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Abstract. The aim of this work is to generalize the main inequalities in [9] as follows: Let A
be a Hermitian matrix, let Φ be a normalized positive linear map, let f and g be real valued
continuous functions and let F(u, v) be a real valued function matrix non-decreasing in its first
variable. Real constants α and β such that

αI � F [Φ (f (A)) , g (Φ(A))] � βI

are determined. If f is a concave (resp. convex) function then the determination of β (resp.
α ) is reduced to solving a single variable maximization (resp. minimization) problem. Some
applications of these results to the power function, the means and the Hadamard product are also
given.

1. Introduction

Let A be a Hermitian matrix with spectrum in [m, M] , let f (t) be a real valued
continuous function on [m, M] and let Φ be a normalized positive linear map. In [9],
Li and Mathias determined real constants αi and βi (i = 1, 2) such that

α1Φ (f (A)) � f (Φ(A)) � β1Φ (f (A)) , (1.1)
α2I � f (Φ(A)) − Φ (f (A)) � β2I. (1.2)

Also, Mond and Pečarić [11, 13] showed the following theorem for operator convex
functions, which is an extension of the converses of Jensen’s inequality: Let Ai be
positive operators on a Hilbert space H satisfying mI � Ai � MI (i = 1, 2, . . . , n) ,
where 0 < m < M , φi (i = 1, 2, . . . , n) normalized positive linear maps and ωi

(i = 1, 2, . . . , n) positive numbers such that
∑n

i=1 ωi = 1 . Let f be a operator convex
function on [m, M] . If F(u, v) is a real valued function operator monotone in its first
variable, then

F

[
n∑

i=1

ωiφi (f (Ai)) , f

(
n∑

i=1

ωiφi (Ai)

)]

�
{

max
m�t�M

F

[
f (m) +

f (M) − f (m)
M − m

(t − m), f (t)
]}

I. (1.3)
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As a result of it, if we put F(u, v) = v−
1
2 uv−

1
2 or F(u, v) = u−v , then the upper bounds

in the ratio and difference inequalities were given for the power function f (t) = tp .
Similarly, Mond and Pečarić [12, 14] gave the upper bounds in the ratio and difference
inequalities of means: If r < s and either s �∈ (−1, 1) or r �∈ (−1, 1) , then

M[s]
n (A; φ, w) � Δ̃M[r]

n (A; φ, w) (1.4)

and
M[s]

n (A; φ, w) − M[r]
n (A; φ, w) � ΔI, (1.5)

where

M[r]
n (A; φ, w) =

(∑n
i=1 ωiφi (Ar

i )∑n
i=1 ωi

)1/r

(r �= 0, r ∈ R),

and the upper bounds Δ̃ and Δ are explicitly determined. Moreover, in [15] they gave
some other extensions of Ando’s results [1] to self-adjoint operators.

In [16, 17] Mond and Pečarić considered the following mean and estimated the
difference and ratio inequalities analogous to (1.4) and (1.5):

M[r]
k (A; U) =

(
k∑

i=1

UiA
r
i U

∗
i

)1/r

(r �= 0),

where Ai(i = 1, . . . , k) are positive definite Hermitian matrices of order n , with
eigenvalues contained in the interval [m, M] (0 < m < M ) and Ui are t × n matrices
such that

∑k
i=1 UiU∗

i = I .
On the other hand, Mond and Pečarić showed a general inequality for positive

operators including real valued convex functions. Furthermore, Furuta [7, 8] gave
extensions of inequalities due to Ky Fan, Mond and Pečarić which are associated with
Hölder-McCarthy and Kantorovich type inequalities. Inspired by Furuta’s ideas, Mićić,
Seo, Takahasi and Tominaga in [19] generalized a theorem by Mond and Pečarić on
the converses of Jensen’s inequality: Let Ai be positive operators on a Hilbert space
H satisfying mI � Ai � MI ( i = 1, 2, · · ·n ), where 0 < m < M . Let f (t) be a
real valued continuous convex function on [m, M] and let x1, x2, · · · , xn be any finite
number of vectors in H such that

∑n
i=1 ‖xi‖2 = 1 . If g(t) is a real valued continuous

function and F(u, v) is a real valued function non-decreasing in u , then

F

[
n∑

i=1

(f (Ai) xi, xi) , g

(
n∑

i=1

(Aixi, xi)

)]

�
{

max
m�t�M

F

[
f (m) +

f (M) − f (m)
M − m

(t − m), g(t)
]}

I. (1.6)

In this paper, based on ideas due to Mond-Pečarić and Furuta, we shall generalize
a theorem of Li-Mathias, that is, we shall determine real constants α and β such that
the following inequality holds

αI � F [Φ (f (A)) , g (Φ(A))] � βI. (1.7)
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Similarly to [9], the problem of bounds determination in (1.7) is reduced to a problem of
approximation of a function f by a matrix convex or a matrix concave function (Section
3). In the case f is a concave (resp. a convex) function this problem is reduced to
solving a single variable maximization (resp. minimization) problem (Section 4). In
these cases the inequality is sharp and then a non-trivial positive linear map attaining
the equality is given. As applications we shall show general difference and ratio sharp
inequalities, and inequalities related to the power functions, the means of operators and
the Hadamard product.

2. Preliminaries

We use Hn to denote the space of n × n Hermitian matrices and use � to denote
the positive semi-definite partial order, so that A � B means that A − B is positive
semi-definite, i.e. X∗(A − B)X � 0 for all n-vectors X.

If A ∈ Hn , then there exists a unitary matrix U such that

A = U∗ΛU,

where Λ = diag(λ1, λ2, . . . , λn) and the λi are the eigenvalues of A . Assume now
that f (λi) ∈ C, i ∈ {1, 2, . . . , n} is well defined. Then f (A) may be defined by

f (A) = U∗diag(f (λ1), f (λ2), . . . , f (λn))U.

f | Hn is called a matrix function.
A matrix function f is called matrix monotone on an interval [m, M] if for

n = 1, 2, . . . and for all A, B ∈ Hn with spectra in [m, M]

A � B ⇒ f (A) � f (B)

and it is called matrix convex on [m, M] if for n = 1, 2, . . . and for all A, B ∈ Hn with
spectra in [m, M]

f ((1 − t)A + tB)) � (1 − t)f (A) + tf (B) 0 � t � 1. (2.1)

We say that f is matrix concave if the reverse inequality in (2.1) holds for n = 1, 2, . . .
See [2] or [10, Part V] for more information about matrix monotone and matrix convex
(concave) functions.

A linear map Φ from Hn to Hñ is said to be positive if it transforms H+
n to H+

ñ ,
where H+

n is the open cone of positive definite matrices. It follows that a positive linear
map Φ is monotone in the sense that A � B implies Φ(A) � Φ(B) . A positive linear
map is said to be normalized if it maps the identity matrix In to the identity matrix Im .
See [9] for some common examples of normalized positive linear maps.

If A ∈ Hn has a spectrum in [m, M] then so does Φ(A) for any normalized positive
linear map Φ and so matrix function f (Φ(A)) is also defined.

For the sake of convenience, we prepare some notations. We denote

μf =
f (M) − f (m)

M − m
, νf =

Mf (m) − mf (M)
M − m
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for a real valued continuous function f on the interval [m, M] and particularly

μtp =
Mp − mp

M − m
, νtp =

Mmp − mMp

M − m

for the power function f (t) = tp . Also, we introduce the following constant by Furuta
(see [8] and [20]):

Cf (m, M; q) =
νf

1 − q

(
1 − q

q
μf

νf

)q

,

where q is a real number such that q > 1 or q < 0 .
We denote {conx.} (resp. {conc.} ) the set of continuous matrix convex (resp.

concave) functions defined on [m, M] .

We shall use the following Jensen’s inequality (cf. [1, Theorem 4], [3, 4], [9,
Theorem 2.1]):

JENSEN’S INEQUALITY. Let f be a matrix concave function on [m, M] and let
A ∈ Hn with spectrum in [m, M] . If Φ is a normalized positive linear map, then

f (Φ(A)) � Φ (f (A)) .

3. A general theorem

We shall first generalize a theorem of Li-Mathias, which is based on the ideas due
to Mond-Pečarić and Furuta.

THEOREM 3.1. Let A be a Hermitian matrix with spectrum contained in [m, M] .
Let Φ be a normalized positive linear map from Hn to Hñ . Let f and g be real valued
continuous functions on [m, M] . Let F(u, v) be a real valued function defined on U×V ,
matrix non-decreasing in u , where U and V are intervals such that U ⊃ f [m, M] and
V ⊃ g[m, M] . Then the following inequalities hold⎧⎪⎨

⎪⎩ max
k∈{conx.}

k�f

min
m�t�M

F [k(t), g(t)]

⎫⎪⎬
⎪⎭ I � F [Φ (f (A)) , g (Φ(A))]

�

⎧⎪⎨
⎪⎩ min

k∈{conc.}
k�f

max
m�t�M

F [k(t), g(t)]

⎫⎪⎬
⎪⎭ I. (3.1)

Proof. We prove the right-hand side of the inequality (3.1). Let k be a matrix
concave function on [m, M] such that f (t) � k(t) for all t ∈ [m, M] . It follows from
the spectral theorem that f (A) � k(A) . Using the positivity of Φ we have Φ (f (A)) �
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Φ (k(A)) . Furthermore, by Jensen’s inequality, we have Φ (k(A)) � k (Φ(A)) and
it follows that Φ (f (A)) � k (Φ(A)) . Using the matrix non-decreasing character of
F(·, v) , we have

F [Φ (f (A)) , g (Φ(A))] � F [k (Φ(A)) , g (Φ(A))]

�
{

max
t∈σ(Φ(A))

F [k(t), g(t)]
}

I

�
{

max
m�t�M

F [k(t), g(t)]
}

I.

Therefore, we minimize this bound over all matrix concave functions k to obtain the
upper bound in the inequality (3.1).

As a complementary result, we cite the following theorem:

THEOREM 3.2. Under the same hypothesis as in Theorem 3.1, except that F is
matrix non-increasing in its first variable, the following inequalities hold⎧⎪⎨

⎪⎩ max
k∈{conc.}

k�f

min
m�t�M

F [k(t), g(t)]

⎫⎪⎬
⎪⎭ I � F [Φ (f (A)) , g (Φ(A))]

�

⎧⎪⎨
⎪⎩ min

k∈{conx.}
k�f

max
m�t�M

F [k(t), g(t)]

⎫⎪⎬
⎪⎭ I. (3.2)

Proof. We prove this theorem by replacing F by −F in Theorem 3.1.

If we put g = f in Theorem 3.1, then we have the following corollary:

COROLLARY 3.3. Let A , Φ , f and F be as in Theorem 3.1, the following
inequalities hold⎧⎪⎨

⎪⎩ max
k∈{conx.}

k�f

min
m�t�M

F [k(t), f (t)]

⎫⎪⎬
⎪⎭ I � F [Φ (f (A)) , f (Φ(A))]

�

⎧⎪⎨
⎪⎩ min

k∈{conc.}
k�f

max
m�t�M

F [k(t), f (t)]

⎫⎪⎬
⎪⎭ I. (3.3)

REMARK 3.4. Notice that the constant function k(t) = maxm�s�M f (s) for all
t ∈ [m, M] is a matrix concave function that bounds the function f from above. Since
we are optimizing over the right-hand side of (3.1) matrix concave functions, we can
show that there are indeed a function k that attains the extreme.
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THEOREM 3.5. Let the hypothesis of Theorem 3.1 be satisfied. If f is a real
valued continuous convex function on [m, M] then the following inequality holds

F [Φ (f (A)) , g (Φ(A))] �
{

max
m�t�M

F [μf · t + νf , g(t)]
}

I. (3.4)

If f is a concave function on [m, M] then the following inequality holds

F [Φ (f (A)) , g (Φ(A))] �
{

min
m�t�M

F [μf · t + νf , g(t)]
}

I. (3.5)

Proof. We prove only inequality (3.4). If we put h(t) = μf · t + νf , then h
is matrix concave function. The convexity of f ensures that f (t) � h(t) for all
t ∈ [m, M] . If k is a matrix concave function and f (t) � k(t) for all t ∈ [m, M] then
h(m) = f (m) � k(m) and h(M) = f (M) � k(M) . Since a matrix concave function
is necessarily concave, we have h(t) � k(t) for all t ∈ [m, M] . Using the matrix
non-decreasing character of F(·, v) , we have

F [h(t), g(t)] � F [k(t), g(t)] for all t ∈ [m, M] .

It follows that the minimum in the right-hand side of (3.1) is attained at h . Thus we
proved the inequality (3.4).

REMARK 3.6. The bounds in Theorem 3.1 are rather hard to be evaluated in
general. One may consider only linear function k instead of all matrix concave or
matrix convex functions. This simplifies the evaluation of the bounds at the cost of the
possibility to weaken them. Obviously, if f = g is a concave (resp. convex) function
on [m, M] then the graph of the linear function k which satisfies k � f (resp. k � f )
and

min
k∈{conc.}

k�f

max
m�t�M

F [k(t), f (t)] � max
m�t�M

F [kr(t), f (t)]

(resp. min
m�t�M

F [kr(t), f (t)] � max
k∈{conx.}

k�f

min
m�t�M

F [k(t), f (t)])

is tangent to the graph of y = f (t) passing through a point (r, f (r)) with m � r � M .
For such a function

kr(t) = f (r) + f ′(r)(t − r),

the value maxm�t�M F [kr(t), f (t)] (resp. minm�t�M F [kr(t), f (t)] ) occurs at t = m
or M . It follows that the optimal solution of this maximization (resp. minimization)
problem occurs at the function kr such that

F [kr(m), f (m)] = F [kr(M), f (M)] . (3.6)

We do not know for sure that the result is optimal in the following sense: The left-hand
side or the right-hand side of the inequality (3.1) is sharp in the sense that for any real
valued continuous functions f and g and for any matrix A with spectrum in [m, M]
there is a non-trivial normalized positive linear map Φ for which the bound is attained.
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4. Bounds for converses of Jensen’s inequality

As application of Theorem 3.1, we discuss an extension of [9, Lemma 2.2], which
give us a unified view to bounds in a theorem by Li-Mathias. Moreover, we shall
consider the optimality of our results by using a technique of [9].

THEOREM 4.1. Let A be a Hermitian matrix with spectrum contained in [m, M] .
Let Φ be a normalized positive linear map from Hn to Hñ . Let f and g be real valued
continuous functions on [m, M] . Then for a given real number α

αg(Φ(A)) + β1I � Φ(f (A)) � αg(Φ(A)) + β2I (4.1)

holds for

β1 = max
k∈{conx.}

k�f

min
m�t�M

{k(t) − αg(t)} ,

β2 = min
k∈{conc.}

k�f

max
m�t�M

{k(t) − αg(t)} .

Proof. Let us put F(u, v) = u − αv in Theorem 3.1. Then it follows from the
right-hand side of (3.1) that

Φ(f (A)) − αg(Φ(A)) �
[

min
k∈{conc.}

k�f

max
m�t�M

F(k(t), g(t))

]
I

=

[
min

k∈{conc.}
k�f

max
m�t�M

{k(t) − αg(t)}
]
I.

The left-hand side of (4.1) is proved in the same way.

We have Corollary 4.2 if we put α = 1 in Theorem 4.1 and Corollary 4.4 if we
choose α such that β = 0 in Theorem 4.1. We frequently use them in the case that the
function k is explicitly defined.

COROLLARY 4.2. Let the hypothesis of Theorem 4.1 be satisfied. Then[
max

k∈{conx.}
k�f

min
m�t�M

{k(t) − g(t)}
]
I � Φ (f (A)) − g (Φ(A))

�
[

min
k∈{conc.}

k�f

max
m�t�M

{k(t) − g(t)}
]
I. (4.2)

Furthermore, if g is a strictly convex differentiable function on [m, M] , then for
every matrix strictly concave differentiable function k in the right-hand side of (4.2)
we have max

m�t�M
{k(t) − g(t)} = k(t0) − g(t0) where t0 ∈ [m, M] may be determined

as follows:
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• if k′(m) > g′(m) and k′(M) < g′(M) , then let t0 be the unique solution in
(m, M) of the equation k′(t) = g′(t),

• if k′(m) � g′(m) , then let t0 = m,
• if k′(M) � g′(M) , then let t0 = M .
Similarly, if g is a strictly concave differentiable function on [m, M] , then for any

matrix strictly convex differentiable function k in the left-hand side of (4.2) we have
min

m�t�M
{k(t) − g(t)} = k(t0)− g(t0) where t0 ∈ [m, M] may be determined as follows:

• if k′(m) < g′(m) and k′(M) > g′(M), then let t0 be the unique solution in
(m, M) of the equation k′(t) = g′(t)

• if k′(m) � g′(m) , then let t0 = m,
• if k′(M) � g′(M) , then let t0 = M .

Proof. If we put α = 1 in Theorem 4.1, then we have (4.2).
Let g be a strictly convex and k (matrix) strictly concave both differentiable

functions. We denote h(t) = k(t) − g(t) . Then h′(t) is strictly decreasing on [m, M] .
If h′(m) > 0 and h′(M) < 0 , then the equation h′(t) = 0 has exactly one solution
t0 ∈ (m, M) and the maximum value on [m, M] of the function h is attained for t = t0 .
If h′(m) � 0 , then we have h′ � 0 on [m,M]. Thus h is a decreasing function on [m, M]
and the maximum value on [m, M] of this function is attained for t = m . Similarly, if
h′(M) � 0 then h′ � 0 on [m,M], i.e. h is increasing on [m, M] and the maximum
value on [m, M] of the function h is attained for t = M .

The case when g is a strictly concave and k (matrix) strictly convex both differ-
entiable functions is proved in the same way.

REMARK 4.3. We obtain the inequality (1.2) (i.e. [9, Lemma 2.2, ineq. (2.1)]) if
we put g = f in (4.2).

COROLLARY 4.4. Let the hypothesis of Theorem 4.1 be satisfied. Suppose in
addition that either of the following conditions holds (i) g(t) > 0 for all t ∈ [m, M]
or (ii) g(t) < 0 for all t ∈ [m, M] . Then the following inequality[

max
k∈{conx.}

k�f

min
m�t�M

{
k(t)
g(t)

}]
g (Φ(A)) � Φ (f (A))

�
[

min
k∈{conc.}

k�f

max
m�t�M

{
k(t)
g(t)

}]
g (Φ(A)) (4.3)

holds in case (i) , or[
max

k∈{conx.}
k�f

max
m�t�M

{
k(t)
g(t)

}]
g (Φ(A)) � Φ (f (A))

�
[

min
k∈{conc.}

k�f

min
m�t�M

{
k(t)
g(t)

}]
g (Φ(A)) (4.4)
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holds in case (ii) .
Furthermore, if g is a strictly convex twice differentiable function on [m, M]

and if f (t)/g(t) > 0 for all t ∈ [m, M] , then for any matrix strictly concave twice
differentiable function k in the right-hand side of (4.3) (resp. (4.4)) we have

max
m�t�M

{k(t)/g(t)} = k(t0)/g(t0)
(

resp. min
m�t�M

{k(t)/g(t)} = k(t0)/g(t0)
)

where t0 ∈ [m, M] may be determined as follows:

• if k′(m) > k(m) g′(m)
g(m) and k′(M) < k(M) g′(M)

g(M) , then let t0 be the unique solution
in (m, M) of the equation k′(t)g(t) = k(t)g′(t)

• if k′(m) � k(m) g′(m)
g(m) , then let t0 = m

• if k′(M) � k(M) g′(M)
g(M) , then let t0 = M .

Similarly, if g is a strictly concave twice differentiable function on [m, M] and if
f (t)/g(t) < 0 for all t ∈ [m, M] , then for any matrix strictly convex twice differentiable
function k in the left-hand side of (4.3) (resp. (4.4) ) we have

min
m�t�M

{k(t)/g(t)} = k(t0)/g(t0)
(

resp. max
m�t�M

{k(t)/g(t)} = k(t0)/g(t0)
)

where t0 ∈ [m, M] may be determined as follows:

• if k′(m) < k(m) g′(m)
g(m) and k′(M) > k(M) g′(M)

g(M) , then let t0 be the unique solution
in (m, M) of the equation k′(t)g(t) = k(t)g′(t)

• if k′(m) � k(m) g′(m)
g(m) , then let t0 = m

• if k′(M) � k(M) g′(M)
g(M) , then let t0 = M .

Proof. The inequality (4.3) for case (i) and (4.4) for case (ii) follows from
Theorem 4.1 if we choose αi such that βi = 0 ( i = 1, 2 ).

Further we only prove it for the case of (i). Suppose that g is strictly convex and
k is matrix strictly concave. Put h(t) = k(t)/g(t) . Now h′(t) = H(t)/g2(t) , where
H(t) = k′(t)g(t) − k(t)g′(t) . Since k′′ < 0, k � f , g′′ > 0, f /g > 0 on [m, M] , we
have H′(t) = k′′(t)g(t) − k(t)g′′(t) < 0 , so that H is strictly decreasing on [m, M] . If
H(m) > 0 and H(M) < 0 , the equation H(t) ≡ k′(t)g(t) − k(t)g′(t) = 0 has exactly
one solution t0 ∈ (m, M) . Hence, the maximum value on [m, M] of the function h
is attained for t = t0 . If H(m) � 0 then we have H � 0 on [m,M] since H is a
strictly decreasing function on [m,M], so that h is strictly decreasing on [m, M] . Hence,
the maximum value on [m, M] of the function h is attained for t = m . Similarly, if
H(M) � 0 then H � 0 on [m,M], i.e. h is strictly increasing on [m, M] and the
maximum value on [m, M] of the function h is attained for t = M .

REMARK 4.5. We obtain the inequality (1.1) (i.e. [9, Lemma 2.2, ineq. (2.2) ]) if
we put g = f in (4.3) .
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Next we observe sharp inequalities in the sense that was described in Remark 3.6.
For these results we need the following lemma as an extension of [9, Lemma 2.3].

LEMMA 4.6. Let A be a Hermitian matrix with spectrum contained in [m, M]
and let λmin(A) = m, λmax(A) = M . Let f , g be real valued continuous functions on
[m, M] . Then for any t∗ ∈ [m, M] there is a real valued normalized positive linear map
Φ such that

F [Φ (f (A)) , g (Φ(A))] = F [μf · t∗ + νf , g(t∗)] .

Proof. Let U be a unitary matrix such that

U∗AU = diag(λ1, λ2, . . . , λn),

where λ1 = m and λ2 = M. For t∗ ∈ [m, M] , we denote θ = (M − t∗)/(M −m) . We
define map Φ : Hn → C by

Φ(X) =
(√

θe1 +
√

1 − θe2

)∗
X
(√

θe1 +
√

1 − θe2

)
,

where e1 and e2 are unit eigenvectors of A corresponding to λ1 and λ2 , respectively.
One can check that Φ is a normalized positive linear map. Now we have

g (Φ(A)) = g
((√

θe1 +
√

1 − θe2

)∗
A
(√

θe1 +
√

1 − θe2

))
= g (θλ1 + (1 − θ)λ2) = g (θm + (1 − θ)M) = g(t∗)

and

Φ (f (A)) =
(√

θe1 +
√

1 − θe2

)∗
f (A)

(√
θe1 +

√
1 − θe2

)
= θf (m) + (1 − θ)f (M) =

M − t∗

M − m
f (m) +

t∗ − m
M − m

f (M)

= μf · t∗ + νf .

Thus we have
F [Φ (f (A)) , g (Φ(A))] = F [μf · t∗ + νf , g(t∗)] ,

as required.

Adding to some conditions in Theorem 4.1, we obtain the explicit estimations of
the bounds for the ratio and difference inequalities.

THEOREM 4.7. Let A be a Hermitian matrix with spectrum contained in [m, M] .
Let Φ be a normalized positive linear map from Hn to Hñ . Let f and g be real valued
continuous functions on [m, M] . Moreover, if f is a convex function (resp. a concave
function) on [m, M] , then for a given real number α

Φ(f (A)) � αg(Φ(A)) + βI (resp. Φ(f (A)) � αg(Φ(A)) + βI) (4.5)

holds for

β = max
m�t�M

{μf · t + νf − αg(t)} (resp. β = min
m�t�M

{μf · t + νf − αg(t)}).
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Proof. We only prove it for the convex case. Let us put F(u, v) = u − αv in
Theorem 3.5. Then it follows from the inequality (3.4) that

Φ(f (A)) − αg(Φ(A)) � max
m�t�M

F[μf · t + νf , g(t)]I

= max
m�t�M

{μf · t + νf − αg(t)}I,

which gives the desired inequality.

Next we shall show three corollaries of Theorem 4.7, which frequently are used in
the cases that g is a convex or concave function.

COROLLARY 4.8. Let the hypothesis of Theorem 4.7 be satisfied. Let α ∈ R a
given real number. If f is a convex and αg is a concave function (resp. f is a concave
function and αg is a convex) on [m, M] , then

Φ(f (A)) � αg(Φ(A)) + βI (resp. Φ(f (A)) � αg(Φ(A)) + βI)

holds for β = μf · t0 + νf − αg(t0) where

t0 =
{

M if μf � αμg (resp. μf � αμg)
m if μf < αμg (resp. μf > αμg)

(4.6)

This inequality is sharp in the sense that for any Hermitian matrix A there is a real
valued normalized positive linear map Φ such that Φ(f (A)) − αg(Φ(A)) is equal to
the upper bound (resp. the lower bound).

Proof. We prove only the case when f is a convex and αg a concave func-
tion on [m, M] . Then h(t) = μf · t + νf − αg(t) is a convex function and so
maxm�t�M h(t) = max{h(m), h(M)} . If h(M) � h(m) then maxm�t�M h(t) = h(M) ,
otherwise maxm�t�M h(t) = h(m) . Put t∗ = t0 and denote by Φ : Hn → C a
normalized positive linear map defined as

Φ(X) =
(√

θe1 +
√

1 − θe2

)∗
X
(√

θe1 +
√

1 − θe2

)
, (4.7)

where θ = (M − t0)/(M − m) , e1 and e2 are unit eigenvectors of A corresponding
to λmin(A) = m and λmax(A) = M respectively. Then it follows from Lemma 4.6 that
Φ(f (A)) − αg(Φ(A)) = [μf t0 + νf − αg(t0)]I .

If we put 1 in Theorem 4.7, then we have the following:

COROLLARY 4.9. Let the hypothesis of Theorem 4.7 be satisfied. If f is a convex
(resp. a concave) function on [m, M] then the following inequality holds

Φ (f (A)) − g (Φ(A)) � [maxm�t�M {μf · t + νf − g(t)}] I (4.8)
(resp. Φ (f (A)) − g (Φ(A)) � [minm�t�M {μf · t + νf − g(t)}] I) . (4.9)

Suppose in addition that g is a strictly convex (resp. a strictly concave) differentiable
function on [m, M] , then the inequality (4.8) (resp. (4.9) ) is sharp and the equality
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is attained for a real valued normalized positive linear map Φ : Hn → C defined by
(4.7) and

t0 =

⎧⎨
⎩

g′−1(μf ) if g′(m) < μf < g′(M) (resp. g′(M) < μf < g′(m)) ,
m if g′(m) � μf (resp. g′(m) � μf ) ,
M if g′(M) � μf (resp. g′(M) � μf ) .

(4.10)

REMARK 4.10. We can obtain the opposite inequality of (4.8) in Corollary 4.9.
Instead of maximizing over all matrix convex functions we took the easier route over
the favourable chosen linear functions: Let f and g be two differentiable functions on
[m, M] and let f be convex. If f ′(m) � μg � f ′(M) then

{f (r) − μgr − νg}I � Φ(f (A)) − g(Φ(A)),

when g is a strictly convex function and

{f (r) − g(t0) + μg(t0 − r)}I � Φ(f (A)) − g(Φ(A)),

when g is a strictly concave, where r = f ′−1(μg) and t0 = g′−1(μg) . Otherwise, if
μg < f ′(m) or f ′(M) < μg then

max

{
min

m�t�M
{f (m) + f ′(m)(t − m) − g(t)} ,

min
m�t�M

{f (M) + f ′(M)(t − M) − g(t)}
}

I

� Φ(f (A)) − g(Φ(A)).

Indeed, because f is convex, then

Φ(f (A)) − g(Φ(A)) � max
k∈{conx.}

k�f

min
m�t�M

{k(t) − g(t)} I � min
m�t�M

{hr(t)} I

where hr(t) = f (r) + f ′(r)(t − r)− g(t) , r ∈ [m, M] . We choose r = f ′−1(μg) when
f ′(m) � μg � f ′(M) , r = m when μg < f ′(m) or r = M when f ′(M) < μg . In
the case of convexity of g the function hr is concave and so its minimum is attained
at m or M . (Specially, we have hr(m) = hr(M) when r = f ′−1(μg) ). In the case of
concavity of g the function hr is convex and so its minimum is attained at t0 ∈ [m, M] .
In the same way we can obtain the opposite inequality (4.9).

Indeed, in the case of convexity

REMARK 4.11. If we put g = f in Corollary 4.9 we have [9, Corollary 2.4] with
remark that t∗ was not properly determined.

Also, whenwe replace Φ(A) with
∑n

i=1 ωiφi (Ai) and for g = f a convex function
we obtain a matrix analogous to an operator case [13, Theorem 3]. Further under the
hypothesis of Corollary 4.9 we have

f (m) − g(m) � max
m�t�M

{μf · t + νf − g(t)} � f (m) − g(m) +
[
μf − g′(m)

]
(M − m)
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(Proof is given in [19, Theorem7] ) . Hence for f = g we have estimate in [13, Theorem
3]:

0 < max
m�t�M

{μf · t + νf − f (t)} <
[
μf − f ′(m)

]
(M − m).

COROLLARY 4.12. Let the hypothesis of Theorem 4.1 be satisfied. Suppose in
addition that either of the following conditions holds (i) g(t) > 0 for all t ∈ [m, M] or
(ii) g(t) < 0 for all t ∈ [m, M] . If f is a convex function (resp. a concave function)
on [m, M] , then the following inequalities hold

Φ (f (A)) �
[
maxm�t�M

{
μf ·t+νf

g(t)

}]
g (Φ(A)) (4.11)(

resp. Φ (f (A)) �
[
minm�t�M

{
μf ·t+νf

g(t)

}]
g (Φ(A))

)
(4.12)

in case (i) , or

Φ (f (A)) �
[
minm�t�M

{
μf ·t+νf

g(t)

}]
g (Φ(A)) (4.13)(

resp. Φ (f (A)) �
[
maxm�t�M

{
μf ·t+νf

g(t)

}]
g (Φ(A))

)
(4.14)

in case (ii) . Suppose in addition that f (m) > 0 , f (M) > 0 in case (i) or f (m) < 0 ,
f (M) < 0 in case (ii) and g is a strictly convex (resp. strictly concave) twice
differentiable function on [m, M] then the inequalities (4.11) , (4.13) (resp. (4.12) ,
(4.14) ) are sharp and the equality is attained for a real value normalized positive linear
map Φ defined by (4.7) and

t0 =

⎧⎪⎪⎨
⎪⎪⎩

the solution of μf g(t) = (μf · t + νf ) g′(t) if f (m) g′(m)
g(m) < μf < f (M) g′(M)

g(M)

M if μf � f (M) g′(M)
g(M)

m if μf � f (m) g′(m)
g(m)

(4.15)
(resp.

t0 =

⎧⎪⎪⎨
⎪⎪⎩

the solution of μf g(t) = (μf · t + νf ) g′(t) if f (M) g′(M)
g(M) < μf < f (m) g′(m)

g(m)

M if μf � f (M) g′(M)
g(M)

m if μf � f (m) g′(m)
g(m)

)

Proof. The inequalities (4.11), (4.12) for case (i) and (4.13), (4.14) for case
(ii) follow from Theorem 4.7 if we choose α such that β = 0 . Next, to show the
inequality (4.11) is sharp for a convex function f and a strictly convex function g ,
we proceed only with case (i) since the proof in case (ii) is essentially the same.
Since f (m) > 0 , f (M) > 0 and g(t) > 0 , we have (μf · t + νf )/g(t) > 0 and

according to Corollary 4.4 we have maxm�t�M

{
μf ·t+νf

g(t)

}
= μf ·t0+νf

g(t0)
for t0 ∈ [m, M]
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determined by (4.15). Using Lemma 4.6 for t∗ = t0 and map Φ defined by (4.7) we
have Φ (f (A)) = μf ·t0+νf

g(t0)
g (Φ(A)) . Hence,

Φ (f (A)) =
[

max
m�t�M

{
μf · t + νf

g(t)

}]
g (Φ(A)) .

REMARK 4.13. Similarly to Remark 4.10, we obtain the opposite inequality of
(4.11) in Corollary 4.12. Let f and g be two twice differentiable positive valued

functions on [m, M] and let f be convex. If g(m) f ′(m)
f (m) � μg � g(M) f ′(M)

f (M) then

f (r)
μgr + νg

g(Φ(A)) � Φ(f (A)),

when g is a strictly convex function and

f (r)
μgr + νg

μgt0 + νg

f (t0)
g(Φ(A)) � Φ(f (A)),

when g is a strictly concave, where r is the unique solution in [m, M] of f ′(r)
f (r) = μg

μgr+νg

and t0 is the unique solution in [m, M] of g′(t)
g(t) = μg

μgt+νg
. Otherwise, if μg

g(m) < f ′(m)
f (m)

or f ′(M)
f (M) <

μg
g(M) then

max
s∈{m,M}

min
m�t�M

{
f (s) + f ′(s)(t − s)

g(t)

}
g(Φ(A)) � Φ(f (A)).

Indeed, because f is convex, then

Φ(f (A)) � max
k ∈ {conx.}

k � f

min
m�t�M

{
k(t)
g(t)

}
g(Φ(A)) � min

m�t�M
{hr(t)} g(Φ(A))

where hr(t) = f (r)+f ′(r)(t−r)
g(t) , r ∈ [m, M] . We choose r which is the unique solution

in [m, M] of f ′(r)
f (r) = μg

μgr+νg
when g(m) f ′(m)

f (m) � μg � g(M) f ′(M)
f (M) , r = m when

μg
g(m) < f ′(m)

f (m) or r = M when f ′(M)
f (M) <

μg
g(M) . In the case of convexity of g , the

function hr is concave and so its minimum is attained at m or M . (Specially, we

have hr(m) = hr(M) when r is the unique solution of f ′(r)
f (r) = μg

μgr+νg
). In the case of

concavity of g the function hr is convex and so its minimum is attained at t0 ∈ [m, M] .
In the same way we can obtain the opposite inequality (4.12) and in case f , g < 0 the
opposite inequalities of (4.13), (4.14).

REMARK 4.14. If we put g = f > 0 in Corollary 4.12 we have [9, Corollary 2.4]
for the ratio case.
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Also, when we replace Φ(A) with
∑n

i=1 ωiφi (Ai) and for g = f a convex
function we obtain a matrix analogous to an operator case [13, Theorem 4]. Further let
the hypothesis of Corollary 4.12 be satisfied and f , g are convex functions. Then

max

{
f (m)
g(m)

,
f (M)
g(M)

}
� max

m�t�M

{
μf · t + νf

g(t)

}
in case (i) or

0 � min
m�t�M

{
μf · t + νf

g(t)

}
� min

{
f (m)
g(m)

,
f (M)
g(M)

}
in case (ii) . For f = g an extreme of h(t) = (μf · t + νf )/g(t) on [m, M] is at

t0 ∈ (m, M) and we have the estimate in [13, Theorem 3]: 1 < maxm�t�M

{
μf ·t+νf

f (t)

}
in case (i) or 0 < minm�t�M

{
μf ·t+νf

f (t)

}
< 1 in case (ii) .

5. Applications I

In this section, as application of our general theorem, we shall consider the upper
and lower bounds of the difference and the ratio in inequalities of the power functions
and the means. We use our approach to obtain results for the cases that were not covered
in [9].

5.1. Application to power functions

THEOREM 5.1. Let A be a positive definite Hermitian matrix with spectrum
contained in [m, M] , where 0 < m < M . Let Φ be a normalized positive linear map
from Hn to Hñ . Put q ∈ R . If f is a real valued continuous convex function on
[m, M] , then for a given real number α

Φ(f (A)) � αΦ(A)q + βI (5.1)

holds for

β =

⎧⎨
⎩ α(q − 1)

(
μf
αq

) q
q−1

+ νf , if m <
(
μf
αq

) 1
q−1

< M and αq(q − 1) > 0

max{f (M) − αMq, f (m) − αmq}, otherwise.

But if f is a real valued continuous concave function on [m, M] , then for a given real
number α

Φ(f (A)) � αΦ(A)q + βI (5.2)
holds for

β =

⎧⎨
⎩ α(q − 1)

(
μf
αq

) q
q−1

+ νf if m <
(
μf
αq

) 1
q−1

< M and αq(q − 1) < 0

min{f (M) − αMq, f (m) − αmq} otherwise.

Inequalities (5.1) and (5.2) are sharp in the sense that there is a normalized positive
linear map Φ for which the equality is attained.
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Proof. In the case of αq(q − 1) > 0 , we obtain inequality (5.1) if we put
g(t) = αtq in Corollary 4.9. Similarly we prove the concave case.

We have the following Corollary by applying f (t) = tp to Theorem 5.1.

COROLLARY 5.2. Let the hypothesis of Theorem 5.1 be satisfied. If p ∈ R\[0, 1)
(resp. p ∈ (0, 1] ) and q ∈ R , then for a given real number α

Φ(Ap) � αΦ(A)q + β1I (resp. Φ(Ap) � αΦ(A)q + β2I) (5.3)

holds for

β1 =

⎧⎨
⎩ α(q − 1)

(
1
αqμtp

) q
q−1

+ νtp if m <
(

1
αqμtp

) 1
q−1

< M and αq(q − 1) > 0

max{mp − αmq, Mp − αMq} otherwise,

(resp.

β2 =

⎧⎨
⎩ α(q − 1)

(
1
αqμtp

) q
q−1

+ νtp if m <
(

1
αqμtp

) 1
q−1

< M and αq(q − 1) < 0

min{mp − αmq, Mp − αMq} otherwise.

)
The inequality (5.3) is sharp.

Next we shall show the following two theorems, which are extensions of [9,
Theorem 3.1 and Theorem 3.2].

THEOREM 5.3. Let the hypothesis of Theorem 5.1 be satisfied. If p ∈ R\{0} and
q ∈ R , then

β2I � Φ(Ap) −Φ(A)q � β1I (5.4)

with

β1 =

⎧⎨
⎩ (q − 1)

(
1
qμtp

) q
q−1

+ νtp if m <
(

1
qμtp

) 1
q−1

< M and q(q − 1) > 0

max{mp − mq, Mp − Mq} otherwise
if p ∈ R\[0, 1],

β1 =

⎧⎨
⎩

(
q
p

) p
p−q −

(
q
p

) q
p−q

if m <
(

q
p

) 1
p−q

< M and 0 < p < q

max{mp − mq, Mp − Mq} otherwise
if p ∈ (0, 1]
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and

β2 =

⎧⎨
⎩ (q − 1)

(
1
qμtp

) q
q−1

+ νtp if m <
(

1
qμtp

) 1
q−1

< M and q(q − 1) < 0

min{mp − mq, Mp − Mq} otherwise
if p ∈ (0, 1),

β2 =

⎧⎨
⎩

(
q
p

) p
p−q −

(
q
p

) q
p−q

if m <
(

q
p

) 1
p−q

< M and q(p − q) > 0

min{mp − mq, Mp − Mq} otherwise
if p ∈ [−1, 0) or p ∈ [1, 2],

β2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − p)
(

1
pμtq

) p
p−1 − νtq if m �

(
1
pμtq

) 1
p−1 � M and q(q − 1) > 0

(1 − p)
(

1
pμtq

) p
p−1

+ (q − 1)
(

1
qμtq

) q
q−1

if m �
(

1
pμtq

) 1
p−1 � M and q(q − 1) < 0

max
s∈{m,M}

min
m�t�M

{
(1 − p)sp + psp−1t − tq

}
otherwise

if p < −1 or p > 2.

The right hand inequality (5.4) is sharp for all values of p . The left hand of
inequality (5.4) is sharp when p ∈ [−1, 2] .

Proof. We first consider β1 .
Case 1. Suppose p > 1 or p < 0 . Put α = 1 in Corollary 5.2. Then we have β1

and the right hand inequality is sharp.
Case 2. Suppose 0 < p � 1 . Then the function f (t) = tp is matrix concave. We

use k = f in inequality (4.2) of Corollary 4.2 to determinate β1 . This inequality is
sharp and the equality is attained for map (4.7), where t0 is determined in usual way.

Next, we consider β2 .
Case 1. Suppose 0 < p < 1 . Put α = 1 in Corollary 5.2. Then we have β2 and

the left hand inequality is sharp.
Case 2. Suppose −1 � p < 0 or 1 � p � 2 . Then the function f (t) = tp is

matrix convex. We use k = f in inequality (4.2) of Corollary 4.2 to determine β2 .
This inequality is sharp and the inequality is attained for map defined by (4.7), where
t0 is determined in usual way.

Case 3. Suppose p > 2 or p < −1 . Then f (t) = tp is a convex function and we
use Remark 4.10 to determine β2 .

REMARK 5.4. If we put q = p in Theorem 5.3 we obtain [9, Theorem 3.1]:

β2I � Φ(Ap) −Φ(A)p � β1I



576 J. MIĆIĆ, J. PEČARIĆ, Y. SEO AND M. TOMINAGA

with

β2 =

⎧⎨
⎩

−Δ if p > 2 or p < −1

0 if − 1 � p < 0 or 1 � p � 2

Δ if 0 < p < 1,

β1 =
{ Δ if p > 1 or p < 0

0 if 0 < p � 1,

where

Δ = Mp 1 − γ 1−p

1 − γ
+ mp(p − 1)

{
p(γ − 1)
γ p − 1

} p
1−p

and γ = M/m . The right hand inequality is sharp for all values of p and the left hand
inequality when p ∈ [−1, 2] .

THEOREM 5.5. Let the hypothesis of Theorem 5.1 be satisfied. If p ∈ R\{0} and
q ∈ R , then

α2Φ(A)q � Φ(Ap) � α1Φ(A)q (5.5)

with

α1 =
{

Ctp(m, M; q) if m < q
1−qνtp/μtp < M , q(q − 1) > 0 and pq > 0

max{mp

mq , Mp

Mq } otherwise

if p ∈ R\[0, 1] ,

α1 =
{

mp−q if p < q
Mp−q if p � q

if p ∈ (0, 1] , and

α2 =
{

Ctp(m, M; q) if m < q
1−qνtp/μtp < M and q(q − 1) < 0

min{mp

mq , Mp

Mq } otherwise

if p ∈ (0, 1) ,

α2 =
{

mp−q if p > q
Mp−q if p � q

if p ∈ [−1, 0) or p ∈ [1, 2] ,

α2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ctq(m, M; p)−1 if pmq−1 � μtq � pMq−1 and q(q − 1) > 0
1−p
1−qCtq(m, M; p)−1Ctq(m, M; q)

if pmq−1 � μtq � pMq−1 and q(q − 1) < 0

max
s∈{m,M}

min
m�t�M

{
(1−p)sp+psp−1t

tq

}
otherwise

if p < −1 or p > 2 .
Here Ctp(m, M; q) is Furuta’s constant for f (t) = tp and also Ctq(m, M; p) is

Furuta’s constant for f (t) = tq . The right hand inequality of (5.5) is sharp for all
values of p . The left hand inequality of (5.5) is sharp when p ∈ [−1, 2] .
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Proof. We prove this theorem by a similar method as in Corollary 5.3.
We first consider α1 .
Case 1. Suppose p > 1 or p < 0 . Then we have α1 as a unique constant which

satisfies β1 = 0 in Corollary 5.2. The right hand inequality is sharp.
Case 2. Suppose 0 < p � 1 . Then the function f (t) = tp is matrix concave. We

use k = f in inequality (4.3) to determinate α1 . The sharp is attained for map (4.7),
where t0 may be determined in usual way.

Next, we consider α2 .
Case 1. Suppose 0 < p < 1 . Then we have α2 as a unique constant which

satisfies β2 = 0 in Corollary 5.2. The left hand inequality is sharp.
Case 2. Suppose −1 � p < 0 or 1 � p � 2 . Then the function f (t) = tp is

matrix convex. We use k = f in inequality 4.3 to determinate α2 . The sharp is attained
for map (4.7), where t0 may be determined in usual way.

Case 3. Suppose p > 2 or p < −1 . Then f (t) = tp is a convex function and we
use Remark 4.13 to determine α2 .

REMARK 5.6. If we put q = p in Theorem 5.5 we obtain [9, Theorem 3.2]:

α2Φ(A)p � Φ(Ap) � α1Φ(A)p

with

α2 =

⎧⎨
⎩

Δ−1 if p > 2 or p < −1

1 if − 1 � p < 0 or 1 � p � 2

Δ if 0 < p < 1,

α1 =
{ Δ if p > 1 or p < 0

1 if 0 < p � 1,

where

Δ =
γ p − γ

(1 − p)(γ − 1)

(
(p − 1)(γ p − 1)

p(γ p − γ )

)p

and γ = M/m . The right hand inequality is sharp for all values of p and the left hand
inequality when p ∈ [−1, 2] .

5.2. Application to means

We recall Jensen’s type inequalities of power means on a positive linear map: If A
is a positive definite Hermitian matrix, then

Φ(Ar)1/r � Φ(As)1/s

holds for either r � s with r, s �= (−1, 1) , or 1/2 � r � 1 � s or r � −1 � s �
−1/2 .
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In this section, we shall investigate the lower and upper estimates of the difference
and the ratio in power means on a positive linear map. We prepare the following
intervals:

(i) s � r, s �∈ (−1, 1), r �∈ (−1, 1)
(ii) s � 1 � r � 1/2
(iii) r � −1 � s � −1/2
(iv) s � 1,−1 < r < 1/2, r �= 0
(v) r � −1,−1/2 < s < 1, s �= 0
(vi) s > r, s �∈ (−1, 1) or r �∈ (−1, 1)

(5.6)

If we put p = s/r in Remark 5.6 and replace A by Ar or p = r/s , A by As , then
we have the following theorem:

THEOREM 5.7. Let A be a Hermitian matrix with spectrum contained in [m, M] ,
where 0 < m < M . Let Φ be a normalized positive linear map from Hn to Hm̃ . Also
let r,s be nonzero real numbers such that r � s . Then

α2Φ(Ar)1/r � Φ(As)1/s � α1Φ(Ar)1/r (5.7)

with

α2 =
{

1 if either (i) or (ii) or (iii) ,
Δ̃−1 if either (iv) or (v) ,

α1 = Δ̃ if (vi) ,

where

Δ̃ =
{

r(γ s − γ r)
(s − r)(γ r − 1)

} 1
s
{

s(γ r − γ s)
(r − s)(γ s − 1)

}− 1
r

.

and γ = M/m. The right hand inequality is sharp when r, s satisfy (vi) and the left
hand inequality when r, s satisfy (i) , or (ii) , or (iii) .

Proof. We prove this Theorem by a similar method as in [20, Theorem (Mond-
Pečarić)1]. We shall consider only the case when s �= r .

Suppose that s � 1 and r < 1 . In this case we put p = s
r . If r > 0 then

mr � Ar � Mr and Remark 5.6 (for 1 < p � 2 or p > 2 ) gives

Φ(A)s/r � Φ(As/r) � Cts/r(m, M; s
r )Φ(A)s/r if s/2 � r < 1,

or Cts/r(m, M; s
r )

−1Φ(A)s/r � Φ(As/r) � Cts/r (m, M; s
r )Φ(A)s/r if 0 < r < s/2,

where Cts/r(m, M; s
r ) is Furuta’s constant for f (t) = ts/r . Then replacing A by Ar we

have

Φ(Ar)s/r � Φ(As) � Cts/r (mr, Mr; s
r )Φ(Ar)s/r if s/2 � r < 1,

or Cts/r (mr, Mr; s
r )

−1Φ(Ar)s/r � Φ(As) � Cts/r (mr, Mr; s
r )Φ(Ar)s/r if 0 < r < s/2,
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where (see [20, proof of Theorem (Mond-Pečarić) 1])

Cts/r (mr, Mr;
s
r
) =

r(γ s − γ r)
(s − r)(γ r − 1)

(
s(γ r − γ s)

(r − s)(γ s − 1)

)− s
r

.

The function f (t) = t
1
s is matrix increasing if s � 1 and it follows that

Φ(Ar)1/r � Φ(As)1/s � Cts/r (mr, Mr; s
r )

1/sΦ(Ar)1/r if s/2 � r < 1, or
Cts/r (mr, Mr; s

r )
−1/sΦ(Ar)1/r � Φ(As)1/s � Cts/r(mr, Mr; s

r )
1/sΦ(Ar)1/r if 0 < r < s/2,

where Cts/r(mr, Mr; s
r )

1/s =
{

r(γ s−γ r)
(s−r)(γ r−1)

} 1
s
{

s(γ r−γ s)
(r−s)(γ s−1)

}− 1
r

= Δ̃. Furthermore, con-

sider the case of s = 1 . Then for 1/2 � r � 1

Φ(Ar)1/r � Φ(A),

so for arbitrary s > 1 , we have

Φ(Ar)1/r � Φ(A) � Φ(As)1/s � Δ̃Φ(Ar)1/r if 1/2 � r < 1,
or Δ̃−1Φ(Ar)1/r � Φ(A) � Φ(As)1/s � Δ̃Φ(Ar)1/r if 0 < r < 1/2.

If r < 0 then Mr � Ar � mr and Remark 5.6 (for −1 � p < 0 or p < −1 ) with
the fact that the function f (t) = t

1
s is matrix increasing gives

Φ(Ar)1/r � Φ(As)1/s � Cts/r(Mr, mr; s
r )

1/sΦ(Ar)1/r if r � −s, or
Cts/r (Mr, mr; s

r )
−1/sΦ(Ar)1/r � Φ(As)1/s � Cts/r(Mr, mr; s

r )
1/sΦ(Ar)1/r if − s < r < 0,

where (see [20, proof of Theorem (Mond-Pečarić) 1]) Cts/r(Mr, mr; s
r )

1
s = Δ̃. There-

fore, similarly to above we have

Φ(Ar)1/r � Φ(A) � Φ(As)1/s � Δ̃Φ(Ar)1/r if r � −1,

or Δ̃−1Φ(Ar)1/r � Φ(A) � Φ(As)1/s � Δ̃Φ(Ar)1/r if − 1 < r < 0.

Now, suppose that 1 � r < s . In this case we put p = r
s and Remark 5.6 (for

0 < p � 1 ) with the fact that the function f (t) = t
1
r is matrix increasing gives

Ctr/s(ms, Ms;
r
s
)1/rΦ(As)1/s � Φ(Ar)1/r � Φ(As)1/s

where (see [20, proof of Theorem (Mond-Pečarić) 1]) Ctr/s(ms, Ms; r
s)

1/r = Δ̃−1, so
that we obtain

Φ(Ar)1/r � Φ(As)1/s � Δ̃Φ(Ar)1/r if 1 � r � s .

Therefore, we obtain the desired results in the cases of (i) , (ii) and (iii) for s � 1
and r � s .

We prove first the case when −1 < s < 1 . In this case we put p = r
s . If

0 < s < 1 then ms � As � Ms and Remark 5.6 (for p < −1 ) gives

Ctr/s(ms, Ms;
r
s
)−1Φ(Ar) � Φ(As)r/s � Ctr/s(ms, Ms;

r
s
)Φ(Ar).
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Therefore, the function f (t) = t
1
r is matrix decreasing if r � −1 and it follows that

Ctr/s(ms, Ms;
r
s
)−1/rΦ(Ar)1/r � Φ(As)1/s

� Ctr/s(ms, Ms;
r
s
)1/rΦ(Ar)1/r if 0 < s < 1,

so that we obtain the desired inequality.
Similarly, if −1 < s < 0 then Ms � As � ms and Remark 5.6 (for 1 � p � 2 or

p > 2 ) with the fact that the function f (t) = t
1
r is matrix decreasing gives

Ctr/s(Ms, ms;
r
s
)−1/rΦ(Ar)1/r � Φ(As)1/s � Φ(Ar)1/r, if − 1 < s � r/2,

or

Cts/r (Mr, mr;
s
r
)−1/sΦ(Ar)1/r � Φ(As)1/s

� Cts/r(Mr, mr;
s
r
)1/sΦ(Ar)1/r if r/2 � r < 0,

where Ctr/s(Ms, ms; r
s )

1/r = Δ̃−1.
Furthermore, consider the case of r = −1 . Then for −1 � s � −1/2

Φ(A−1)−1 � Φ(As)1/s,

so for arbitrary r < −1 , we have

Φ(Ar)1/r � Φ(A−1)−1 � Φ(As)1/s.

Therefore we have

Φ(Ar)1/r � Φ(A−1)−1 � Φ(As)1/s � Δ̃Φ(Ar)1/r if − 1 < s � −1/2,

or Δ̃−1Φ(Ar)1/r � Φ(A−1)−1 � Φ(As)1/s � Δ̃Φ(Ar)1/r if − 1/2 < s < 0.

Finally, let r � s � −1 . In this case we put p = s
r and then Mr � Ar � mr .

Remark 5.6 (for 0 < p � 1 ) with the fact that the function f (t) = t
1
s is matrix

decreasing gives
Φ(Ar)1/r � Φ(As)1/s � Δ̃Φ(Ar)1/r,

so that we obtain the desired results in the cases of (i) , (iii) and (v) for s < 1 and
r � s .

Further, we shall give the estimate Φ(As)1/s − Φ(Ar)1/r for r < s . To establish
the result, we need the following corollary.

COROLLARY 5.8. Let the hypothesis of Theorem 5.7 be satisfied. If 1 � r � s
or r � −1 � s then

[μ̄Φ(As) + ν̄I]1/r � Φ(Ar)1/r (5.8)

�
{ [

μ̄Φ(As) +
(
1 − r

s

) (
s
r ν̄

) r
r−s I

]1/r
if − 1/2 < s < 1, s �= 0,

Φ(As)1/s otherwise,



INEQUALITIES FOR POSITIVE LINEAR MAPS ON HERMITIAN MATRICES 581

while if r � s � −1 or r � 1 � s then

[
1
μ̄
Φ(Ar) − ν̄

μ̄
I

]1/s

� Φ(As)1/s (5.9)

�
{ [

1
μ̄ Φ(Ar) − 1

μ̄
(
1 − r

s

) (
s
r ν̄

) r
r−s I

]1/s
if − 1 < r < 1/2, r �= 0,

Φ(Ar)1/r otherwise,

where μ̄ = Mr−mr

Ms−ms and ν̄ = Msmr−Mrms

Ms−ms .

Proof. Let the hypothesis of Theorem 5.7 be satisfied. First we prove two inequal-
ities similar to that in Remark 5.4. Let p ∈ R\{0} . If 0 < p � 1 then

μtpΦ(A) + νtp I � Φ(Ap) � Φ(A)p. (5.10)

This inequality is sharp. While if p < 0 or p > 1 then

μtpΦ(A) + νtp I � Φ(Ap) �
{

Φ(A)p if −1 � p < 0 or 1 � p � 2
μtpΦ(A) + ν∗tp I if p < −1 or p > 2

(5.11)
where ν∗tp = (1− p)(μtp/p)p/(p−1). The left hand inequality is sharp for all values of p
and the right hand inequality when −1 � p < 0 and 1 � p � 2 .

Indeed, the right hand inequality (5.10) for 0 < p � 1 and left hand inequal-
ity (5.11) for −1 � p < 0 or 1 � p � 2 follow from Remark 5.4. The left hand
inequality (5.10) for 0 < p � 1 and the right hand inequality (5.11) for p < 0 or
p > 1 follow from Corollary 4.9 if we put f (t) = tp and g(t) = μtp t . Finally, the
left hand inequality (5.11) for p < −1 or p > 2 follows from Remark 4.10 for some
functions f (t) = tp and g(t) = μtp t .

Now, we prove inequalities (5.8) and (5.9) by a similar method as [20, Theorem
(Mond-Pečarić)2]. We shall consider only the case when s �= r . We prove first (5.8)
if r �∈ (−1, 1) . In this case we replace A by As and put p = r

s in both inequalities
(5.10) and (5.11). Then

Φ(As)r/s � Φ(Ar) � μ̄Φ(As) + ν̄I if r � −1 and ( r � s � r/2 or −r � s ),
μ̄Φ(As) + ν∗I � Φ(Ar) � μ̄Φ(As) + ν̄I if r � −1 , r/2 < s < −r , s �= 0 ,

μ̄Φ(As) + ν̄I � Φ(Ar) � Φ(As)r/s if 1 � r < s ,

where ν∗ =
(
1 − r

s

) (
s
r μ̄

) r
r−s . Using the fact that the function f (t) = t

1
r is a matrix

increasing if r � 1 and a matrix decreasing if r � −1 we have

Φ(As)1/s � Φ(Ar)1/r � [μ̄Φ(As) + ν̄I]1/r if r� − 1 and ( r�s�r/2 or −r�s ),
[μ̄Φ(As)+ν∗I]1/r �Φ(Ar)1/r� [μ̄Φ(As)+ν̄I]1/r if r � −1 , r/2 < s < −r , s �= 0 ,

[μ̄Φ(As) + ν̄I]1/r � Φ(Ar)1/r � Φ(As)1/s if 1 � r < s .
(5.12)
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If we put r = −1 , then we have

Φ(Ar)1/r � Φ(A−1)−1 � Φ(As)1/s

for r � −1 and −1 � s � −1/2 . Therefore, it follows from a similar way to
Theorem 5.7 that

[μ̄Φ(As) + ν̄I]1/r � Φ(Ar)1/r � Φ(As)1/s if either (iii) or ( r � −1 , 1 � s ),
[μ̄Φ(As) + ν̄I]1/r � Φ(Ar)1/r � [μ̄Φ(As) + ν∗I]1/r if (v) ,

[μ̄Φ(As) + ν̄I]1/r � Φ(Ar)1/r � Φ(As)1/s if 1 � r < s .

Next we prove (5.9) if s �∈ (−1, 1) . In this case we replace A by Ar and put
p = s

r in both inequalities (5.10) and (5.11). Then

Φ(Ar)s/r � Φ(As) � μ̃Φ(Ar) + ν̃I if s � 1 and ( s/2 � r � s or r � −s ),
μ̃Φ(Ar) + ν̃∗I � Φ(As) � μ̃Φ(Ar) + ν̃I if s � 1 , −s < r < s/2 , r �= 0 ,

μ̃Φ(Ar) + ν̃I � Φ(As) � Φ(Ar)s/r if r < s � −1 ,

where

μ̃ =
Ms − ms

Mr − mr
=

1
μ̄

, ν̃ =
Mrms − Msmr

Mr − mr
= − ν̄

μ̄
,

ν̃∗ =
(
1 − s

r

)(r
s
μ̃
) s

s−r
= −ν∗

μ̄
.

Using the fact that the function f (t) = t
1
s is matrix increasing if s � 1 and matrix

decreasing if s � −1 we have

Φ(Ar)1/r � Φ(As)1/s �
[

1
μ̄ Φ(Ar) − ν̄

μ̄ I
]1/s

if s�1 and ( s/2�r�s or r� − s ),[
1
μ̄ Φ(Ar)+ν̃∗I

]1/s
�Φ(As)1/s�

[
1
μ̄ Φ(Ar)− ν̄

μ̄ I
]1/s

if s � 1 , −s < r < s/2 , r �= 0 ,[
1
μ̄ Φ(Ar) − ν̄

μ̄ I
]1/s

� Φ(As)1/s � Φ(Ar)1/r if r < s � −1 .

(5.13)
Therefore we have the desired inequality similarly to above.

We shall show the bound of the difference in power means on a positive linear map.

THEOREM 5.9. Let the hypothesis of Theorem 5.7 be satisfied. Then

β2I � Φ(As)1/s −Φ(Ar)1/r � β1I (5.14)

with

β2 =
{

0 if either (i) or (ii) or (iii) ,
Δ∗ if either (v) or (iv) ,

β1 = Δ if (vi) ,

where

Δ = max
θ∈[0,1]

{
[θMs + (1 − θ)ms]

1
s − [θMr + (1 − θ)mr]

1
r

}
,

Δ∗ = min
θ∈[0,1]∪[ d

Mr−mr , d
Mr−mr +1]

{
[θMs + (1 − θ)ms]

1
s − [θMr + (1 − θ)mr − d]

1
r

}
,
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and

d =
Msmr − Mrms

Ms − ms
−

(
1 − r

s

)(
s
r
Mr − mr

Ms − ms

) r
r−s

.

The right hand inequality is sharp when r, s satisfy (vi) and the left hand inequality
when r, s satisfy (i) , or (ii) , or (iii) .

Proof. We shall consider only the case when s �= r . We prove first (5.14) if
r �∈ (−1, 1) . Using (5.12) and the matrix calculus we have

0 = Φ(As)1/s −Φ(As)1/s � Φ(As)1/s −Φ(Ar)1/r

� Φ(As)1/s − [μ̄Φ(As) + ν̄I]1/r if either (iii) or (r � −1, 1 � s);

Φ(As)1/s −
[
μ̄Φ(As) +

(
1 − r

s

) (
s
r ν̄

) r
r−s I

]1/r
� Φ(As)1/s −Φ(Ar)1/r

� Φ(As)1/s − [μ̄Φ(As) + ν̄I]1/r if (v) ;
0 = Φ(As)1/s −Φ(As)1/s � Φ(As)1/s −Φ(Ar)1/r

� Φ(As)1/s − [μ̄Φ(As) + ν̄I]1/r if 1 � r < s.
(5.15)

Therefore, the right hand inequalities (5.15) become

Φ(As)1/s −Φ(Ar)1/r � Φ(As)1/s − [μ̄Φ(As) + ν̄I]1/r

� max
t∈T̄

{
t

1
s − (μ̄ t + ν̄)

1
r

}
I,

where T denotes the open interval joining ms to Ms , and T̄ is the closure of T .
We set θ = (t − ms)/(Ms − ms) . Then a simple calculation implies μ̄ · t + ν̄ =
θMr + (1 − θ)mr , and hence maxt∈T̄

{
t

1
s − (μ̄ t + ν̄)

1
r

}
= Δ . Therefore, we obtain

β1 = δ for 1 � r � s and r � −1 � s .

In the case (v) the left hand second inequality (5.15) becomes

Φ(As)1/s − Φ(Ar)1/r � Φ(As)1/s −
[
μ̄Φ(As) +

(
1 − r

s

)( s
r
ν̄
) r

r−s
I

]1/r

� min
t∈T̄

{
t

1
s −

(
μ̄ t +

(
1 − r

s

)( s
r
ν̄
) r

r−s
) 1

r
}

I

= min
t∈T̄

{
t

1
s − (μ̄ t + ν̄ − d)

1
r

}
I

= min
θ∈[0,1]

{
[θMs + (1 − θ)ms]

1
s − [θMr + (1 − θ)mr − d]

1
r

}
I � Δ∗I
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Next, we prove (5.14) if s �∈ (−1, 1) . Using (5.13) and the matrix calculus we have

0 = Φ(Ar)1/r −Φ(Ar)1/r � Φ(As)1/s −Φ(Ar)1/r

�
[

1
μ̄ Φ(Ar) − ν̄

μ̄ I
]1/s

−Φ(Ar)1/r if either (ii) or (r� − 1, 1�s);[
1
μ̄ Φ(Ar) − 1

μ̄
(
1 − r

s

) (
s
r ν̄

) r
r−s I

]1/s
−Φ(Ar)1/r � Φ(As)1/s −Φ(Ar)1/r

�
[

1
μ̄ Φ(Ar) − ν̄

μ̄ I
]1/s

−Φ(Ar)1/r if (iv) ;

0 = Φ(Ar)1/r −Φ(Ar)1/r � Φ(As)1/s −Φ(Ar)1/r

�
[

1
μ̄ Φ(Ar) − ν̄

μ̄ I
]1/s

−Φ(Ar)1/r if r < s � −1.

(5.16)
Therefore, the right hand inequalities (5.16) become

Φ(As)1/s −Φ(Ar)1/r �
[

1
μ̄
Φ(Ar) − ν̄

μ̄
I

]1/s

−Φ(Ar)1/r

� max
t∈T̄1

{(
1
μ̄

t − ν̄
μ̄

) 1
s

− t
1
r

}
I,

where T1 denotes the open interval joining mr to Mr , and T̄1 is the closure of T1 .
We set θ = (t − mr)/(Mr − mr) . Then simple calculation implies 1

μ̄ · t − ν̄
μ̄ =

θMs +(1−θ)ms , and hence maxt∈T̄1

{(
1
μ̄ t − ν̄

μ̄

) 1
s − t

1
r

}
= Δ . Therefore, we obtain

β1 = δ for r � s � −1 and −1 � r � 1 � s .
In the case (iv) the left hand of second inequality (5.16) becomes

Φ(As)1/s −Φ(Ar)1/r �
[

1
μ̄
Φ(Ar) − 1

μ̄

(
1 − r

s

)( s
r
ν̄
) r

r−s
I

]1/s

−Φ(Ar)1/r

� min
t∈T̄1

{[
1
μ̄

t − 1
μ̄

(
1 − r

s

)( s
r
ν̄
) r

r−s
]1/s

− t
1
r

}
I

= min
θ∈[0,1]

{
[θMs + (1 − θ)ms +

d
μ̄

]
1
s − [θMr + (1 − θ)mr]

1
r

}
I

= min
θ∈[ d

Mr−mr , d
Mr−mr +1]

{
[θMs + (1 − θ)ms]

1
s − [θMr + (1 − θ)mr − d]

1
r

}
I

� Δ∗I.

As applications, we have the following corollaries [9, Corollaries 3.3 and 3.4]
which are given both inequalities but with errors in the bounds estimate: In fact, we
obtain Corollary 5.10 (resp. Corollary 5.11) if we put s = 1 and r = p in Theorem
5.7 (resp. Theorem 5.9) respectively.

COROLLARY 5.10. Let Φ be a positive linear map and A a positive definite
Hermitian matrix with spectrum contained in [m, M] . Let p be a nonzero real number.
If γ = M/m, then

α2Φ(Ap)1/p � Φ(A) � α1Φ(Ap)1/p
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with

α2 =

⎧⎨
⎩

Δ̄−1 if − 1 < p < 0 or 0 < p < 1/2

1 if p � −1 or 1/2 � p � 1

Δ̄ if p > 1,

α1 =
{ Δ̄ if p < 0 or 0 < p < 1,

1 if p � 1,

where

Δ̄ = (γ − 1)
1
p

p
γ p − 1

{
p − 1
γ p − γ

} 1−p
p

.

COROLLARY 5.11. Let Φ be a positive linear map and A a positive definite Hermitian
matrix with spectrum contained in [m, M] . Let p be a nonzero real number. If
γ = M/m, then

β2I � Φ(A) −Φ(Ap)1/p � β1I

with

β2 =

⎧⎨
⎩

−Δ if − 1 < p < 0 or 0 < p < 1/2

0 if p � −1 or 1/2 � p � 1

Δ if p > 1,

β1 =
{ Δ if p < 0 or 0 < p < 1,

0 if p � 1,

where

Δ = M
1 − γ p−1

1 − γ p
+ m

(
1
p
− 1

){
p(γ − 1)
γ p − 1

} 1
1−p

.

6. Applications II

6.1. Application to matrix version of Ky Fan inequality

By application of Theorem 3.1 on a special map Φ(A) = UAU∗ , we obtain the
following result which is an extension of [19, Theorem 12].

COROLLARY 6.1. Let Aj be positive definite Hermitian matrices of order n such
that 0 < m � Aj � M (j = 1, 2, · · · , n) and also let Uj (j = 1, 2, · · · , n) be r × n
matrices such that

∑n
j=1 UjU∗

j = I . Let f and g be real valued continuous functions on
[m, M] . Let F(u, v) be a real valued function defined on U×V , matrix non-decreasing
in u , where U and V are intervals such that U ⊃ f [m, M] and V ⊃ g[m, M] . Then
the following inequalities hold{

max
k∈{conx.}

k�f

min
m�t�M

F [k(t), g(t)]

}
I � F[

n∑
j=1

Ujf (Aj)U∗
j , g(

n∑
j=1

UjAjU
∗
j )]

�
{

min
k∈{conc.}

k�f

max
m�t�M

F [k(t), g(t)]

}
I. (6.1)
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Proof. Let U be any unitary matrix of order n. We define map Φ : Hn → C with
Φ(B) = UBU∗ (∀B ∈ Hn) . It is evident that this map is a normalized positive linear
map from Hn to Hn . Then from Theorem 3.1 the following inequality{

max
k∈{conx.}

k�f

min
m�t�M

F [k(t), g(t)]

}
I � F[Uf (A)U∗, g(UAU∗)]

�
{

min
k∈{conc.}

k�f

max
m�t�M

F [k(t), g(t)]

}
I (6.2)

holds for any Hermitian matrix A with spectrum contained in [m, M] . Furthermore, for
Aj and Uj (j = 1, 2, · · · , n) from the hypothesis of corollary we have

∑n
j=1 UjAjU∗

j =
UAU∗ , where A = A1+̇A2+̇ · · · +̇An , U = [U1U2 · · ·Uk] and

∑n
j=1 Ujf (Aj)U∗

j =
Uf (A)U∗ . If we put this A and U in (6.2) we obtain the desired inequality (6.1).

COROLLARY 6.2. If the conditions of Corollary 6.1 are satisfied, then for a given
real number α

αg(
n∑

j=1

UjAjU
∗
j ) + β2I �

n∑
j=1

Ujf (Aj)U∗
j � αg(

n∑
j=1

UjAjU
∗
j ) + β1I

holds for

β1 =

[
min

k ∈ {conc.}
k � f

max
m�t�M

{k(t) − αg(t)}
]
I,

β2 =

[
max

k ∈ {conx.}
k � f

min
m�t�M

{k(t) − αg(t)}
]
I.

We now consider the means

M[r]
n (A; U) =

(
n∑

i=1

UiA
r
i U

∗
i

)1/r

, r �= 0,

for positive definite Hermitian matrices Aj of order n such that 0 < m � Aj � M ( j =
1, 2, · · · , n ) and matrices Uj (j = 1, 2, · · · , n) of order r×n such that

∑n
j=1 UjU∗

j = I .

If we put Φ(B) = UBU∗ , B ∈ Hn in Theorems 5.7 and 5.9 we have the following
results which are an extension of [12, Theorems 2 and 3].

COROLLARY 6.3. Let Aj be positive definite Hermitian matrices of order n such
that 0 < m � Aj � M ( j = 1, 2, · · · , n ) and also let Uj (j = 1, 2, · · · , n) be r × n
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matrices such that
∑n

j=1 UjU∗
j = I . Also let r and s be nonzero real numbers and

(i) - (vi) as in (5.6). Then

α2M
[r]
n (A; U) � M[s]

n (A; U) � α1M
[r]
n (A; U) (6.3)

with

α2 =
{

1 if either (i) or (ii) or (iii)
Δ̃−1 if either (iv) or (v) ,

α1 = Δ̃ if (vi) ,

where

Δ̃ =
{

r(γ s − γ r)
(s − r)(γ r − 1)

} 1
s
{

s(γ r − γ s)
(r − s)(γ s − 1)

}− 1
r

.

and γ = M/m.

COROLLARY 6.4. Let Aj , Uj (j = 1, 2, · · · , n) and r , s , γ be as inCorollary 6.3.
Then

β2I � M[s]
n (A; U) − M[r]

n (A; U) � β1I (6.4)

with

β2 =
{

0 if either (i) or (ii) or (iii) ,
Δ∗ if either (v) or (iv) ,

β1 = Δ if (vi) ,

where

Δ = max
θ∈[0,1]

{
[θMs + (1 − θ)ms]

1
s − [θMr + (1 − θ)mr]

1
r

}
,

Δ∗ = min
θ∈[0,1]∪[ d

Mr−mr , d
Mr−mr +1]

{
[θMs + (1 − θ)ms]

1
s − [θMr + (1 − θ)mr − d]

1
r

}
,

and

d =
Msmr − Mrms

Ms − ms
−

(
1 − r

s

)(
s
r
Mr − mr

Ms − ms

) r
r−s

.

REMARK 6.5. In [9] it was claimed that the results of Mond and Pečarić: M[s]
n (A; U) �

M[r]
n (A; U) when r , s satisfy (i) , or (ii) , or (iii) , can be easily extended to arbi-

trary normalized positive maps Φ so that one replaces A by Ar and p by r/s in
Corollary 5.11. This is not correct because we need Corollary 5.8 for the proof of
Theorem 5.9.

6.2. Application to Hadamard product

In this section, we shall show an Hadamard product version corresponding to
Theorem 3.1. The Hadamard product of matrices is expressed as the image of a
normalized positive linear map. Let Eij ∈ Hn be the matrix of zeros except in the (i, j)
position. Define a n × n2 matrix PT such that

PT = [E11 : E22 : · · · : Enn].
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If A, B ∈ Hn then
A ◦ B = PT (A ⊗ B) P,

where ◦ and ⊗ denote the Hadamard and Kronecker products, respectively [21, p.
276].

For the sake of convenience, we prepare some notations. Let A and B be positive
definite Hermitian matrices such that 0 < m1 � A � M1 and 0 < m2 � B � M2 .
Put m = m1m2 and M = M1M2 . Also, let f be a real valued continuous function
defined on an interval including [m, M] . Then f is called super-multiplicative (resp.
sub-multiplicative) if f (xy) � f (x)f (y) (resp. f (xy) � f (x)f (y) ) (cf [5]). We define:
Xf = [m1, M1]∪ [m2, M2]∪ [m, M]. Also, we denote {supcc.} (resp. {subcx.} ) the set
of real valued continuous super-multiplicative matrix concave (resp. sub-multiplicative
matrix convex) functions defined on Xf .

We shall show the following theorem which are an extension of [20, Theorem 2].

THEOREM 6.6. Let A and B be Hermitian matrices such that 0 < m1 � A �
M1 and 0 < m2 � B � M2 . Put m = m1m2 and M = M1M2 . Let Φ1 and
Φ2 be normalized positive linear maps from Hn to Hñ . Let f and g be two real
valued continuous function, f defined on the interval Xf , g on [m, M] . Let J1 an
interval including {f (t)f (s) : t ∈ [m1, M1], s ∈ [m2, M2]} and J2 an interval including
{g(t) : t ∈ [m, M]} . If F(u, v) is a real valued function defined on J1 × J2 , matrix
non-decreasing in u , then the following inequalities hold

F[Φ1 (f (A)) ◦Φ2 (f (B)) , g(Φ1(A)◦Φ2(B))] �
{

min
k∈{supcc.}

k�f

max
m�t�M

F [k(t), g(t)]

}
I,

(6.5)

F[Φ1 (f (A)) ◦Φ2 (f (B)) , g(Φ1(A)◦Φ2(B))] �
{

max
k∈{subcx.}

k�f

min
m�t�M

F [k(t), g(t)]

}
I.

(6.6)

Proof. Since k is a continuous super-multiplicative matrix concave function
such that f (t) � k(t) for all t ∈ Xf , it follows from the spectral theorem that
f (A) � k(A) . Using the positivity of Φ1 we have Φ1 (f (A)) � Φ1 (k(A)) . Applying
Jensen’s inequality on function −k (which is a matrix convex function) we obtain
inequality Φ1 (k(A)) � k (Φ1(A)) . Then it follows that Φ1 (f (A)) � k (Φ1(A)) .
Also, Φ2 (f (B)) � k (Φ2(B)) for any Hermitian matrix B with spectrum contained in
[m2, M2] . Further, using the following general formula for tensor products (see [1, p.
216]): A1 � A2 � 0 and B1 � B2 � 0 imply A1 ⊗ B1 � A2 ⊗ B2 , then we obtain

Φ1 (f (A)) ◦Φ2 (f (B)) = PT (Φ1 (f (A)) ⊗ Φ2 (f (B))) P

� PT (k (Φ1(A)) ⊗ k (Φ2(B))) P = k (Φ1(A)) ◦ k (Φ2(B)) ,

so that it follows from the super-multiplicative and matrix concavity of k that

PT (k (Φ1(A)) ⊗ k (Φ2(B))) P � k(PT ((Φ1(A)) ⊗ (Φ2(B))) P)
= k (Φ1(A) ◦Φ2(B)) .
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Using the matrix non-decreasing character of F(·, v) , we have

F[Φ1 (f (A)) ◦Φ2 (f (B)) , g(Φ1(A) ◦Φ2(B))]
� F [k (Φ1(A) ◦Φ2(B)) , g (Φ1(A) ◦Φ2(B))]

�
{

max
t∈σ(Φ1(A)◦Φ2(B))

F [k(t), g(t)]
}

I �
{

max
m�t�M

F [k(t), g(t)]
}

I.

Now we minimize this bound over all continuous super-multiplicative matrix concave
functions k to obtain the inequality (6.5). The inequality (6.6) is proved in the same
way.

REMARK 6.7. Notice that we can obtain similar results in case F(u, v) is a real
valued function matrix non-increasing in u .

REMARK 6.8. Notice that the constant function k(t) = maxm�s�M f (s) for all
t ∈ Xf is a continuous super-multiplicativematrix concave function that bounds f from
above. Since we are optimizing over the right-hand side of (6.5 ) super-multiplicative
matrix concave functions, we can show that there are indeed a function k that attains
the extreme.

THEOREM 6.9. Let the hypothesis of Theorem 6.6 be satisfied and h(t) be defined
by

h(t) ≡ h(t; m, M, f ) = μf · t + νf . (6.7)

If f is a real valued continuousconvex function on Xf and h(t) is a super-multiplicative
function on [m, M] , then the following inequality holds

F[Φ1 (f (A)) ◦Φ2 (f (B)) , g(Φ1(A) ◦Φ2(B))] �
{

max
m�t�M

F [h(t), g(t)]
}

I, (6.8)

but, if f is a real valued continuous concave function and h(t) is a sub-multiplicative
function on [m, M] , then the following inequality holds

F[Φ1 (f (A)) ◦Φ2 (f (B)) , g(Φ1(A) ◦Φ2(B))] �
{

min
m�t�M

F [h(t), g(t)]
}

I. (6.9)

Proof. The convexity of f ensures that f (t) � h(t) for all t ∈ [m, M] . Obviously
h(t) is a matrix concave function. If k is a matrix concave function and f (t) � k(t)
for all t ∈ [m, M] then h(m) = f (m) � k(m) and h(M) = f (M) � k(M) . Because a
matrix concave function is necessarily concave, we have h(t) � k(t) for all t ∈ [m, M] .
Using the (matrix) non-decreasing character of F(·, v) , we have

F [h(t), g(t)] I � F [k(t), g(t)] I for all t ∈ [m, M] .

It follows from this that the minimum in the right hand of (6.5) is attained at h . Thus
we proved the inequality (6.8). The inequality (6.9) can be proved in the same way.

A positive definite matrix, with all its main diagonal entries equal to 1 and all
its entries bounded in absolute value by 1 , is called a correlation matrix. If we put
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Φ(A) = A ◦ B where B is a correlation matrix, then it follows that Φ is a normalized
positive linear map. Therefore we have the following corollary by Theorem 3.1.

COROLLARY 6.10. Let A and B be positive definite Hermitian matrices such that
0 < m1 � A � M1 and 0 < m2 � B � M2 . Put m = m1m2 and M = M1M2 . Let
f and g be real valued continuous functions on [m1, M1] and [m, M] , respectively.
Let J1 an interval including {f (t) · s : t ∈ [m1, M1], s ∈ [m2, M2]} and J2 an interval
including {g(t) : t ∈ [m, M]} . If F(u, v) is a real valued function defined on J1 × J2 ,
matrix non-decreasing in u , then the following inequalities hold

F(f (A) ◦ B, g(A ◦ B)) �
{

min
k ∈ {conc.}

k � f

max
m�t�M

F [k(t), g(t)]

}
I,

and

F(f (A) ◦ B, g(A ◦ B)) �
{

max
k ∈ {conx.}

k � f

min
m�t�M

F [k(t), g(t)]

}
I.
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[12] B. Mond and J. E. Pečarić, Converses of Jensen’s inequality for several operators, Revue d’analyse
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[13] B. Mond and J. E. Pečarić, Bounds for Jensen’s inequality for several operators, Houston Journal of

Mathematics 20 (1994), 4, 645–651.
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[19] J. Mićić, Y. Seo, S.-E. Takahasi and M. Tominaga, Inequalities of Furuta and Mond-Pečarić, Mathe-
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