athematical
nequalities
& Papplications
Volume 4, Number I (2001), I-18

MINMAX PROBLEMS FOR FRACTIONAL PARTS OF REAL NUMBERS
SEON-HONG KiMm

(communicated by A. M. Fink)

Abstract. The view-obstruction problem for the n-dimensional cube with side 1 can be inter-
preted as the problem of evaluating the function k(n) = inf maxog < minj<rcn | vix |
where the infimum is taken over all n-tuples vy,--- , v, of positive integers. So the following
could perhaps be called “generalized view-obstruction problems”: given a periodic function ¢,
an interval / and a set of integers .7, find

i) min max ¢(sx), ii) max min @(sx).
(@) Xeheyﬂ ) (if) xe“eyaﬂ )

We study minmax problems of this nature where

9(x) = {x}*(1 = {x}) and {(x—1/2)"},
and
I= [0:1]7 y:{l N}
Here {x} denotes the fractional part of x,and N >2 and o > 1 are integers.

1. Introduction

In 1973, T. W. Cusick introduced a problem in geometry of numbers which he
called the “view-obstruction problem”. This problem in its original form has attracted
sustained interest over the years. The view-obstruction problem for the n -dimensional
cube with side 1 can be interpreted as the problem of evaluating the function

K(n) = inf max min || vex ||,
0<x< 1 1<k<n
where the infimum is taken over all n-tuple vy, --- ,v, of positive integers (see [1], [2];
the function x(n) was already introduced by Wills [3]). This view-obstruction problem
has a geometrical interpretation (see [1]) which motivates its name. The answer of the
view-obstruction problem for the n-dimensional cube with side 1 isin fact 1 —2k(n),
n > 2. Hence the following could be perhaps called “generalized view-obstruction
problems”: given a periodic function ¢, an interval / and a set of integers .#, find

(f) minmax¢(sx), (i) maxmin ¢(sx). (L.1)

Mathematics subject classification (2000): 11J54, 05C35.
Key words and phrases: View-obstruction problem, minmax, fractional parts.
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In this paper, we will study minmax problems of this nature where

¢(x) = {x}*(1 — {x}) and {(x —1/2)%}
and
1=10,1], . ={1,--- ,N}.

Here {x} denotes the fractional part of x, and N > 2 and o > 1 are integers. First,
we have

min max ({kx}*(1 — {kx})) =0, (L.1)

0<x<1 1KAkKN

to(N) := max min {(kx—1/2)"} = (1/2)* (o even), (1.2)

0<x<1 1<k
since, for (1.1),at x =0, {kx}*(1 — {kx}) =0 forall k, 1 < k < N, and for (1.2),

in {(kx—1/2)“} > min {(k-1-1/2)"} =(1/2)"
max min {(ke—1/2)"} > min {(k-1-1/2)"} = (1/2)
and
in {(kx—1/2)%} < —1/2)%} = (1/2)".
gmax  min {(kx—1/2)%} < max {(x—1/2)%} = (1/2)
However if we switch min and max in (1.1) and (1.2), the extremal values are not so
obvious. The main purpose of this paper will be the study of the following minmax

problems:
re(N):= max min ({kx}*(1 — {kx}),

0<x< 1 1SkKN

0<x<1 1SN

s¢(N) := min max {(kx—1/2)“} (o even),
(

to(N) = max min {(kx—1/2)"}

o odd).
0<x<1 1<k

Let N > 2 and a > 1 be integers. In Section 2, we will obtain the extremal
values of r1(N), s;(N) and t,(N) (o odd).
In Section 3, for
N=234 «o>1,
log N
N =5, &2 Gy
we will show that, as N — oo,

v—1 \*
N(NI/O‘fl) l
N(l+06)/0671 o+l N

( NYe—1 )

rq(N) =

and that this extremal value is attained at

NY*(N —1) 1 -1
_ YY) 2 —1-1/a
= N@E ] =1 N + O(N ).
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Suppose that o is even. Then, in Section 4, we will show that if certain conditions
are satisfied then we have

sa(N) = (1/2=1/(N + 1))

and that this extremal value is attained at x = 1/(N + 1). The conditions are: for

1<m< [(3)" — 1), thereis ko = ko(m) with 3 < ko < N such that

(] (o s (B-0) () T 144

N—1\“ 1
> ko | ( so— -
0 \/(2(N+1)> tmts )

(e =

Moreover, we will see some examples of this.

and

2. r(N), si(N) and t,(N) (a odd)

Let N be an integer > 2. For any real number x, let || x || and {x} denote the
distance from x to the nearest integer and the fractional part of x, respectively. In this
section, we will obtain the extremal values of r|(N), s;(N) and 7, (N) (a odd). Here
is the answer for | (N).

PROPOSITION 2.1. We have

ri(N) = max min ({kx}(1 — {kx}) = N—l—l <1 ! )

0<x<1 1<kSN N+1

Proof. By Dirichlet’s box principle,
max min | kx ||=1/(N +1).

0<x<1 1<kSN
Moreover,
kx—1/2||=1/2-1 71
omin max |l ke —1/2|=1/2-1/(N +1), 2.1)
since

1/2 — kx—1/2|=1/2 N kx—1/2
/ Ogggllgax | kx—1/2 | /+0m3§“gnkgl( | kx—1/2))

= 12— | kx—1/2
Jgax min (1/2— | kx—1/21))

= max min | kx ||
0<x<1 1<kSN

=1/(N +1).
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By the identities

{up (L= {ud) =l w || (1= [ u )
and

V2=ul+lut+1/2]=[ul+[u-1/21],

we obtain

=1/4— mi ke —1/2 .

n(N) =1/4— min max | kx—1/2 ]
It follows that
1 1
N=—(1-—r

nWN) =553 ( N+1)

and that the extremal values are attained for x = 1 /(N+1) and x = 1-1/(N+1). O
Now we replace || || with “{}”in (2.1). Then

PROPOSITION 2.2. We have

s1(N) = min max {kx—1/2} =1/2—1/(2N).

0<x<1 1<AkKN

Proof. We have

We now prove that s;(N) > 1/2 — 1/(2N). Figure 2.1 is the graph of e(u) =
{u—1/2}.

312 > u

—_r

0 172

1-1/(2N)
Figure 2.1
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Reduce all kx (mod 1) so that they lie in [1/2,3/2]. Note that we are done if
there is always a k such that kx (mod 1) equals or lies to the right of 1 — 1/(2N).
Thus we only consider x such that

x, 2x, 3x, -+, Nx

all liein [1/2,1 —1/(2N)). Write x = 1 — €, where
<ex !
N Sy
Choose k such that

1
ke < and 5 < (k+ 1)e.

Y

The first inequality is true for kK = 1 and the second for k = N — 1, so we may choose
such a k with

1<k<N-1
Now
(k+1x=k+1—(k+1)e
and
1<(k+1) ke + <1+1 1
= e=ke+e< -+ =-=1,
2 2 2
SO
k+1)—1<(k+1)x<(k+1)—1/2
and

1 < (k+1)x (mod 1)<%

for an appropriate choice of (k4 1)x (mod 1). Butsince 1 < k+ 1 < N, this
contradicts the assumption on x. [

The following is the answer for 7, (N) (o odd).

PROPOSITION 2.3. Let N > 2 and o > 1 be integers and o odd. Then

0<x< 1 1<kSN 2N

to(N) = max min {(kx—1/2)} =1— (N_l)a.

This extremal value is attained at x = 1/(2N).

Proof. We have
koo1\* ko 1\“
> i k1 o k1
e > min {(55-3) | = mn, (1+ (55-3) )
=1— max 17k a*lf 171 ’
o ISk \2 2N/ 2 2N

(N1
o 2N '
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Now we prove that #,(N) < 1 — ((N — 1)(2N))%. Observe that

ta(N)émax< max  {(x—1/2)%}, max {(x—1/2)"},

0<x<1/(2N) 1/2<x<1

max max {((N—j)x— 1/2)“}) .
OSISN=2 gy xS awe=m)
We see that the function {(x —1/2)*} =1+ (x — 1/2)0c and the function
(Ve = 1/2)7) = (V) —1/2)°

are increasing on [0, 1/(2N)] and on [1 /(2( =), 1/(2(N —j — 1))], respectively.

Also it is clear that

max {(x—1/2)"} = (1/2)%.

1/2<x<1
Hence

c<on e (-3 (0 )
0EN-2 2(N—7;.—1)7§ - 2(N—_(N—_2)—1)7§ - 2 g
( N—j 1> ( N—(N-2) 1) (1)

Since u u u
1 N-1 1 1
I+ (=—3) =1- (== =1-(3) >(5) .
“a ) (&) >1-() = (3)
<1

we have 14(N) —1)(2N))%. This completes the proof. [

3. rq(N), where a > 2

Theorem 3.1 is the answer for 7,(N), where N > 2 and « is a function of N. In

Figure 3.1, we have plotted the functions involved in the definition of r4(4).

0.08

0.04

Figure 3.1 r4(4)
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THEOREM 3.1. Let N > 2 and a > 1 be integers. Then, for
{ N=234 oa>1,

log N
N =5, a2 i (2+2g/(1v—3>)7

we have "
N( N—1 )
Na—1 1
N = "~ —, 3.1
roa(N) NI N (3-1)
( Ni/e—1 )
This extremal value is attained at
Nl/a(N_ 1) 1 1-1
= - = _ — - /OC
N@E 1 N + O(N ).

In order to prove Theorem 3.1, we need several lemmas. For the rest of this section,
we let N and o be the same as in Theorem 3.1, and define the function

[k, 1x) = (kx — (k= 1))*(1 = (kx = (k — 1))
for x in [(k—¢)/k, (k—t+1)/k], where k is aninteger with 1 <k < N and 1 <7< k.
We observe that (k —¢)/k and (k — ¢+ 1)/k are zeros of f (k,#;x) and

({kx}*(1 — {kx})) = f (k,£;x) on <th’ ¥> .

Denote, for convenience,

o
N( N—1 )
NV
ON,ot): = —— - —
(N, ) NPT
()
(k—t+1)nN,a) — N
X, =X, =
ki1 k,t,1,N, o0 kn(N, OC) )
(k—t+1)niN, ) — 1
Xpg2 =X =
2 k2N, kn(N, @) )
where N(N, o) = %
f(k,k,x) f(k,t,x) f(k,1,x)

O(N,00)

A

Xk,LI Xk.t,z XkAt—l,l

Figure 3.2y = ({kx}%(1 — {kx}))
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LEMMA 3.2. Let k be an integer with 1 < k < N.
(a) On the interval [xn 11, 1), the equation x*(1 —x) = (Nx — (N — 1))*(1 — (Nx —
(N —1))) has the real zero,
NY(N —1)
)C(IV7 O!) = W

Also
x(N,o)*(1 — x(N, 0)) = O(N, ).

(b) On each interval [(k —t)/k, (k —t+ 1)/k|, where 1 < t < k, the real zeros of
f(k1:x) = O(N, ). (32)
are xp1 and Xz . Moreover, (k—1t)/k < xp;1 < xgg0 < (k—t+1)/k, and f (k, t;x)
o { increasing on (l%',xk,,’l) ,
decreasing on (Xk,r,z, %) .

Proof. (a) We observe that
X*(1—x)—(Nx—(N=1)*(1-=(Nx—(N—1))) = —(x—=1) x* = N(Nx = N+ 1)%).

Since x = % implies that x* = N(Nx — N 4+ 1)*, (a) holds.
(b) The equation f'(k, t; x) = —k(kx+t—k)* ! (k(a + Dx — o — (¢ + 1)(k— 1)) =0

determines the critical points xo = (k — ¢)/k and

o+ (a+1)(k—r1)

X1 =

k(o + 1)
We compute that
k,t,;x) =0,
I 0) 1 (33)
fk,t,;x1) = a®/(o+ 1)* > 0.
Observe that 0
<y, > X1,
4 o (3.4)
dx > 0, xp < x < X1.

In order to show the first part, it suffices to show that the equation f (k, ; x) = O(N, o)
has two real zeroson [(k—1)/k, (k—t+1)/k|. We compute (e.g. by computer algebra)
that

(kxesn = (k= 0))*(1 = (kxisn — (k—1))) — O(N,

06
v (1) ~ (=) ) -

(kkaz — (k — t))a(l — (kkaz — (k — t))) — @(IV7 OC)

- 1 NN—1°‘NN—1"‘_O
- n(N, o) +! NUe — 1 - Nle — 1 -
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and
k—t N—1 0
X1 — K k(N(1+oc)/a _ 1) >0,
k—t+1 _ NWNY*—1) 0
T — Xgt2 = W > 0.

Note that, by (3.3), f (k,#;x1) does not depend on k and 7. So, by (3.4), for each
k and ¢, the maximum values of f (k,7;x) on [(k —t)/k, (k —t + 1)/k] are both equal
to a®/(cc+ 1)**! . It follows from the construction of x;,; and xi,, that f (k,#;x) is

{ increasing on ( = ,ka)

decreasing on (xy,2, =) . O

LEMMA 3.3. On the interval [xi 2, Xki—11],

({kx}(1 = {kx})) < OWV, ).

Proof. Observe that, by the definition of x;;> and xx,—; 1, we have

fk,t;xien) =f(kt — 1ixg—1,1) = O(N, o)

k—t+1 k—t+1
f (k,t,T) =f (k,t—l,T> = 0.

By (b) of Lemma 3.2, f (k, #; x) is decreasing on [xi,2, (k—t+1)/k] and f (k,t—1;x)
is increasing on [(k — ¢+ 1)/k,x¢,—1.1]. This proves the lemma. O

and

LEMMA 3.4. For 2 <k <N —1, we have

{ Xek2 < Xerlkl,

Xk4122 S Xg11-

Proof. We note that xx o < Xgy141 if and only if n(N,a) > N — 1+ %12 , and
Xk+122 < Xk1.1 if and only if n(N o) > (1 + )N — 1. The largest possible number
among N — 1+ %=% and (1+ )N —1is max{2N—3,3N/2— 1} = 2N — 3 (for
k = 2). But we can compute that (N, o) > 2N — 3 if and only if

NY*(N —3) < 2N — 4.

This holds for N = 2,3,4 forany o > 1. But,for N > 5,if o > %,then

NY*(N —3) < 2N —4,ie. n(N, ) > 2N — 3. This completes the proof. [
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LEMMA 3.5. We have

max min ({kx}*(1 — {kx}) < O(N, ).

XN N SXSAN,1, ISESN

Proof. Let u be an integer with 3 < u < N. Then, by Lemma 3.3, for
Xuu2 < X < Xuu—1,15 (35)
we have
{ux}*(1 — {ux} < O(N, a).
But, by Lemma 3.4,
(-xu,u,Z <) Xu—1u—1,2 < Xuu—1,1- (36)

So, by (3.5) and (3.6), for
Xuu,2 <x< Xu—1u—1,2, (37)

we have
{ux}*(1 — {ux} < O(N, a).
By Lemma 3.3 again, for
Xu—1lu—12 g X g Xu—1,u—2,15 (38)

we have
{(w—)x}*(1 = {(u— 1x} < ON, ).
Hence, by (3.7) and (3.8), we have

max min ({kx}*(1 — {kx}) < O(N, ).

X u 2 XKy —1,u—2,1 LSESN

Since x,,2 < Xy—1u—12 < Xy—14—2,1 for each u, by considering those u with 3 <
u < N, we find that

max min ({kx}*(1 — {kx}) < O(N, a0). (3.9)

XN N Sx<x2,1,1 LSESN

Since, by Lemma 3.4,
X322 < X211, (3.10)

it suffices to consider the interval [x322,xy1.1]. By Lemma 3.3, for
Xu22 S X< Xy 1,1, (3.11)

we have
{2x}%(1 — {2x} < O(N, a).
But Lemma 3.4 again,
(Xu22 <) X122 < Xy 11 (3.12)
So, by (3.11) and (3.12), for

Xupp S XK Xut12,2, (3.13)
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we have
{2x}%(1 — {2x} < O(N, a).
By Lemma 3.3 again, for
Xut122 S XK Xy 1,1,1, (3.14)
we have
s D8 B (VL = )

max ({2x}%(1 — {2x})

Xu,u,2 <X<Xu71,u72,l

< O(N, o).

/A

Since x, 22 < Xut122 < Xu41,1,1 for each u, by considering those u with 3 <u < N,
we find that
max min ({kx}*(1 — {kx}) < OV, o). (3.15)

X322 KXy, 1, ISKSN

By (3.9), (3.10) and (3.15), the result follows. [
Now we prove Theorem 3.1.

Proof of Theorem 3.1. Let N > 2 and o > 1 be integers. Suppose that N and o
satisfy the following:

o>
. log N
N > 5, if o >

{ N=2,3,4, if
log (2+2/(N-3)) "

By Lemma 3.2 (a) (note xy 1,1 = x(N, o) ) and Lemma 3.5, it suffices to show that

max min ({kx}*(1 — {kx}) < O(N, @), (a)

OSx <y N ISkSN
i kx} (1 — {kx}) < . b
xN,f?i’iguink?N({ x}(1 = {kx}) <O(N, ) (b)
For (a), we see that
i kx} (1 — {k
OggﬁwﬁzlgggN({ xp (1 = {kx})
< max  ({x}*(1—{x})= max f(1,1;x).

0<x <N N2 0<x <N N2

So it is enough to show that xy x> < X111, since f (1, 1;x) is increasing on [0,x; 1]
and f (1, 1;x11,1) = ©(N, a) . In fact, we have

i —x _n(N,oc)—N_n(N,oc)—l_(N_l)(N_Nl/a)>O
P ) NnN,a) | NNOF/e —q)

since a > 2. Part (b) is clear, since f(1,1;x112) = f (1, 1;x(N, @) = O(N, ) and
f (1, 1;x) is decreasing on [x1 12, 1]. This completes the proof of Theorem 3.1. [
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REMARK 3.6. (a) Naturally, we may conjecture that Theorem 3.1 is true for all
a>1and N > 2. Foran integer o > 1,

a(X
o
l—x) = .
olg?élx( %) (1+ o)lte

o i\
q* (fiq_ll)

If N =¢* in (3.1), then

o
r = .
O‘(q ) S a+1
q—1
Since a
o
a(qd =1
1m I ((1_1 ) = aa
qg—1 (ql+a_1)a+1 (1 + Ol)l+a’
g—1

we can say that
re(N) = max min ({kx}*(1 — {kx})

0<x<1 1<KSN
is a g -analogue of the problem

o
1_
olgfélx (1 =),

provided that the conjecture is true.
(b) Let, with the same assumption as in Theorem 3.1,

ug(N) := max min ({kx}(1 —{kx})%).

0<x<1 1<hkSN

N2y

Then it is obvious that uy(N) = r¢(N) and uy(N) is extremal at x = ST T -

4. s4(N), where o > 2

In this section, we obtain some answers for s,(N) (a positive even integer). In
Figure 4.1, we have plotted the functions involved in the definition of s,(4).

Figure 4.1 5,(4)
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PROPOSITION 4.1. Let N > 2 and o be positive integers, and o even. Then

min  max {(kx —1/2)%} = (1/2—1/(N+1))*.

0<x<3/4 L<hSN
This extremal value is attained at x =1/(N + 1).

Proof. Tf 0 < x < 3/(2N),then {(kx—1/2)*} = (kx—1/2)* forany 1 <k < N.

We partition [0, 3/4] into
3 3 3
[Ovﬁ] and [ﬁﬂ

Then it suffices to show that (i) and (ii) below hold.
(i) We have
i kx—1/2)*} = (1/2 = 1/(N +1))*.
L lgagiN{( x—1/2)%} = (1/ /(N +1))
This extremal value is attained at x = 1 /(N + 1) .
(ii) For any integer j, 0 <j < N — 3,
min max {(kx —1/2)%} > (1/2 - 1/(N + 1))*.

3 3
W= SES =y SV

Proof of (i)
If we show that, for 2 < k<N,

()5 (e 1) "

where 1/(N + 1) < x < 3/(2N), then (i) holds. This is because

y=(x—1) is decreasing for 0 < x < g1y,
y= (Nx - %)a is increasing for NLH <x < %,

and (x —1/2)* = (Nx —1/2)% = (1/2 — 1 /(N 4+ 1))* when x = 1/(N + 1). To do
this, it suffices to do it for the case & = 2, since o is even. But

<x— %)2— (kx— %): (- Dx (k4 Dx— 1)

(Nx— %)2— (kx— %)2: (N = K)x (N +K)x—1).

and
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Hence the extremal value (1/2 —1/(N +1))” is attained at x = 1 /(N + 1).
Proof of (ii)
Partition [3/(2N),3/4] as follows:

) ey ) )

Let 0<j< N—3. Then, for 0 <x<3/2(N—j—1)),

{((N—j—l)x—%)a} = ((N—j—l)x—%)a.

So it suffices to show that, for 3/(2(N —j)) < x < 3/2(N—j—1)),
(N—j—Dx—1/2)% > (1/2-1/(N+ 1))*.

Define g(x) := g(N, a,j;x) = (N —j— 1)x —1/2)% on [0,3/(2(N —j — 1))]. Then
g () =a(N—j—1)((N—j—1)x—1/2)*"! has the critical point 1/(2(N —j— 1)),
and 3. 1 __N-2%-3

2N—j) 2(N—j—1) 2(N-j)(N—j—1) " 7

since N —j > 3. Moreover,

(o)~ (3 50)

3 (2N —2j—3\"
g<2<Nj>>_( 2N 2 )
ON-2j-3 N(N —j)=3(G+1)
<T_2j>(1/21/(N+1))— AN+ D =) > 0.

Hence for 3/(2(N —j)) < x < 3/(2(N —j— 1)) we have

glx) = (1/2-1/(N+1)*

since

and

which implies (ii) and completes the proof of the proposition. [

THEOREM 4.2. Let N > 3 and o > 2 be integers, and o even. If, for 1 < m <
L(%)a — 1], there is ko = ko(m) with 3 < ko < N such that

({36 T

(4.3)
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of | 3\ 3N -1
5 -1 +12 =,
\/L(Z * 2(N+1)
then sq(N) has the extremal value

(1/2—=1/(N+1))*

and this extremal value is attained at x = 1/(N + 1).

and

Proof. We partition [0, 1] into the intervals

3 3 3 31 ol /3\° 1
{Oﬁ}[ﬁz} i \/KE) ‘IJ“*i ’
L[ o/l /3\* 1

Then by Proposition 4.1 it is enough to show that (i) and (ii) below;

min max {(kx —1/2)"} > (1/2 = 1/(N + 1))"

1<k
%sxsé(%/tg)“7u+4+%) SISV

min max {(kx —1/2)*} > (1/2 —1/(N +1))*

1<kEN
H YOI ) v S

Proof of (i)
We observe that, for 3/4 < x < 1,

(o)) e

for some positive integer m (= | (2x — 1/2)”|) , and the equation (2x—1/2)%—

has the positive solution
1 1
3 (\“/m+1+§).

Here m + 1 = (2x — 1/2)% < (3/2)%, i.e

From (4.5) and (4.6), we may write

H{ORes  SETHC HC

15

(4.4)

(i)

(i)

m=1

(4.5)

(4.6)
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Then it suffices to show that

min max {(kx —1/2)*} > (1/2 — 1/(N + 1))*.
() R ) 1B (= 120 > (172 =1/ (V1)

Consider, forany m, 1 <m < L(%)a — 1], the interval
1
<\°‘/m+1+§>} (4.7)

Let m be an integer with 1 < m < L(%)a —1]. Then h(x) := 2x —1/2)* —m is
increasing on the interval (4.7) and

(35w 3)) o o (sme )

On the other hand, the equation A(x) = (1/2 — 1/(N 4 1)) has the positive zero

l « l_; a+m+l
2 2 N+1 2

Hence it is enough to consider the subinterval

1/, I\ 1 ([ 4//1 1 \* 1
2(\/%+2>,2 \/(2 N+1> tmt (4.8)

instead of (4.7). Suppose that there is ko = ko(m) with 3 < ko < N such that

1 o (ko 1 (ko “ 1 1 \* 1
p— D¥m+-(2-1)) — (- — 1+ =
T \/Kz m+2<2 >) > Ny1) T2

(4.9)

Consider a function in x defined by

e (o) | ($5-(5) G|

Then, since
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we have

Moreover, j(x) is increasing on

2 (em3) ]

since j/(x) > 0 on (1/(2kg),c0), and
1

1
g —
2kg 6

N —

3 1
=< ¢ = .
<3<5(vas)
Hence, by (4.9), (i) is proved.
Proof of (ii)
The curves y = {(x—1/2)*} = (x—1/2)" and y = (1/2 = 1/(N + 1))* meet at
x=1/(N+1)and x=1—-1/(N+1) on [0,1]. So if we show that

U o] (3" 1 1
- = I | R = I 4.
2 \/Kz) IJ SN i o (4.10)

the result holds. In fact, we can compute that (4.10) holds if and only if (4.4) holds.
This proves (ii) and completes the proof of Theorem 4.2. [

N

3KNLKT
3<NKS3
3N
3KNLKT
3N 38

—_
o 0N B~ Q

Table 4.1

EXAMPLE4.3. Foreach « even, by computer algebra, we can check the hypotheses
in Theorem 4.2. Here we only check the cases o0 = 2,4, 6,8, 10 and, for each o, find
N’s to get the conclusion of Theorem 4.2. The detailed calculation of this is omitted.
Table 4.1 shows the pairs (o, N) for which s4(N) has the extremal value

(1/2—=1/(N+1))*.

Moreover, for o = 2, we have
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COROLLARY 4.4. The function s;(N) has the extremal value

2(N) = (1/2 = 1/(N+ 1))*,
and this extremal value is attained at x = 1/(N + 1).
Proof. This is easy for 1 < N < 3. We assume that N > 4. By the proof of
Theorem 4.2 and % ( {(%)2 - IJ +1+ %) = HZ\/_ , it suffices to show that
— 122 > - z,
;12122\[ 1glkaxN{( 1/2)°} > (1/2—=1/(N+ 1))

3
<

Now, forany N > 1, (1/2 —1/(N + 1))* < 1/4, and we can check that

(1+2\/_)/8 x<5/6={(3x—1/2)*} > (61 — 121/7)/64 = 0.457047 - - - ,
5/6 <x< (1+2v2)/4={(2x—1/2)%}

\

(N

3/4<x < (142V7)/8 = {(4x—1/2)*} > 1/4,
(
(

WV

1/3.
So the result is proved.

For any integers N > 3 and o > 2, the function s4(N) (o even) seems to have
the extremal value

(1/2—1/(N+1))*
at x = 1/(N 4 1). But we have not resolved this question. For o > 3 odd, it seems

hard to find the value of s, (N) by looking at the graphs generated by computer algebra.
The value does not seem to have a simple form.
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