through a point (r,f (r)) with m <r < M.
For such a function

ke(t) = f (r) +f'(r)(t = 1),
the value max,<,<m F [k-(?),f (£)] (vesp. ming,,<m F [k-(7),f (¢)] ) occurs at t = m
or M. It follows that the optimal solution of this maximization (resp. minimization)
problem occurs at the function &, such that

Flk(m).f (m)] = F [k(M),f (M)] . (3.6)

We do not know for sure that the result is optimal in the following sense: The left-hand
side or the right-hand side of the inequality (3.1) is sharp in the sense that for any real
valued continuous functions f and g and for any matrix A with spectrum in [m, M]
there is a non-trivial normalized positive linear map @ for which the bound is attained.
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4. Bounds for converses of Jensen’s inequality

As application of Theorem 3.1, we discuss an extension of [9, Lemma 2.2], which
give us a unified view to bounds in a theorem by Li-Mathias. Moreover, we shall
consider the optimality of our results by using a technique of [9].

THEOREM 4.1. Let A be a Hermitian matrix with spectrum contained in [m,M].
Let ® be anormalized positive linear map from H, to H;. Let f and g be real valued
continuous functions on [m,M). Then for a given real number o

ag(®(A)) + Bil < @(f (A4)) < ag(P(A)) + B! (4.1)
holds for

b=, max min (k)= ag(0)},

k<f

= i k(t) —og(t)}.
B ke?zila}mrg&xM{ (1) — og(t)}
k>f

Proof. Let us put F(u,v) = u — av in Theorem 3.1. Then it follows from the
right-hand side of (3.1) that

‘D(f(A))ag(‘D(A))é[ min rggxMF(k(t)vg(t))ll
keig;tcu}m\’\

= l min  max {k(7) ag(t)}]l.

kE{conc.}mgth
k>f

The left-hand side of (4.1) is proved in the same way.

We have Corollary 4.2 if we put & = 1 in Theorem 4.1 and Corollary 4.4 if we
choose a such that f = 0 in Theorem 4.1. We frequently use them in the case that the
function k is explicitly defined.

COROLLARY 4.2. Let the hypothesis of Theorem 4.1 be satisfied. Then

I<D(f(A) — g (D))

ke{conxA}mgth

[ max min {k(r) — g(¢)}
k<f

< [ min  max {k(¢) —g(t)}] I. (4.2)

ke{conc yMSISM
k=f

Furthermore, if g is a strictly convex differentiable function on [m, M), then for
every matrix strictly concave differentiable function k in the right-hand side of (4.2)
we have max {k(t) — g(t)} = k(20) — g(to) where ty € [m,M] may be determined

m<t<

as follows:
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o if k'(m) > g'(m) and k'(M) < g'(M), then let ty be the unique solution in
(m,M) of the equation k'(t) = g'(1),
o if k'(m) < g'(m), thenlet tg = m,
o if K'(M) > g (M), thenlet to = M.
Similarly, if g is a strictly concave differentiable function on [m, M|, then for any
matrix strictly convex differentiable function k in the left-hand side of (4.2) we have
mgltiélM {k(r) — g(t)} = k(t0) — g(to) where ty € [m,M] may be determined as follows:

o if K'(m) < g'(m) and kK'(M) > g'(M), then let ty be the unique solution in
(m,M) of the equation k'(t) = g'(¢)

o if k'(m) > g'(m), thenlet tg = m,

o if K'(M)< g'(M), thenlet toy =M.

Proof. If we put oo = 1 in Theorem 4.1, then we have (4.2).

Let g be a strictly convex and k (matrix) strictly concave both differentiable
functions. We denote h(r) = k(t) — g(¢) . Then A'(z) is strictly decreasing on [m, M].
If #'(m) > 0 and A (M) < 0, then the equation 4'(r) = 0 has exactly one solution
to € (m, M) and the maximum value on [m, M] of the function # is attained for t = ;.
If ' (m) < 0, then we have &’ < 0 on [m,M]. Thus £ is a decreasing functionon [m, M]
and the maximum value on [m, M] of this function is attained for 7 = m. Similarly, if
W (M) > 0 then /' > 0 on [m,M], i.e. A is increasing on [m, M| and the maximum
value on [m, M] of the function 4 is attained for t = M.

The case when g is a strictly concave and k (matrix) strictly convex both differ-
entiable functions is proved in the same way.

REMARK 4.3. We obtain the inequality (1.2) (i.e. [9, Lemma 2.2, ineq. (2.1)]) if
weput g =f in (4.2).

COROLLARY 4.4. Let the hypothesis of Theorem 4.1 be satisfied. Suppose in
addition that either of the following conditions holds (i) g(t) > 0 for all t € [m,M]
or (ii) g(t) <0 forall t € [m,M]. Then the following inequality

. k(1)
[ max  min {m}lg(d)(A))gd)(f(A))

ke{conx.} mISM

X

8 (®(4)) (4.3)

~—

min  max @
s LG{C()nC} mgng{g(t }
k>f
holds in case (i), or
[ max  max {%}]g(d)(A)) <D(f(A))

ke{conx.} mISM
k<f

8 (®(4)) (4.4)

. . { k() }
< min  min —
ke{conc.} m<ISM g(t
k=f

~—
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holds in case (ii).

Furthermore, if g is a strictly convex twice differentiable function on [m, M]
and if f(t)/g(t) > 0 for all t € [m,M], then for any matrix strictly concave twice
differentiable function k in the right-hand side of (4.3) (resp. (4.4)) we have

max (K0 /20) = k) /so0) (e min {4005} = Ko )

where ty € [m, M| may be determined as follows:

o if kK'(m) > k(m) g(:n">> and k' (M) < k(M) ;(%> , then let 1y be the unique solution

n (m,M) of the equation k'(t)g(t) = k(1)g' (¢)

o if K(m) < k(m)S,

o if K(M) > k(M)EDD thenlet 1= M.

Similarly, if g is a strictly concave twice differentiable function on [m,M) and if
f()/g(t) <0 forall t € [m, M), then for any matrix strictly convex twice differentiable
Sfunction k in the left-hand side of (4.3) (resp. (4.4)) we have

=m

min_ {k(1)/(0)} = k(o) /5(10) (p max {k()/g(r)}—k(ro>/g<ro>)

m<t<M m<ts<M

where ty € [m,

o if k'(m) g(m)
n (m,M) of the equation K ()g(r) = k(1)g' ()

<
M)

o if k'(m) = k(m ) )) then let ty = m
<

o if K'(M)

M| may be determined as follows:
k(m)& ") g K (M) > k(M) g(%> , then let ty be the unique solution

k(M ) >> then let tg = M.

Proof. The inequality (4.3) for case (i) and (4.4) for case (ii) follows from
Theorem 4.1 if we choose o such that f; =0 (i =1,2).

Further we only prove it for the case of (i). Suppose that g is strictly convex and
k is matrix strictly concave. Put h(r) = k(¢)/g(t). Now K'(t) = H(t)/g*(t), where
H(t) = k' (r)g(t) — k(#)g'(¢). Since k" <0, k> f, g”" >0, f/g > 0 on [m,M], we
have H'(t) = k" (t)g(t) — k(¢)g" (t) < 0, so that H is strictly decreasing on [m, M]. If
H(m) > 0 and H(M) < 0, the equation H(t) = k'(r)g(t) — k(¢)g’ () = 0 has exactly
one solution 7y € (m,M). Hence, the maximum value on [m, M] of the function A
is attained for r = 7. If H(m) < O then we have H < 0 on [m,M] since H is a
strictly decreasing function on [m,M], so that 4 is strictly decreasing on [m, M]. Hence,
the maximum value on [m, M] of the function # is attained for + = m. Similarly, if
H(M) > 0 then H > 0 on [m,M], i.e. & is strictly increasing on [m,M] and the
maximum value on [m, M| of the function # is attained for + = M .

REMARK 4.5. We obtain the inequality (1.1) (i.e. [9, Lemma 2.2, ineq. (2.2)]) if
weput g =f in (4.3).
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Next we observe sharp inequalities in the sense that was described in Remark 3.6.
For these results we need the following lemma as an extension of [9, Lemma 2.3].

LEMMA 4.6. Let A be a Hermitian matrix with spectrum contained in [m,M)]
and let Apin(A) = m, Apax(A) = M. Let f, g be real valued continuous functions on
[m, M]. Then for any t* € [m,M] there is a real valued normalized positive linear map

D such that
F[®(f(A)), g (®(A)] = F[us - 1" + vy, 8(17)] -
Proof. Let U be a unitary matrix such that
U*AU = diag()tl,/lz, ce ,A,n),

where A; = m and A, = M. For t* € [m, M|, we denote 6 = (M —t*)/(M —m). We
define map @ : H, — C by

O(X) = (\/561 + mez)*x (\/561 + MQ) ;

where e; and e, are unit eigenvectors of A corresponding to A; and A, respectively.
One can check that @ is a normalized positive linear map. Now we have

g(@(4)) = g((Voer+ V= 662)*A (VBer + V= 0e2)
g (041 + (1= 0)A) =g (Om+ (1 — O)M) = g(1)

and

®(f(4) = (Voer+ \/ﬂez)* £4) (Ver +VT=0ez)

M- f—m

T )+ (M)

= 0f(m) + (1 - 6)f (M)
= Wt + v
Thus we have
Fl®(f(A)), 8 (P(A)] = Fluy -1 + vr, 8(t")],
as required.

Adding to some conditions in Theorem 4.1, we obtain the explicit estimations of
the bounds for the ratio and difference inequalities.

THEOREM 4.7. Let A be a Hermitian matrix with spectrum contained in [m, M) .
Let ® be anormalized positive linear map from H, to H;. Let f and g be real valued
continuous functions on [m, M. Moreover, if f is a convex function (resp. a concave
function) on [m,M)], then for a given real number o

O(f(A) < ag(®(A)) + Bl (resp. O(f(A)) > ag(®(A)) +BI)  (45)
holds for

B= max {up-t+v —oglt)p  (resp. B= min {u-1+vp —ag(n)}).
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Proof. We only prove it for the convex case. Let us put F(u,v) = u — o in
Theorem 3.5. Then it follows from the inequality (3.4) that

D(f(A) — ag(®(A)) < max Flup -1+ vp,g()]I

m<t<M

- 171212XM{MJC ! + Vf N Otg(t)}[,

which gives the desired inequality.

Next we shall show three corollaries of Theorem 4.7, which frequently are used in
the cases that g is a convex or concave function.

COROLLARY 4.8. Let the hypothesis of Theorem 4.7 be satisfied. Let o« € R a
given real number. If f is a convex and 0.g is a concave function (resp. f is a concave
Sfunction and og is a convex) on [m, M|, then

O(f(A)) < ag(P(A) + BT (resp.  D(f(A)) > ag(P(A)) + BI)
holds for B = s - to + v¢ — 0g(to) where

_ M > o (resp. py < o)

o = X (46)
m i pp < ol (resp. pp > o)

This inequality is sharp in the sense that for any Hermitian matrix A there is a real

valued normalized positive linear map ® such that ®(f (A)) — ag(P(A)) is equal to
the upper bound (resp. the lower bound).

Proof. We prove only the case when f is a convex and og a concave func-
tion on [m,M]. Then h(t) = u -t + vy — ag(r) is a convex function and so
max,<<m h(t) = max{h(m), h(M)}. If h(M) > h(m) then max,<.<pm h(t) = h(M),
otherwise max,,<,<p h(t) = h(m). Put r* = 1, and denote by ® : H, — C a
normalized positive linear map defined as

D(X) = (\/Eel + Mez)*X (\/Eel + Mez) , 4.7)

where 8 = (M —19)/(M — m), e; and e, are unit eigenvectors of A corresponding
t0 Amin(A) = m and Anu(A) = M respectively. Then it follows from Lemma 4.6 that

D(f () — ag(P(A)) = [prto + vy — oglto)]1 -
If we put 1 in Theorem 4.7, then we have the following:
COROLLARY 4.9. Let the hypothesis of Theorem 4.7 be satisfied. If f is a convex
(resp. a concave) function on [m, M) then the following inequality holds
@ (£(A) — g (P(A)) < [maxpercm {1+ vp = g(1)}]1 (4.8)
(resp. @ (f(A)) — g (P(A)) = [minnccm {1y -1+ v —g(O)}]) . (49)

Suppose in addition that g is a strictly convex (resp. a strictly concave) differentiable
function on [m, M|, then the inequality (4.8)(resp. (4.9)) is sharp and the equality
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is attained for a real valued normalized positive linear map ® : H, — C defined by
(4.7) and

&N w) if  g(m) <up <g' (M) (resp. ¢'(M) <y <g'(m)),
=14 m if  gm > (resp. g'(m) < ),
M if  &M)<uw (resp. g'(M) > ).
(4.10)

REMARK 4.10. We can obtain the opposite inequality of (4.8) in Corollary 4.9.
Instead of maximizing over all matrix convex functions we took the easier route over
the favourable chosen linear functions: Let f and g be two differentiable functions on
[m,M] and let f be convex. If f'(m) < u, < f'(M) then

{f(r) = pgr — ve I < O(f (4)) — g(P(A)),

when g is a strictly convex function and

{f(r) = g(t0) + 1 (to — 1)} < @(f (4)) — g(P(A)),

when g is a strictly concave, where r = f'~!(u,) and 7o = g'~'(u,). Otherwise, if
Ue < f'(m) or f'(M) < g then

e {mw’f (m) +f"(m) (s —m) — (1)}

min, {7(4) 47/ 04)(e )~ g0} | 1

< O(f(A)) — g(P(A)).
Indeed, because f is convex, then

®(f () —g(P(A)) > max min {k(r) —g(t)} 1> min {h(1)}]

ke{conx.} m<ts<M m<trs<M
k<f

where h,(t) = f (r) +f'(r)(t —r) — g(t), r € [m,M]. We choose r = f'~!(u,) when
fl(m) < pg < f'(M), r =m when pu, < f’(m) or r =M when f'(M) < u,. In
the case of convexity of g the function #, is concave and so its minimum is attained
at m or M. (Specially, we have h,(m) = h,(M) when r = f'~1(u,) ). In the case of
concavity of g the function A, is convex and so its minimum is attained at 7y € [m, M] .
In the same way we can obtain the opposite inequality (4.9).

Indeed, in the case of convexity

REMARK 4.11. If we put g = f in Corollary 4.9 we have [9, Corollary 2.4] with
remark that #* was not properly determined.

Also, when we replace ®(A) with > | 0;¢; (A;) andfor g = f aconvex function
we obtain a matrix analogous to an operator case [13, Theorem 3]. Further under the
hypothesis of Corollary 4.9 we have

fm) —glm) < max {uy -1+ vr —g(0)} <f(m) —g(m) + [ur —&'(m)] (M —m)
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(Proofis givenin [19, Theorem 7] ) . Hence for f = g we have estimate in [13, Theorem
3]
0< max {1+ vy =f(0)} < [y —f'(m)] (M = m).
COROLLARY 4.12.  Let the hypothesis of Theorem 4.1 be satisfied. Suppose in
addition that either of the following conditions holds (i) g(t) > 0 forall t € [m,M] or

(ii) g(t) <O forall t € [m,M]. If f is a convex function (resp. a concave function)
n [m, M|, then the following inequalities hold

D (1(4)) < [maxuein { Lot }] 2 (@ (4.11)
(resp. @ (£ (a)) > [minncicn { 255 H g (@ ) (4.12)

in case (i), or
(f (4)) < [minneran {5t ] 8 (@(4)) (4.13)
(resp. D(f(A) > [maxmgth {Mf;&r)vf }] g (CD(A))) (4.14)

in case (ii). Suppose in addition that f (m) > 0, f (M) > 0 in case (i) or f(m) <0

f(M) < 0 in case (ii) and g is a strictly convex (resp. strictly concave) twice
differentiable function on [m, M| then the inequalities (4.11), (4.13) (resp. (4.12),
(4.14) ) are sharp and the equality is attained for a real value normalized positive linear
map @ defined by (4.7) and

the solution of usg(t) = (ks -1+ ;) g'(1) if f(M)g(,,,>)<Mf<f( )Eir

=y M i > M)
" if W <f( ) (
(4.15)
(resp.
the solution of Wyg(t) = (iy -1+ vy) /(1) if [ (M) <y < f (m) 533
h=q4M if W <f(M)Z(%>
" if w=>f (m)ggéfff

Proof. The inequalities (4.11), (4.12) for case (i) and (4.13), (4.14) for case
(i) follow from Theorem 4.7 if we choose o such that f = 0. Next, to show the
inequality (4.11) is sharp for a convex function f and a strictly convex function g,
we proceed only with case (i) since the proof in case (ii) is essentially the same.
Since f(m) > 0, f(M) > 0 and g(r) > 0, we have (us -t + vf)/g(t) > 0 and

according to Corollary 4.4 we have max,,<.<u {“ £l ;J)vf } =4 g’&;vf for 1y € [m, M]
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determined by (4.15). Using Lemma 4.6 for t* = o and map ® defined by (4.7) we

have @ (£ (4)) = “02 ¢ (®(A)) . Hence,

o) = | max {2 o).

m<t<M g(t)

REMARK 4.13. Similarly to Remark 4.10, we obtain the opposite inequality of
(4.11) in Corollary 4.12. Let f and g be two twice differentiable positive valued

functions on [m, M] and let f be convex. If g(m)j;,(%) <y < gM )% then

f(r)
Ugr + vgg(

®(A)) < B(f(4)),
when g is a strictly convex function and

F(r)  Heto + Vg

(@) < oY),

when g is a strictly concave, where r is the unique solution in [m, M| of ?((:; = Hgil—ivg
and 7o is the unique solution in [m, M] of % = u;jvg . Otherwise, if g’(‘}i) ?((:n";
o e
or 7 < zon then
/ t —
max  min {f(s) )t = 9) } g(®(A)) < O(f (A)).
se{mM} m<t<M g(1)
Indeed, because f is convex, then
. k(z) .
> — >
PG> max | min {50} s@w) > min, 100 stoa)
k<f

where h,(f) = % , r € [myM]. We choose r which is the unique solution

in [m,M] of G((:)) = Hgfff’vg when g(m)% < Hg < g(M)ic((—l%), r = m when
M fm) _ fon o Hg ;

20 < Fomy OF T = M when 700) < 200 - In the case of convexity of g, the
function A, is concave and so its minimum is attained at m or M. (Specially, we

' _ _we

FiG) Ugr+Vg
concavity of g the function 4, is convex and so its minimum is attained at 7y € [m, M].
In the same way we can obtain the opposite inequality (4.12) and in case f,g < O the

opposite inequalities of (4.13), (4.14).

have h,(m) = h,(M) when r is the unique solution of ). In the case of

REMARK 4.14. If we put g = f > 0 in Corollary 4.12 we have [9, Corollary 2.4]
for the ratio case.
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Also, when we replace ®(A) with >} | @;¢; (A;) and for g = f a convex
function we obtain a matrix analogous to an operator case [13, Theorem 4]. Further let
the hypothesis of Corollary 4.12 be satisfied and f , g are convex functions. Then

in case (if). For f = g an extreme of h(t) = (uf -t + v¢)/g(t) on [m,M] is at

in case (i) or

to € (m,M) and we have the estimate in [13, Theorem 3]: 1 < max,,<;<m {%}

in case (i) or 0 < minyg<m {%f)w

} <1 incase (if).

5. Applications I

In this section, as application of our general theorem, we shall consider the upper
and lower bounds of the difference and the ratio in inequalities of the power functions
and the means. We use our approach to obtain results for the cases that were not covered
in [9].

5.1. Application to power functions

THEOREM 5.1. Let A be a positive definite Hermitian matrix with spectrum
contained in [m,M], where 0 < m < M. Let ® be a normalized positive linear map
from H, to Hy. Put g € R. If f is a real valued continuous convex function on
[m, M|, then for a given real number .

D(f(A) < a®(A)? + BI (5.1)
holds for

4 L
B = a(q—l)(o%)ql—&—vf, if m<(g—fq ' < Mand ag(g—1) >0
max{f (M) — aM?,f (m) — am?}, otherwise.

But if f is a real valued continuous concave function on [m, M), then for a given real
number o

(f (4)) = ad(A) + BI (5.2)
holds for

q

B = a(qfl)(g-—fq)qlJrvf if m<(5'—C])F<Mandaq(qfl)<0
min{f (M) — oaM?,f (m) — ami} otherwise.

Inequalities (5.1) and (5.2) are sharp in the sense that there is a normalized positive
linear map @ for which the equality is attained.
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Proof. In the case of ag(q — 1) > 0, we obtain inequality (5.1) if we put
g(t) = ar? in Corollary 4.9. Similarly we prove the concave case.

We have the following Corollary by applying f () = # to Theorem 5.1.

COROLLARY 5.2. Let the hypothesis of Theorem 5.1 be satisfied. If p € R\[0, 1)
(resp. p € (0,1] ) and q € R, then for a given real number o

D(A?) < 0®(A)! + BiI  (resp. D(AP) = a®(A)! + Bo1) (5.3)

holds for

4 1
q—1

B = oalg—1) (alqutp) +vp if m< (anﬂﬂ,)F <M and ag(g—1)>0
max{m’ — om?, MP — aM} otherwise,

(resp.

9 1
q—1

By — oalg—1) (o%q“ﬂ’) +vp If m< (anuﬂ,)F <M and ag(g—1)<0
min{m” — am?, M — aM?} otherwise.

)

The inequality (5.3) is sharp.

Next we shall show the following two theorems, which are extensions of [9,
Theorem 3.1 and Theorem 3.2].

THEOREM 5.3. Let the hypothesis of Theorem 5.1 be satisfied. If p € R\{0} and
q € R, then

Pol < D(A?) — D(A)! < Bil (5.4)
with

4 L
B = (¢—1) (éuﬂ’)qil +Vp  if m< (éﬂﬂ’) " < M and qlg—1)>0
max{m’ —m?,MP — M} otherwise

if p € R\[0, 1],
Bl = (%)”f“(g)’%’ if m<(§)’)+q<Mand0<p<q

max{m’ —m?,MP — M7}  otherwise
ifpe(0,1]
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and
7o ]
= (=1 (2u) ™ +ve i m< (L) <Mand glg—1) <0
min{m” —m?, MP — M?}  otherwise

ipr(O,l),
b g)pfq_(%),lq i m<(g)”+q<Mand dp—q) >0

min{m” —m?, MP — M?}  otherwise

if m< (éuﬂ) <Mand qg(qg—1)<0

max min {(1 —p)s? +ps"~ 1t — 1} otherwise
s€{mM} m<t<M {( p) p }

ifp<—1orp>2.

The right hand inequality (5.4) is sharp for all values of p. The left hand of
inequality (5.4) is sharp when p € [—1,2].

Proof. We first consider (3 .

Case 1. Suppose p > 1 or p < 0. Put o =1 in Corollary 5.2. Then we have f;
and the right hand inequality is sharp.

Case 2. Suppose 0 < p < 1. Then the function f () = # is matrix concave. We
use k = f in inequality (4.2) of Corollary 4.2 to determinate f3;. This inequality is
sharp and the equality is attained for map (4.7), where £, is determined in usual way.

Next, we consider 3, .

Case 1. Suppose 0 < p < 1. Put @ =1 in Corollary 5.2. Then we have f3, and
the left hand inequality is sharp.

Case 2. Suppose —1 < p < 0 or 1 < p < 2. Then the function f(¢) = # is
matrix convex. We use k = f in inequality (4.2) of Corollary 4.2 to determine f3, .
This inequality is sharp and the inequality is attained for map defined by (4.7), where
to is determined in usual way.

Case 3. Suppose p > 2 or p < —1. Then f () = # is a convex function and we
use Remark 4.10 to determine f3; .

REMARK 5.4. If we put ¢ = p in Theorem 5.3 we obtain [9, Theorem 3.1]:

Bol < P(AP) — D(A)Y < il
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with
—A if p>2 or p<—1
Bp=<¢ 0 if —1<p<0or1<pg?2
A if0<p<l,
A ifp>1o0rp<O
B‘_{o if 0<p<L,
where

)4
1—y! ply —1)\ ™7

A=MP— " 4 op(p- 1N
-y T ){Y”—l

and y = M/m. The right hand inequality is sharp for all values of p and the left hand
inequality when p € [—1,2].

THEOREM 5.5. Let the hypothesis of Theorem 5.1 be satisfied. If p € R\{0} and
q € R, then

OCQCD(A)q < q)(AP) < O{l(I)(A)q (55)
with
o — Co(m,M;q) if m< < ve/ttw <M, q(qg—1)>0 and pqg >0
' max{;—i, %—: otherwise
if p e R\[0, 1],

=4 ™M i p<q
UM ifp>g

if p€(0,1], and

o { Co(m,M;q) if m< i ve/up <M and q(qg—1) <0
2:

. mP MP .
min{ 2z 77} otherwise

ifpe(01),
_ w1 if p>gq
az_{M”q if p<gq

lfpe [_170) orpe [172},

Ca(m,M;p)~" i pm®™" < g <pMT" and q(qg—1) >0
}:—Zth(m,M;p)flth(m,M; q)
0 = if pmqil < U g[)Mq71 and Q(q - 1) <0
max min {M} otherwise
se{mM} m<t<M “

ifp<—1orp>2.

Here Cw(m,M;q) is Furuta’s constant for f(t) = # and also Cu(m,M;p) is
Furuta’s constant for f (t) = 1. The right hand inequality of (5.5) is sharp for all
values of p. The left hand inequality of (5.5) is sharp when p € [—1,2].
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Proof. We prove this theorem by a similar method as in Corollary 5.3.

We first consider o .

Case 1. Suppose p > 1 or p < 0. Then we have ¢ as a unique constant which
satisfies B; = 0 in Corollary 5.2. The right hand inequality is sharp.

Case 2. Suppose 0 < p < 1. Then the function f () = # is matrix concave. We
use k = f in inequality (4.3) to determinate ¢y . The sharp is attained for map (4.7),
where 7y may be determined in usual way.

Next, we consider o .

Case 1. Suppose 0 < p < 1. Then we have oy as a unique constant which
satisfies B, = 0 in Corollary 5.2. The left hand inequality is sharp.

Case 2. Suppose —1 < p < 0 or 1 < p < 2. Then the function f(¢) = # is
matrix convex. We use k = f ininequality 4.3 to determinate ¢, . The sharp is attained
for map (4.7), where 7y may be determined in usual way.

Case 3. Suppose p > 2 or p < —1. Then f(¢) = # is a convex function and we
use Remark 4.13 to determine o, .

REMARK 5.6. If we put ¢ = p in Theorem 5.5 we obtain [9, Theorem 3.2]:

wL®(AY < D(A) < oy ®(A)

with
A7l if p>2 or p<—1
o = 1 if —1<p<0or1<pgK?2
A if 0<p<l,
A if p>1orp<O
al_{l if0<p<l,
where

Ao Y'Y ((p— Dy — 1)>p
(I=p)r=1\ prr-v)

and y = M/m. The right hand inequality is sharp for all values of p and the left hand

inequality when p € [—1,2].

5.2. Application to means

We recall Jensen’s type inequalities of power means on a positive linear map: If A
is a positive definite Hermitian matrix, then

@(Ar)l/r < q)(AS)l/S

holds for either r < s with ;s # (—=1,1),0or 1/2<r< 1 <sorr< —-1<s<
—1/2.
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In this section, we shall investigate the lower and upper estimates of the difference
and the ratio in power means on a positive linear map. We prepare the following
intervals:

(i) zrsé(=1,1),r¢(=1,1)

(i) s>1>r 1/2

(iif) r<—1<s<-1/2

(v)  s=>1,-1<r<1/2,r#0 (5-6)
) r<—1,-1/2<s<1,5#0

(vi) s>rség (-1, 1)orrég(—1,1)

If we put p = s/r in Remark 5.6 and replace A by A” or p = r/s, A by A®, then
we have the following theorem:

THEOREM 5.7. Let A be a Hermitian matrix with spectrum contained in [m, M),
where 0 < m < M. Let ® be a normalized positive linear map from H, to Hy . Also
let 1,5 be nonzero real numbers such that r < s. Then

OQCD(Ar)l/r < q)(As)l/s < alq)(Ar)l/r (5.7)
with
[ 1 ifeither (i) or (ii) or (iii), L .
0 = { A ifeither (l\)) or (V)7 o = A lf‘ (Vl)7
where

A= {(s r(yr;(_wml)}% {(rs(ysr)(_ysys)l) }_%'

and y = M/m. The right hand inequality is sharp when r,s satisfy (vi) and the left
hand inequality when r,s satisfy (i), or (ii), or (iii).

Proof. We prove this Theorem by a similar method as in [20, Theorem (Mond-
Pecari¢)1]. We shall consider only the case when s # r.

Suppose that s > 1 and r < 1. In this case we put p = 7. If r > 0 then
m < A" < M" and Remark 5.6 (for 1 < p <2 or p > 2) gives

(I)( )A/r < q)(Ab/r) r?/r(m M )q)(A)s/r if S/2 < r< 1’
or Cy(m, M; 2) ' D(AP/" < DAYT) < Cy(m, M: DAY/ if 0 < r < 5/2,

where C,(m,M; %) is Furuta’s constant for f (f) = #/". Then replacing A by A" we
have

AP D) < Cop M7 )Y ifs/2<r<l,
o8 Co 0 M5 2) 1B < DAY < M DAY i 0. < 5/2
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where (see [20, proof of Theorem (Mond-Pecari¢) 1])

Foagr Sy =) s =v) \ 7
Cor M) = A=) <<rs><w1>) '

The function f (¢) = £5 is matrix increasing if s > 1 and it follows that

DA/ < DA L Cppe (m, MT; ) SD(AN)YTif s/2<r<1, or
Coope(m", M7 £)S@(ANYT < DAY < Cpype(m", MT; £)VSD(ANYT i 0 <7 < 5/2,

s
y

1 r__ .8 *% ~
where C, (m",M"; f)l/s = {(SL(Z)(_;/ZJU} {(iiwﬁw} = A. Furthermore, con-

sider the case of s = 1. Thenfor 1/2 <r <1
D(A")" < B(A),
so for arbitrary s > 1, we have

D(A")" < B(A4) < DA <ADMANT if 1/2<r <1,
or ATl0(AN)!" < @A) < @A) <ABANYT if 0 <r<1/2.

If » <0 then M" < A" < m" and Remark 5.6 (for —1 < p < 0 or p < —1) with
the fact that the function f (¢) = /5 is matrix increasing gives

(A" < DA < Cope (M7, m 1) P O(ANT i r < =5, or

Cope (M7, ) SDANYT < DAY < Cpope (M7, m"; 2)VSD(ANYT if — s < r <0,

where (see [20, proof of Theorem (Mond-Pecari¢) 1]) C

(M7, m"; ‘—)% = A. There-
fore, similarly to above we have

D(AN)' < B(A) < D(A)* <ADANYT i r< 1,
or AT'®(AN) < @A) < DAY < AD@AN)if —1<r<O.

Now, suppose that 1 < r < s. In this case we put p = - and Remark 5.6 (for
0 < p < 1) with the fact that the function f () = ¢+ is matrix increasing gives

Cr/s(ms’MS; f)l/r(D(AY)l/f < @(Ai’)l/r S (D(AY)I/f
N

t

where (see [20, proof of Theorem (Mond-Pecari€) 1]) C,s(m*,M*;2)'/" = A~!, so
that we obtain

DA < DAY CADANYT i 1< r<s.

Therefore, we obtain the desired results in the cases of (i), (if) and (iii) for s > 1
and r <.
We prove first the case when —1 < s < 1. In this case we put p = *. If
0 <s <1 then m* <A* < M* and Remark 5.6 (for p < —1) gives
Cpps ', M3 2) "1 D(AT) < DAY/ < C s, M5 2 )D(AT).
s s

I
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Therefore, the function f (1) = £7 is matrix decreasing if » < —1 and it follows that
C,r/s(mS,MS; g)fl/rq)( r)l/r > (D(As)l/s

>,

wmlM‘)W¢(®W ifo<s<1,

so that we obtain the desired inequality.
Similarly, if —1 < s < 0 then M* < A* < m® and Remark 5.6 (for 1 <p <2 or

p > 2) with the fact that the function f () = ¢* is matrix decreasing gives

Crs(M*, )W¢(yﬁ>©mw“>¢mWhif 1<s<r/2,
or
Cts/r (Mr7mr; f)—l/s(D(Ar)l/r < q)(As)l/s
r

< C,

e (M s VDAY i /2 < r <0,
r

where C,./,(M°,m*; 2)V/r = A1,
Furthermore, consider the case of r = —1. Thenfor —1 < s < —1/2

(A~ < @A),
so for arbitrary r < —1, we have
DA < DA < DA,
Therefore we have

q)(Ar)l/r< (A 1) 1<
1

10} ( )l/vg
or ATlD(ANYT < DA

@ ADANT i —1<s< —1/2,
< DAY <A

ANV if —1/2<5<0.

s

Finally, let r < s < —1. In this case we put p = ; and then M" < A" < m

Remark 5.6 (for 0 < p < 1) with the fact that the function f(r) = ¢5 is matrix
decreasing gives

r

q)(Ar)l/r < q)(As)l/s < Aq)(Ar)l/r7
so that we obtain the desired results in the cases of (i), (iif) and (v) for s < 1 and
r<s.
Further, we shall give the estimate ®(4%)"/* — ®(A")"/" for r < s. To establish

the result, we need the following corollary.

COROLLARY 5.8. Let the hypothesis of Theorem 5.7 be satisfied. If 1 <r <'s
or r< —1<s then

[AD(A%) + vI]'" < D(A") (5.8)

9l
<{ a@@ﬂ+(k—9(wyﬂ4 if —1/2<s<1,5#0,
DA%/ otherwise,
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whileif r<s<—1 or r<1<s then

Fcb( ) - X_,} v > O(A%)Y/* (5.9)
u u
>{ Lowr -1 -9 )= 1" i —1<r<1r20,
DAY otherwise,
where I = %Z_ms and vV = Mx;;:,:%:mv

Proof. Let the hypothesis of Theorem 5.7 be satisfied. First we prove two inequal-
ities similar to that in Remark 5.4. Let p € R\{0}.If 0 < p < 1 then

UrD(A) + vpl < O(AP) < DA . (5.10)
This inequality is sharp. While if p < 0 or p > 1 then

DAY if —1<p<0orl<<pg?2
Mo @A) + Vol = B(A7) > { Up®(A) + Vil if p<—1 or p>2
(5.11)
where v, = (1 —p)(un /p)?/®~Y. The left hand inequality is sharp for all values of p
and the right hand inequality when —1 <p <O and 1 <p < 2.

Indeed, the right hand inequality (5.10) for 0 < p < 1 and left hand inequal-
ity (5.11) for =1 < p < 0 or 1 < p < 2 follow from Remark 5.4. The left hand
inequality (5.10) for 0 < p < 1 and the right hand inequality (5.11) for p < 0 or
p > 1 follow from Corollary 4.9 if we put f(f) = # and g(t) = uwrt. Finally, the
left hand inequality (5.11) for p < —1 or p > 2 follows from Remark 4.10 for some
functions f (f) = # and g(t) = ust.

Now, we prove inequalities (5.8) and (5.9) by a similar method as [20, Theorem
(Mond-Pecari¢)2]. We shall consider only the case when s # r. We prove first (5.8)
if » ¢ (—1,1). In this case we replace A by A’ and put p = £ in both inequalities
(5.10) and (5.11). Then

DA < D(AT) < AD(A%) + VI if r<—land(r<s<r/2or—r<s),
BO(AY) + VI DA < pPA*) +vI if r<—1,r/2<s<—r,s#0,
AD(A®) + VI < D(A") < D(A%)/ if 1 <r<s,

where v* = (1 — %) (£1) 7 . Using the fact that the function f () = {7 is a matrix
increasing if » > 1 and a matrix decreasing if » < —1 we have

DA > DA > [ad(A) + vI]'/" if r<—1 and (r<s<r/2 or —r<s),
[AD(AS)+v* IV DA /7> [A®(A)+VI]" if r< =1, r/2<s< —r,s#0,
[AD(A) + VI < D(AT)/r < DA%V if1<r<s.

(5.12)
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If we put r = —1, then we have
(D(Ar)l/r < @(A71)71 < q)(As)l/s

for r < —1 and —1 < s < —1/2. Therefore, it follows from a similar way to
Theorem 5.7 that

[AD(A%) + VI < DAT)r < DA% if either (i) or (r < —1, 1 <),
AD(A") + V1) < (AN < [(A) + v (v),
[AD(A%) + VI < DANT < DA% if1<r<s.
Next we prove (5.9) if s ¢ (—1,1). In this case we replace A by A" and put
p = % inboth inequalities (5.10) an ( .11). Then
DA < D(A®) < AD(AT) + VI if s>1and(s/2<r<sorr<—s),
AO(A") + VI < A% < DA™+ VI if s> 1, s<r<s/2,r;£0,
AD(AT) + VI < D(A%) < D(AT)/" if r<s<-—1,
where
. M —-m 1 . Mm'—Mm v
‘[,L = = =, Ve —— = -,
Mr—m" Mr —m" n

Using the fact that the function f(¢) = 15 is matrix increasing if s > 1 and matrix
decreasing if s < —1 we have

_ql/s
DAN < DAY < [ DAT) — %1} if s>1 and (s5/2<r<s or r< —s),
1/s 1/s
[%@(Af)w*l} <A< [% (A7)— vz} ifs>1, —s<r<s/2, r#0,
_ql/s
[%CID(A’) - gl} > QA5 > (A" if r<s<—1.

(5.13)
Therefore we have the desired inequality similarly to above.
We shall show the bound of the difference in power means on a positive linear map.

THEOREM 5.9. Let the hypothesis of Theorem 5.7 be satisfied. Then

Bal < D(A%)Y* — DAY < BiI (5.14)
with
[ 0 ifeither (i) or (ii) or (iii), _ . .
B = { A* ifeither (v) or (iv), Br=aif (),
where
A:erg[%ﬁ]{[QM‘ +(1— 0wt — (oM + (1 fQ)m}r},
A* = min {[6MS+(1—6) P [oM” + (1—9)m’—d}%},
0€(0,1]Ul gLy grr +1]
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and

d_Msm’—M’ms (1 ) sM" —m" 7
- M — ms I‘Mff s

The right hand inequality is sharp when r, s satisfy (vi) and the left hand inequality
when r,s satisfy (i), or (ii), or (iii).

Proof. We shall consider only the case when s # r. We prove first (5.14) if
r ¢ (—1,1). Using (5.12) and the matrix calculus we have

OZCD(As)l/s_(D(As)l/A q)(As)l/s_(D(Ar)l/r
< D(A)Vs — [ad(A%) + v if either (iii) or (r < —1,1 < s);
1/
q)(As)l/s _ {‘aq)( ) + (1 ) (5\7) = I:| < (D(As)l/s _ q)(Ar)l/r
< D(A%) — [ad(A%) + vI)" it (v);
0= (D(As)l/s _ (D( )l/s < q)(As)l/s _ (D(Ar)l/r
< DAY — [A®(A%) + vI)'" if1<r<s.

(5.15)
Therefore, the right hand inequalities (5.15) become

B4 = AN < DA — [aD(A) + vi]”
max

{tv—(ut—&— V)" }I

NN

S

where T denotes the open interval joining m* to M*, and T is the closure of T.
We set O = (+ — m*)/(M* — m*). Then a simple calculation implies & -t + V =
OM" + (1 — 0)m", and hence max,c7 {t% —(mt+ \7)%} = A. Therefore, we obtain
Bi=8for1<r<sand r <—-1<s.

In the case (v) the left hand second inequality (5.15) becomes

N r

s i (ae (15 (29)7)
{

65— (It+v— d)%}

D)~ @) o) o)+ (1-7) (29) 1] :

~ min {[GM‘ (1— 6)m’]* — [OM" + (1 e)mf—d]%}uA*l
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Next, we prove (5.14) if s & (—1,1). Using (5.13) and the matrix calculus we have

0= (A7) — DA < DAY — (A7) )1
< %q) AT) — !1;1_ o (AT if either (ii) or (r< —1,1<s);
o) =5 (1-9 (971" - e < o o
< [tow) - )" - @y if (iv):
0 = D(A") /" — DA< DA%V — (AT
< [Lo@n) - 21 "y ifr<s<-l.
(5.16)

Therefore, the right hand inequalities (5.16) become

q)(As)l/s_q)(Ar)l/r < |:—_<I)(Ar)—

{(1 V>% L}
< max —t— = —tr 1,
teT) ‘LL IJ.

where T denotes the open interval joining m” to M", and T; is the closure of T;.
We set O = (1 — m")/(M" — m"). Then simple calculation implies 1 -7 —

=il

a’
1

OM’* + (1 — 0)m’, and hence maxcr, { (l t— Z) - } = A. Therefore, we obtain

I
Bi=8forr<s<—land -1<r<1<
In the case (zv) the left hand of second 1nequality (5.16) becomes

o) — 0w > [Low) — 1 (1-1) (40) 7] "oy

con{ [l 2 (-9 )7

= min {[9MS+(1 —0)m* + E}E —[oM" + (1 — G)m’W}I

0€(0,1]

= min {[6M5+(1—9) P — (oM + (1 e)m’—d]*}l
Oy i 1]

> A*L

As applications, we have the following corollaries [9, Corollaries 3.3 and 3.4]
which are given both inequalities but with errors in the bounds estimate: In fact, we
obtain Corollary 5.10 (resp. Corollary 5.11) if we put s = 1 and r = p in Theorem
5.7 (resp. Theorem 5.9) respectively.

COROLLARY 5.10. Let ® be a positive linear map and A a positive definite
Hermitian matrix with spectrum contained in [m,M]. Let p be a nonzero real number.
If y =M/m, then

L ®(AP)P < B(A) < oy D(AP)'/P
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with
A7' if —1<p<0or0<p<l1/2
=<1 fp<—1or1/2<p<l
A ifp>1,
A ifp<0or 0<p<l,
al_{l ifp=l,
where

1—p
_ 17
A=(y - 1)L { P } .
yvP—1(y’—y
COROLLARY 5.11. Let ® be a positive linear map and A a positive definite Hermitian
matrix with spectrum contained in [m,M]. Let p be a nonzero real number. If
Y = M/m, then

Bol < D(A) — D(A")'P < BiI

with
—A if —1<p<0orO0<p<l1/2
Bp=q0 ifp<—lorl/2<p<1
A ifp>1,
A ifp<0or 0<p<l,
&:{0 ifp>1,
where

-y 1 ply — 1)\ ™7
A_leyl’ —|—m<p 1){)/1’1 .

6. Applications II

6.1. Application to matrix version of Ky Fan inequality

By application of Theorem 3.1 on a special map ®(A) = UAU*, we obtain the
following result which is an extension of [19, Theorem 12].

COROLLARY 6.1. Let A; be positive definite Hermitian matrices of order n such
that 0 <m <A <M (j=1,2,--- ,n) andalsolet U; (j=1,2,---,n) be r xn
matrices such that Z;;l UjUi =1. Let f and g be real valued continuous functions on
[m,M]. Let F(u,v) be a real valued function defined on U x V , matrix non-decreasing
in u, where U and V are intervals such that U D f[m,M] and V D g[m,M]. Then
the following inequalities hold

{ max  min F[k(f%g(t)]}l < F[ZH:UJ(A/)U,*&(Z”: UiAU;)]
=1

kE{canxA}mgth

1
k< J

< { min max F[k(t),g(t)]}l. (6.1)

ke{conc.ymMSISM
k=f



586 J. MICIC, J. PECARIC, Y. SEO AND M. TOMINAGA

Proof. Let U be any unitary matrix of order n. We define map ® : H, — C with
®(B) = UBU* (VB € H,). Itis evident that this map is a normalized positive linear
map from H, to H,. Then from Theorem 3.1 the following inequality

kE{canx}mgth
k<f

{ max min F[k(t),g(t)}}l < FIUf(A)U*, g(UAU™)]

< i .
< {ker{rgila}mrg&xMF [k(2), (1)] }I (6.2)
k>f

holds for any Hermitian matrix A with spectrum contained in [m, M]. Furthermore, for
Aj and Uj (j = 1,2,--- ,n) from the hypothesis of corollary we have 7 | UiA;U; =
UAU*, where A = A1+A+---+A,, U = [U1U;y--- U] and 27:1 Uf (A)U; =
Uf (A)U*. If we put this A and U in (6.2) we obtain the desired inequality (6.1).

COROLLARY 6.2. [If the conditions of Corollary 6.1 are satisfied, then for a given
real number o

ag(d_ UAU) + Bl < Z Uif (4)) Z UAU}) + Bil
=1 j=1 j=1
holds for
B = min max {k(r) —og(t)} |1,
| k € {conc.} "SIM |
k>f
B = max min {k(r) — ag(t)}|I.
| k € {conx.} "SIM |
k<f

We now consider the means

n 1/r
M(A;U) = (Z U;-A{U?) , r#0,
i=1

for positive definite Hermitian matrices A; of ordern suchthat 0 <m < A; <M (j =
1,2,--- ,n)andmatrices U; (j = 1,2,--- ,n) of order rxn such that Z;’:I Uiur =1.

If we put ®(B) = UBU*, B € H, in Theorems 5.7 and 5.9 we have the following
results which are an extension of [12, Theorems 2 and 3].

COROLLARY 6.3. Let A; be positive definite Hermitian matrices of order n such
that 0 <m < A; < M (j=1,2,--- ,n)andalso let U; (j = 1,2,--- ,n) be r xn
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matrices such that Z};l UiUf = 1. Also let r and s be nonzero real numbers and
(i)- (vi) asin (5.6). Then

M (A;U) < MY(A; U) < osMI(A; U) (6.3)
with
[ L ifeither (i) or (ii) or (iii) s :
%= { A=Y ifeither (iv) or (v), o = A if (vi),
where 1 1
A_{ r(y’ —v") } { s —v’) }7

(s—=r@y =1 (r=s)r-1J)

and y = M/m.

COROLLARY 6.4. Let A, U; (G=1,2,---,n)andr, s, y beasin Corollary6.3.
Then

Bal < M¥(A;U) — M (A, U) < BiI (6.4)
with
[ 0 ifeither (i) or (ii) or (iii), _ ; .
B = { A* ifeither (v) or (iv), Bi=Aaif (vi),
where

Gl

A= max {[eMS +(1— 0)m')

— [OM” + (1 — 0)m]7
max oM + (1= 0)m']F },

A= min {lom + (1= oym)s — (oM + (1 — Oy — )},

0€[01]U[ 3l 777 L—r +1]

and

d:Msm’—M’ms B (l_z) <sM’—m’>ﬁ.

M — ms K rMs —m*

REMARK 6.5. In [9] it was claimed that the results of Mond and Pecari¢: MY 4;0) >
MY (A;U) when r, s satisfy (i), or (i), or (iii), can be easily extended to arbi-
trary normalized positive maps @ so that one replaces A by A" and p by r/s in

Corollary 5.11. This is not correct because we need Corollary 5.8 for the proof of
Theorem 5.9.

6.2. Application to Hadamard product

In this section, we shall show an Hadamard product version corresponding to
Theorem 3.1. The Hadamard product of matrices is expressed as the image of a
normalized positive linear map. Let E;; € H, be the matrix of zeros except in the (i, )
position. Define a n x n?> matrix PT such that

PT: [E“ ZE22 . "'ZEnn].
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If A,B € H, then

AoB=P' (A®B)P,
where o and ® denote the Hadamard and Kronecker products, respectively [21, p.
276).

For the sake of convenience, we prepare some notations. Let A and B be positive
definite Hermitian matrices such that 0 < m; < A < M; and 0 < mp; < B < M;.
Put m = mymy and M = M|M,. Also, let f be a real valued continuous function
defined on an interval including [m, M]. Then f is called super-multiplicative (resp.
sub-multiplicative) if £ (xy) > f (x)f (v) (resp. f (xy) <f(x)f (¥)) (cf[5]). We define:
X = [my, M) U [ma, M>] U [m, M]. Also, we denote {supcc.} (resp. {subcx.} ) the set
of real valued continuous super-multiplicative matrix concave (resp. sub-multiplicative
matrix convex) functions defined on X; .

We shall show the following theorem which are an extension of [20, Theorem 2].

THEOREM 6.6. Let A and B be Hermitian matrices such that 0 < m; < A <
My and 0 < my < B < M,. Put m = mimpy and M = M\M,. Let ®, and
@, be normalized positive linear maps from H, to H;. Let f and g be two real
valued continuous function, f defined on the interval Xy, g on [m,M]. Let J; an
interval including {f (1)f (s) : t € [m1,Mi], s € [ma,M>]} and J, aninterval including
{g(?) : t € [m,M]}. If F(u,v) is a real valued function defined on J\ x J, matrix
non-decreasing in u, then the following inequalities hold

FI®: (7 (4)) o (F (B) , g(@1(4)o®s(B))] < {ke?‘“‘. | FK)(0) }L
k>f (6.5)

FI®, (f (4)) 0@, (1 (B)) , ¢(®1 (4)0(B)] > {ke?i".. | min, 1K) (0) }1.
k<f

(6.6)

Proof. Since k is a continuous super-multiplicative matrix concave function
such that f(r) < k(r) for all r € Xy, it follows from the spectral theorem that
f(A) < k(A). Using the positivity of ®; we have ®@; (f(A)) < @, (k(A)). Applying
Jensen’s inequality on function —k (which is a matrix convex function) we obtain
inequality @ (k(A)) < k(®((A)). Then it follows that @ (f(A)) < k(P(A)).
Also, @, (f (B)) < k(D,(B)) for any Hermitian matrix B with spectrum contained in
[ma, M3] . Further, using the following general formula for tensor products (see [1, p.
216]): Ay 2 A, >0 and B; > B, > 0 imply A; ® B; > A; ® B,, then we obtain

@y (f(4)) o @2 (£ (B)) = P (@1 (f (A)) @ @2 (f (B))) P
<P (k(®1(A)) ® k (D2(B))) P = k (P1(A)) 0 k (2(B)),
so that it follows from the super-multiplicative and matrix concavity of k that
PT (k(®1(4)) ® k (®2(B))) P < k(P ((®1(4)) ® (®2(B))) P)
=k (P1(A) 0o D(B)).
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Using the matrix non-decreasing character of F(-,v), we have

F[®, (f(A)) o @2 (f(B)) ,8(P1(A) o D(B))]
S Flk(@1(A) 0 Dy(B)) g (P1(A) o D(B))]
< Flk(t),g(t)] I < Flk(t),g(t)] ¢ I
{amax, | FIO).e0] 1< { max FIk0.000]}
Now we minimize this bound over all continuous super-multiplicative matrix concave

functions k to obtain the inequality (6.5). The inequality (6.6) is proved in the same
way.

REMARK 6.7. Notice that we can obtain similar results in case F(u,v) is a real
valued function matrix non-increasing in u.

REMARK 6.8. Notice that the constant function k() = max,,<,<m f (s) for all
t € Xy is a continuous super-multiplicative matrix concave function that bounds f from
above. Since we are optimizing over the right-hand side of (6.5) super-multiplicative
matrix concave functions, we can show that there are indeed a function % that attains
the extreme.

THEOREM 6.9. Let the hypothesis of Theorem 6.6 be satisfied and h(t) be defined
by
h(t) = h(t;m, M, f) = ug -1+ vy. (6.7)
If f is areal valued continuous convex function on Xy and h(t) is a super-multiplicative
Sunction on [m, M|, then the following inequality holds

FI, (£(A)) 0 @2 (£ (B)) . 5(®1(A) 0 Da(B))] < { max F [h(r»g(t)]}z, (6:8)

m<<M

but, if f is a real valued continuous concave function and h(t) is a sub-multiplicative
function on [m, M|, then the following inequality holds

FI, (f(A)) 0 @2 (£ (B))  g(®1(A) 0 Da(B))] > { min F [h(r»g(t)]}z. (6.9)

m<t<M

Proof. The convexity of f ensures that f () < h(¢) forall ¢ € [m,M]. Obviously
h(t) is a matrix concave function. If k is a matrix concave function and f (r) < k()
for all ¢ € [m, M] then h(m) = f (m) < k(m) and h(M) = f (M) < k(M) . Because a
matrix concave function is necessarily concave, we have h(t) < k(¢) forall 7 € [m, M].
Using the (matrix) non-decreasing character of F(-,v), we have

Fh(t),g()]I < Flk(r),g(®)]1 forall ¢t € [m,M].

It follows from this that the minimum in the right hand of (6.5) is attained at /. Thus
we proved the inequality (6.8). The inequality (6.9) can be proved in the same way.

A positive definite matrix, with all its main diagonal entries equal to 1 and all
its entries bounded in absolute value by 1, is called a correlation matrix. If we put
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®(A) = A o B where B is a correlation matrix, then it follows that @ is a normalized
positive linear map. Therefore we have the following corollary by Theorem 3.1.

COROLLARY 6.10. Let A and B be positive definite Hermitian matrices such that
O0<m <AM; and 0 <my < B<M,. Put m =mmy and M = M|M,. Let
f and g be real valued continuous functions on [my, M;] and [m,M], respectively.
Let Jy an interval including {f (t) - s : t € [m1,M1],s € [ma, M2]} and J, an interval
including {g(t) : t € [m,M|}. If F(u,v) is a real valued function defined on J| x J,
matrix non-decreasing in u, then the following inequalities hold

F(f(A)oB,g(AoB)) < min max F[k(r),g(0)] p1,
k € {conc.} MmSISM
k>f
and
F(f(A)oB,g(AoB)) > max min F [k(z), g(?)] o1
k € {conx.} mSISM
k<f
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