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MINMAX PROBLEMS FOR FRACTIONAL PARTS OF REAL NUMBERS
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(communicated by A. M. Fink)

Abstract. The view-obstruction problem for the n -dimensional cube with side 1 can be inter-
preted as the problem of evaluating the function κ(n) = inf max0�x�1 min1�k�n ‖ vkx ‖ ,
where the infimum is taken over all n -tuples v1, · · · , vn of positive integers. So the following
could perhaps be called “generalized view-obstruction problems”: given a periodic function φ ,
an interval I and a set of integers S , find

(i) min
x∈I

max
s∈S

φ(sx), (ii) max
x∈I

min
s∈S

φ(sx).

We study minmax problems of this nature where

φ(x) = {x}α (1 − {x}) and
{
(x − 1/2)α

}
,

and
I = [0, 1], S = {1, · · · ,N}.

Here {x} denotes the fractional part of x , and N � 2 and α � 1 are integers.

1. Introduction

In 1973, T. W. Cusick introduced a problem in geometry of numbers which he
called the “view-obstruction problem”. This problem in its original form has attracted
sustained interest over the years. The view-obstruction problem for the n -dimensional
cube with side 1 can be interpreted as the problem of evaluating the function

κ(n) = inf max
0�x�1

min
1�k�n

‖ vkx ‖,

where the infimum is taken over all n -tuple v1, · · · , vn of positive integers (see [1], [2];
the function κ(n) was already introduced by Wills [3]). This view-obstruction problem
has a geometrical interpretation (see [1]) which motivates its name. The answer of the
view-obstruction problem for the n -dimensional cube with side 1 is in fact 1− 2κ(n) ,
n � 2 . Hence the following could be perhaps called “generalized view-obstruction
problems”: given a periodic function φ , an interval I and a set of integers S , find

(i) min
x∈I

max
s∈S

φ(sx), (ii) max
x∈I

min
s∈S

φ(sx). (1.1)
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In this paper, we will study minmax problems of this nature where

φ(x) = {x}α(1 − {x}) and
{
(x − 1/2)α

}
and

I = [0, 1], S = {1, · · · , N}.
Here {x} denotes the fractional part of x , and N � 2 and α � 1 are integers. First,
we have

min
0�x�1

max
1�k�N

({kx}α(1 − {kx})) = 0, (1.1)

tα(N) := max
0�x�1

min
1�k�N

{
(kx − 1/2)α

}
= (1/2)α (α even), (1.2)

since, for (1.1), at x = 0 , {kx}α(1 − {kx}) = 0 for all k , 1 � k � N , and for (1.2),

max
0�x�1

min
1�k�N

{
(kx − 1/2)α

}
� min

1�k�N

{
(k · 1 − 1/2)α

}
= (1/2)α

and
max

0�x�1
min

1�k�N
{(kx − 1/2)α} � max

0�x�1
{(x − 1/2)α} = (1/2)α .

However if we switch min and max in (1.1) and (1.2), the extremal values are not so
obvious. The main purpose of this paper will be the study of the following minmax
problems:

rα(N) : = max
0�x�1

min
1�k�N

({kx}α(1 − {kx}) ,

sα(N) : = min
0�x�1

max
1�k�N

{
(kx − 1/2)α

}
(α even),

tα(N) = max
0�x�1

min
1�k�N

{
(kx − 1/2)α

}
(α odd).

Let N � 2 and α � 1 be integers. In Section 2, we will obtain the extremal
values of r1(N) , s1(N) and tα(N) (α odd).

In Section 3, for {
N = 2, 3, 4, α � 1,

N � 5, α � log N
log (2+2/(N−3)) ,

we will show that, as N → ∞ ,

rα(N) =
N
(

N−1
N1/α−1

)α
(

N(1+α)/α−1
N1/α−1

)α+1 ∼ 1
N

and that this extremal value is attained at

x =
N1/α(N − 1)
N(α+1)/α − 1

= 1 − 1
N

+ O(N−1−1/α).
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Suppose that α is even. Then, in Section 4, we will show that if certain conditions
are satisfied then we have

sα(N) = (1/2 − 1/(N + 1))α

and that this extremal value is attained at x = 1/(N + 1) . The conditions are: for
1 � m � �( 3

2

)α − 1� , there is k0 = k0(m) with 3 � k0 � N such that

2

⎛
⎝ α

√⌊(
k0

2
α√m +

1
2

(
k0

2
− 1

))α

−
(

N − 1
2(N + 1)

)α⌋
+ 1 +

1
2

⎞
⎠

� k0

⎛
⎝ α

√(
N − 1

2(N + 1)

)α

+ m +
1
2

⎞
⎠ ,

and

α

√⌊(
3
2

)α

− 1

⌋
+ 1 � 3N − 1

2(N + 1)
.

Moreover, we will see some examples of this.

2. r1(N) , s1(N) and tα(N) (α odd)

Let N be an integer � 2 . For any real number x , let ‖ x ‖ and {x} denote the
distance from x to the nearest integer and the fractional part of x , respectively. In this
section, we will obtain the extremal values of r1(N) , s1(N) and tα(N) (α odd). Here
is the answer for r1(N) .

PROPOSITION 2.1. We have

r1(N) = max
0�x�1

min
1�k�N

({kx}(1 − {kx}) =
1

N + 1

(
1 − 1

N + 1

)
.

Proof. By Dirichlet’s box principle,

max
0�x�1

min
1�k�N

‖ kx ‖= 1/(N + 1).

Moreover,
min

0�x�1
max

1�k�N
‖ kx − 1/2 ‖= 1/2 − 1/(N + 1), (2.1)

since

1/2 − min
0�x�1

max
1�k�N

‖ kx − 1/2 ‖=1/2 + max
0�x�1

min
1�k�N

(− ‖ kx − 1/2 ‖)
= max

0�x�1
min

1�k�N
(1/2− ‖ kx − 1/2 ‖)

= max
0�x�1

min
1�k�N

‖ kx ‖
=1/(N + 1).
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By the identities

{u}(1 − {u}) =‖ u ‖ (1− ‖ u ‖)
and

1/2 =‖ u ‖ + ‖ u + 1/2 ‖=‖ u ‖ + ‖ u − 1/2 ‖,
we obtain

r1(N) = 1/4 − min
0�x�1

max
1�k�N

‖ kx − 1/2 ‖2 .

It follows that

r1(N) =
1

N + 1

(
1 − 1

N + 1

)

and that the extremal values are attained for x = 1/(N+1) and x = 1−1/(N+1) . �

Now we replace ‖ ‖ with “{ } ” in (2.1). Then

PROPOSITION 2.2. We have

s1(N) = min
0�x�1

max
1�k�N

{kx − 1/2} = 1/2 − 1/(2N).

Proof. We have

s1(N) � max
1�k�N

{
k

(
2N − 1

2N

)
− 1

2

}
= max

1�k�N

{
k +

1
2
− k

2N

}

= max
1�k�N

{
1
2
− k

2N

}
=

1
2
− 1

2N
.

We now prove that s1(N) � 1/2 − 1/(2N) . Figure 2.1 is the graph of e(u) =
{u − 1/2} .

1-1/(2N)

1 2 u

1

0 3/21/2

Figure 2.1
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Reduce all kx (mod 1 ) so that they lie in [1/2, 3/2] . Note that we are done if
there is always a k such that kx (mod 1 ) equals or lies to the right of 1 − 1/(2N) .
Thus we only consider x such that

x, 2x, 3x, · · · , Nx

all lie in [1/2, 1 − 1/(2N)) . Write x = 1 − ε , where

1
2N

< ε � 1
2
.

Choose k such that

kε � 1
2

and
1
2

< (k + 1)ε.

The first inequality is true for k = 1 and the second for k = N − 1 , so we may choose
such a k with

1 � k � N − 1.

Now
(k + 1)x = k + 1 − (k + 1)ε

and
1
2

< (k + 1)ε = kε + ε � 1
2

+
1
2

= 1,

so
(k + 1) − 1 � (k + 1)x < (k + 1) − 1/2

and

1 � (k + 1)x (mod 1 ) <
3
2

for an appropriate choice of (k + 1)x (mod 1 ) . But since 1 � k + 1 � N , this
contradicts the assumption on x . �

The following is the answer for tα(N) (α odd).

PROPOSITION 2.3. Let N � 2 and α � 1 be integers and α odd. Then

tα(N) = max
0�x�1

min
1�k�N

{
(kx − 1/2)α

}
= 1 −

(
N − 1
2N

)α

.

This extremal value is attained at x = 1/(2N) .

Proof. We have

tα(N) � min
1�k�N

{(
k

2N
− 1

2

)α}
= min

1�k�N

(
1 +

(
k

2N
− 1

2

)α)

= 1 − max
1�k�N

(
1
2
− k

2N

)α

= 1 −
(

1
2
− 1

2N

)α

= 1 −
(

N − 1
2N

)α

.
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Now we prove that tα(N) � 1 − ((N − 1)(2N))α . Observe that

tα(N) � max

(
max

0�x�1/(2N)

{
(x − 1/2)α

}
, max

1/2�x�1

{
(x − 1/2)α

}
,

max
0�j�N−2

max
1

2(N−j) �x� 1
2(N−j−1)

{
((N − j)x − 1/2)α

})
.

We see that the function
{
(x − 1/2)α

}
= 1 + (x − 1/2)α and the function{

((N − j)x − 1/2)α
}

= ((N − j)x − 1/2)α

are increasing on [0, 1/(2N)] and on [1/(2(N − j)), 1/(2(N − j − 1))] , respectively.
Also it is clear that

max
1/2�x�1

{
(x − 1/2)α

}
= (1/2)α .

Hence

tα(N) � max

(
1 +

(
1

2N
− 1

2

)α

,

(
1
2

)α

, max
0�j�N−2

(
N − j

2(N − j − 1)
− 1

2

)α)
.

But

max
0�j�N−2

(
N − j

2(N − j − 1)
− 1

2

)α

=
(

N − (N − 2)
2(N − (N − 2) − 1)

− 1
2

)α

=
(

1
2

)α

.

Since

1 +
(

1
2N

− 1
2

)α

= 1 −
(

N − 1
2N

)α

� 1 −
(

1
2

)α

�
(

1
2

)α

,

we have tα(N) � 1 − ((N − 1)(2N))α . This completes the proof. �

3. rα(N) , where α � 2

Theorem 3.1 is the answer for rα(N) , where N � 2 and α is a function of N . In
Figure 3.1, we have plotted the functions involved in the definition of r4(4) .

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

Figure 3.1 r4(4)
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THEOREM 3.1. Let N � 2 and α � 1 be integers. Then, for{
N = 2, 3, 4, α � 1,

N � 5, α � log N
log (2+2/(N−3)) ,

we have

rα(N) =
N
(

N−1
N1/α−1

)α
(

N(1+α)/α−1
N1/α−1

)α+1 ∼ 1
N

. (3.1)

This extremal value is attained at

x =
N1/α(N − 1)
N(α+1)/α − 1

= 1 − 1
N

+ O(N−1−1/α).

In order to proveTheorem3.1, we need several lemmas. For the rest of this section,
we let N and α be the same as in Theorem 3.1, and define the function

f (k, t; x) := (kx − (k − t))α(1 − (kx − (k − t)))

for x in [(k−t)/k, (k−t+1)/k] , where k is an integer with 1 � k � N and 1 � t � k .
We observe that (k − t)/k and (k − t + 1)/k are zeros of f (k, t; x) and

({kx}α(1 − {kx})) = f (k, t; x) on

(
k − t

k
,
k − t + 1

k

)
.

Denote, for convenience,

Θ(N,α) : =
N
(

N−1
N1/α−1

)α
(

N(1+α)/α−1
N1/α−1

)α+1 ,

xk,t,1 : = xk,t,1,N,α =
(k − t + 1)η(N,α) − N

k η(N,α)
,

xk,t,2 : = xk,t,2,N,α =
(k − t + 1)η(N,α) − 1

k η(N,α)
,

where η(N,α) = N(1+α)/α−1
N1/α−1

.

0 1k-t
k
xk,t,1 xk,t,2

k-t+1
k

xk,t-1,1

f(k,k,x) f(k,t,x) f(k,1,x)

θ(Ν,α)

Figure 3.2 y = ({kx}α(1 − {kx}))
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LEMMA 3.2. Let k be an integer with 1 � k � N .
(a) On the interval [xN,1,1, 1) , the equation xα(1 − x) = (Nx − (N − 1))α(1 − (Nx −
(N − 1))) has the real zero,

x(N,α) :=
N1/α(N − 1)
N(α+1)/α − 1

.

Also
x(N,α)α (1 − x(N,α)) = Θ(N,α).

(b) On each interval [(k − t)/k, (k − t + 1)/k] , where 1 � t � k , the real zeros of

f (k, t; x) = Θ(N,α). (3.2)

are xk,t,1 and xk,t,2 . Moreover, (k− t)/k < xk,t,1 < xk,t,2 < (k− t+1)/k , and f (k, t; x)
is {

increasing on
(

k−t
k , xk,t,1

)
,

decreasing on
(
xk,t,2,

k−t+1
k

)
.

Proof. (a) We observe that

xα(1−x)−(Nx−(N−1))α(1−(Nx−(N−1))) = −(x−1) (xα − N(Nx − N + 1)α) .

Since x = N1/α (N−1)
N(α+1)/α−1

implies that xα = N(Nx − N + 1)α , (a ) holds.

(b)The equation f ′(k, t; x) = −k(kx+t−k)α−1 (k(α + 1)x − α − (α + 1)(k − t)) = 0
determines the critical points x0 = (k − t)/k and

x1 =
α + (α + 1)(k − t)

k(α + 1)
.

We compute that
f (k, t, ; x0) = 0,

f (k, t, ; x1) = αα/(α + 1)α+1 > 0.
(3.3)

Observe that
df
dx

=
{

< 0, x > x1,

> 0, x0 < x < x1.
(3.4)

In order to show the first part, it suffices to show that the equation f (k, t; x) = Θ(N,α)
has two real zeros on [(k− t)/k, (k− t+1)/k] . We compute (e.g. by computer algebra)
that

(kxk,t,1 − (k − t))α(1 − (kxk,t,1 − (k − t))) −Θ(N,α)

=
N

η(N,α)α+1

((
N − 1

N1/α − 1

)α

−
(

N − 1
N1/α − 1

)α)
= 0,

(kxk,t,2 − (k − t))α(1 − (kxk,t,2 − (k − t))) −Θ(N,α)

=
1

η(N,α)α+1

(
N

(
N − 1

N1/α − 1

)α

− N

(
N − 1

N1/α − 1

)α)
= 0,
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and

xk,t,1 − k − t
k

=
N − 1

k(N(1+α)/α − 1)
> 0,

k − t + 1
k

− xk,t,2 =
N(N1/α − 1)

k(N(1+α)/α − 1)
> 0.

Note that, by (3.3), f (k, t; x1) does not depend on k and t . So, by (3.4), for each
k and t , the maximum values of f (k, t; x) on [(k − t)/k, (k − t + 1)/k] are both equal
to αα/(α + 1)α+1 . It follows from the construction of xk,t,1 and xk,t,2 that f (k, t; x) is

{
increasing on

(
k−t
k , xk,t,1

)
decreasing on

(
xk,t,2,

k−t+1
k

)
. �

LEMMA 3.3. On the interval [xk,t,2, xk,t−1,1] ,

({kx}α(1 − {kx})) � Θ(N,α).

Proof. Observe that, by the definition of xk,t,2 and xk,t−1,1 , we have

f (k, t; xk,t,2) = f (k, t − 1; xk,t−1,1) = Θ(N,α)

and

f

(
k, t;

k − t + 1
k

)
= f

(
k, t − 1;

k − t + 1
k

)
= 0.

By (b) of Lemma 3.2, f (k, t; x) is decreasing on [xk,t,2, (k− t +1)/k] and f (k, t−1; x)
is increasing on [(k − t + 1)/k, xk,t−1,1] . This proves the lemma. �

LEMMA 3.4. For 2 � k � N − 1 , we have{
xk,k,2 � xk+1,k,1,

xk+1,2,2 � xk,1,1.

Proof. We note that xk,k,2 � xk+1,k,1 if and only if η(N,α) � N − 1 + N−2
k−1 , and

xk+1,2,2 � xk,1,1 if and only if η(N,α) �
(
1 + 1

k

)
N − 1 . The largest possible number

among N − 1 + N−2
k−1 and

(
1 + 1

k

)
N − 1 is max{2N − 3, 3N/2 − 1} = 2N − 3 (for

k = 2 ). But we can compute that η(N,α) � 2N − 3 if and only if

N1/α(N − 3) � 2N − 4.

This holds for N = 2, 3, 4 for any α � 1 . But, for N � 5 , if α � log N
log (2+2/(N−3)) , then

N1/α(N − 3) � 2N − 4 , i.e. η(N,α) � 2N − 3 . This completes the proof. �
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LEMMA 3.5. We have

max
xN,N,2�x�xN,1,1

min
1�k�N

({kx}α(1 − {kx}) � Θ(N,α).

Proof. Let u be an integer with 3 � u � N . Then, by Lemma 3.3, for

xu,u,2 � x � xu,u−1,1, (3.5)

we have
{ux}α(1 − {ux} � Θ(N,α).

But, by Lemma 3.4,
(xu,u,2 �) xu−1,u−1,2 � xu,u−1,1. (3.6)

So, by (3.5) and (3.6), for
xu,u,2 � x � xu−1,u−1,2, (3.7)

we have
{ux}α(1 − {ux} � Θ(N,α).

By Lemma 3.3 again, for

xu−1,u−1,2 � x � xu−1,u−2,1, (3.8)

we have
{(u − 1)x}α(1 − {(u − 1)x} � Θ(N,α).

Hence, by (3.7) and (3.8), we have

max
xu,u,2�x�xu−1,u−2,1

min
1�k�N

({kx}α(1 − {kx}) � Θ(N,α).

Since xu,u,2 � xu−1,u−1,2 � xu−1,u−2,1 for each u , by considering those u with 3 �
u � N , we find that

max
xN,N,2�x�x2,1,1

min
1�k�N

({kx}α(1 − {kx}) � Θ(N,α). (3.9)

Since, by Lemma 3.4,
x3,2,2 � x2,1,1, (3.10)

it suffices to consider the interval [x3,2,2, xN,1,1] . By Lemma 3.3, for

xu,2,2 � x � xu,1,1, (3.11)

we have
{2x}α(1 − {2x} � Θ(N,α).

But Lemma 3.4 again,
(xu,2,2 �) xu+1,2,2 � xu,1,1. (3.12)

So, by (3.11) and (3.12), for

xu,2,2 � x � xu+1,2,2, (3.13)
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we have
{2x}α(1 − {2x} � Θ(N,α).

By Lemma 3.3 again, for
xu+1,2,2 � x � xu+1,1,1, (3.14)

we have

max
xu,2,2�x�xu+1,1,1

min
1�k�N

({kx}α(1 − {kx})
� max

xu,u,2�x�xu−1,u−2,1

({2x}α(1 − {2x})

� Θ(N,α).

Since xu,2,2 � xu+1,2,2 � xu+1,1,1 for each u , by considering those u with 3 � u � N ,
we find that

max
x3,2,2�x�xN,1,1

min
1�k�N

({kx}α(1 − {kx}) � Θ(N,α). (3.15)

By (3.9), (3.10) and (3.15), the result follows. �

Now we prove Theorem 3.1.

Proof of Theorem 3.1. Let N � 2 and α � 1 be integers. Suppose that N and α
satisfy the following: {

N = 2, 3, 4, if α � 1,

N � 5, if α � log N
log (2+2/(N−3)) .

By Lemma 3.2 (a) (note xN,1,1 = x(N,α) ) and Lemma 3.5, it suffices to show that

max
0�x�xN,N,2

min
1�k�N

({kx}α(1 − {kx}) � Θ(N,α), (a)

max
xN,1,1�x�1

min
1�k�N

({kx}α(1 − {kx}) � Θ(N,α). (b)

For (a), we see that

max
0�x�xN,N,2

min
1�k�N

({kx}α(1 − {kx})

� max
0�x�xN,N,2

({x}α(1 − {x}) = max
0�x�xN,N,2

f (1, 1; x).

So it is enough to show that xN,N,2 � x1,1,1 , since f (1, 1; x) is increasing on [0, x1,1,1]
and f (1, 1; x1,1,1) = Θ(N,α) . In fact, we have

x1,1,1 − xN,N,2 =
η(N,α) − N
η(N,α)

− η(N,α) − 1
N η(N,α)

=
(N − 1)(N − N1/α)
N(N(1+α)/α − 1)

> 0,

since α � 2 . Part (b) is clear, since f (1, 1; x1,1,2) = f (1, 1; x(N,α)) = Θ(N,α) and
f (1, 1; x) is decreasing on [x1,1,2, 1] . This completes the proof of Theorem 3.1. �
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REMARK 3.6. (a) Naturally, we may conjecture that Theorem 3.1 is true for all
α � 1 and N � 2 . For an integer α � 1 ,

max
0�x�1

xα(1 − x) =
αα

(1 + α)1+α .

If N = qα in (3.1), then

rα(qα) =
qα

(
qα−1
q−1

)α
(

q1+α−1
q−1

)α+1 .

Since

lim
q→1

qα
(

qα−1
q−1

)α
(

q1+α−1
q−1

)α+1 =
αα

(1 + α)1+α ,

we can say that
rα(N) = max

0�x�1
min

1�k�N
({kx}α(1 − {kx})

is a q - analogue of the problem

max
0�x�1

xα(1 − x),

provided that the conjecture is true.
(b) Let, with the same assumption as in Theorem 3.1,

uα(N) := max
0�x�1

min
1�k�N

({kx}(1 − {kx})α) .

Then it is obvious that uα(N) = rα(N) and uα(N) is extremal at x = N1/α−1
N(1+α)/α−1

.

4. sα(N) , where α � 2

In this section, we obtain some answers for sα(N) (α positive even integer). In
Figure 4.1, we have plotted the functions involved in the definition of s2(4) .

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 4.1 s2(4)
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PROPOSITION 4.1. Let N � 2 and α be positive integers, and α even. Then

min
0�x�3/4

max
1�k�N

{(kx − 1/2)α} = (1/2 − 1/(N + 1))α .

This extremal value is attained at x = 1/(N + 1) .

Proof. If 0 � x � 3/(2N) , then {(kx−1/2)α} = (kx−1/2)α for any 1 � k � N .
We partition [0, 3/4] into [

0,
3

2N

]
and

[
3

2N
,
3
4

]
.

Then it suffices to show that (i) and (ii) below hold.
(i) We have

min
0�x�3/(2N)

max
1�k�N

{(kx − 1/2)α} = (1/2 − 1/(N + 1))α .

This extremal value is attained at x = 1/(N + 1) .
(ii) For any integer j , 0 � j � N − 3 ,

min
3

2(N−j) �x� 3
2(N−j−1)

max
1�k�N

{(kx − 1/2)α} � (1/2 − 1/(N + 1))α .

Proof of (i)
If we show that, for 2 � k � N ,(

x − 1
2

)α

�
(

kx − 1
2

)α

, (4.1)

where 0 � x � 1/(N + 1) , and, for 1 � k � N − 1 ,(
Nx − 1

2

)α

�
(

kx − 1
2

)α

, (4.2)

where 1/(N + 1) � x � 3/(2N) , then (i) holds. This is because{
y =

(
x − 1

2

)α
is decreasing for 0 � x � 1

N+1 ,

y =
(
Nx − 1

2

)α
is increasing for 1

N+1 � x � 3
2N ,

and (x − 1/2)α = (Nx − 1/2)α = (1/2 − 1/(N + 1))α when x = 1/(N + 1) . To do
this, it suffices to do it for the case α = 2 , since α is even. But(

x − 1
2

)2

−
(

kx − 1
2

)2

= −(k − 1)x ((k + 1)x − 1)

and (
Nx − 1

2

)2

−
(

kx − 1
2

)2

= (N − k)x ((N + k)x − 1) .
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Hence the extremal value (1/2 − 1/(N + 1))α is attained at x = 1/(N + 1) .
Proof of (ii)
Partition [3/(2N), 3/4] as follows:[

3
2N

,
3

2(N − 1)

]
,

[
3

2(N − 1)
,

3
2(N − 2)

]
, · · · ,

[
3
6
,

3
4

]
.

Let 0 � j � N − 3 . Then, for 0 � x � 3/(2(N − j − 1)) ,{(
(N − j − 1)x − 1

2

)α}
=

(
(N − j − 1)x − 1

2

)α

.

So it suffices to show that, for 3/(2(N − j)) � x � 3/(2(N − j − 1)) ,

((N − j − 1)x − 1/2)α � (1/2 − 1/(N + 1))α .

Define g(x) := g(N,α, j; x) = ((N − j − 1)x − 1/2)α on [0, 3/(2(N − j− 1))] . Then
g′(x) = α(N − j− 1)((N − j− 1)x− 1/2)α+1 has the critical point 1/(2(N − j− 1)) ,
and

3
2(N − j)

− 1
2(N − j − 1)

=
2N − 2j − 3

2(N − j)(N − j − 1)
> 0,

since N − j � 3 . Moreover,

g

(
3

2(N − j)

)
>

(
1
2
− 1

N + 1

)α

,

since

g

(
3

2(N − j)

)
=
(

2N − 2j − 3
2N − 2j

)α

and (
2N − 2j − 3

2N − 2j

)
− (1/2 − 1/(N + 1)) =

N(N − j) − 3(j + 1)
2(N + 1)(N − j)

> 0.

Hence for 3/(2(N − j)) � x � 3/(2(N − j − 1)) we have

g(x) � (1/2 − 1/(N + 1))α

which implies (ii) and completes the proof of the proposition. �

THEOREM 4.2. Let N � 3 and α � 2 be integers, and α even. If, for 1 � m �
�( 3

2

)α − 1� , there is k0 = k0(m) with 3 � k0 � N such that

2

⎛
⎝ α

√⌊(
k0

2
α√m +

1
2

(
k0

2
− 1

))α

−
(

1
2
− 1

N + 1

)α⌋
+ 1 +

1
2

⎞
⎠

� k0

⎛
⎝ α

√(
1
2
− 1

N + 1

)α

+ m +
1
2

⎞
⎠

(4.3)
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and

α

√⌊(
3
2

)α

− 1

⌋
+ 1 � 3N − 1

2(N + 1)
, (4.4)

then sα(N) has the extremal value

(1/2 − 1/(N + 1))α ,

and this extremal value is attained at x = 1/(N + 1) .

Proof. We partition [0, 1] into the intervals

[
0,

3
2N

]
,

[
3

2N
,
3
4

]
,

⎡
⎣3

4
,
1
2

⎛
⎝ α

√⌊(
3
2

)α

− 1

⌋
+ 1 +

1
2

⎞
⎠
⎤
⎦ ,

⎡
⎣1

2

⎛
⎝ α

√⌊(
3
2

)α

− 1

⌋
+ 1 +

1
2

⎞
⎠ , 1

⎤
⎦ .

Then by Proposition 4.1 it is enough to show that (i) and (ii) below;

min
3
4 �x� 1

2

(
α
√

�( 3
2 )

α−1�+1+ 1
2

) max
1�k�N

{(kx − 1/2)α} � (1/2 − 1/(N + 1))α , (i)

min
1
2

(
α
√

�( 3
2 )

α−1�+1+ 1
2

)
�x�1

max
1�k�N

{(kx − 1/2)α} � (1/2 − 1/(N + 1))α . (ii)

Proof of (i)
We observe that, for 3/4 � x � 1 ,{(

2x − 1
2

)α}
=

(
2x − 1

2

)α

− m

for some positive integer m
(
=
⌊
(2x − 1/2)α

⌋)
, and the equation (2x−1/2)α−m = 1

has the positive solution
1
2

(
α√m + 1 +

1
2

)
. (4.5)

Here m + 1 = (2x − 1/2)α � (3/2)α , i.e.

m �
(

3
2

)α

− 1. (4.6)

From (4.5) and (4.6), we may write⎡
⎣3

4
,
1
2

⎛
⎝ α

√⌊(
3
2

)α

− 1

⌋
+ 1 +

1
2

⎞
⎠
⎤
⎦ =

⋃
1�m��( 3

2 )
α−1�

[
1
2

(
α√m +

1
2

)
,
1
2

(
α√m + 1 +

1
2

)]



16 SEON-HONG KIM

Then it suffices to show that

min
1
2 ( α√m+ 1

2 )�x� 1
2( α√m+1+ 1

2)
max

1�k�N
{(kx − 1/2)α} � (1/2 − 1/(N + 1))α .

Consider, for any m , 1 � m � �( 3
2

)α − 1� , the interval[
1
2

(
α√m +

1
2

)
,
1
2

(
α√m + 1 +

1
2

)]
. (4.7)

Let m be an integer with 1 � m � �( 3
2

)α − 1� . Then h(x) := (2x − 1/2)α − m is
increasing on the interval (4.7) and

h

(
1
2

(
α√m +

1
2

))
= 0, h

(
1
2

(
α√m + 1 +

1
2

))
= 1.

On the other hand, the equation h(x) = (1/2 − 1/(N + 1))α has the positive zero

1
2

⎛
⎝ α

√(
1
2
− 1

N + 1

)α

+ m +
1
2

⎞
⎠ .

Hence it is enough to consider the subinterval⎡
⎣1

2

(
α√m +

1
2

)
,
1
2

⎛
⎝ α

√(
1
2
− 1

N + 1

)α

+ m +
1
2

⎞
⎠
⎤
⎦ (4.8)

instead of (4.7). Suppose that there is k0 = k0(m) with 3 � k0 � N such that

x0 : =
1
k0

⎛
⎝ α

√⌊(
k0

2
α√m +

1
2

(
k0

2
− 1

))α

−
(

1
2
− 1

N + 1

)α⌋
+ 1 +

1
2

⎞
⎠

� 1
2

⎛
⎝ α

√(
1
2
− 1

N + 1

)α

+ m +
1
2

⎞
⎠ .

(4.9)

Consider a function in x defined by

j(x) :=
(

k0x − 1
2

)α

−
⌊(

k0

2
α√m +

1
2

(
k0

2
− 1

))α

−
(

1
2
− 1

N + 1

)α⌋
.

Then, since

j

(
1
2

(
α√m +

1
2

))
=

(
k0

2
α√m +

1
2

(
k0

2
− 1

))α

−⌊(
k0

2
α√m +

1
2

(
k0

2
− 1

))α

−
(

1
2
− 1

N + 1

)α⌋
,
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we have

j

(
1
2

(
α√m +

1
2

))
�
(

1
2
− 1

N + 1

)α

,

j (x0) = 1.

Moreover, j(x) is increasing on[
1
2

(
α√m +

1
2

)
,∞

]
,

since j′(x) > 0 on (1/(2k0),∞) , and

1
2k0

� 1
6

<
3
4

� 1
2

(
α√m +

1
2

)
.

Hence, by (4.9), (i) is proved.
Proof of (ii)
The curves y =

{
(x − 1/2)α

}
= (x − 1/2)α and y = (1/2 − 1/(N + 1))α meet at

x = 1/(N + 1) and x = 1 − 1/(N + 1) on [0, 1] . So if we show that

1
2

⎛
⎝ α

√⌊(
3
2

)α

− 1

⌋
+ 1 +

1
2

⎞
⎠ � 1 − 1

N + 1
, (4.10)

the result holds. In fact, we can compute that (4.10) holds if and only if (4.4) holds.
This proves (ii) and completes the proof of Theorem 4.2. �

α N

2 3 � N � 7
4 3 � N � 53
6 3 � N � 11
8 3 � N � 7

10 3 � N � 38
...

...

Table 4.1

EXAMPLE 4.3. For each α even, by computer algebra,we can check the hypotheses
in Theorem 4.2. Here we only check the cases α = 2, 4, 6, 8, 10 and, for each α , find
N ’s to get the conclusion of Theorem 4.2. The detailed calculation of this is omitted.
Table 4.1 shows the pairs (α, N) for which sα(N) has the extremal value

(1/2 − 1/(N + 1))α .

Moreover, for α = 2 , we have



18 SEON-HONG KIM

COROLLARY 4.4. The function s2(N) has the extremal value

s2(N) = (1/2 − 1/(N + 1))2
,

and this extremal value is attained at x = 1/(N + 1) .

Proof. This is easy for 1 � N � 3 . We assume that N � 4 . By the proof of

Theorem 4.2 and 1
2

(√⌊(
3
2

)2 − 1
⌋

+ 1 + 1
2

)
= 1+2

√
2

4 , it suffices to show that

min
3
4 �x� 1+2

√
2

4

max
1�k�N

{(kx − 1/2)2} � (1/2 − 1/(N + 1))2
.

Now, for any N � 1 , (1/2 − 1/(N + 1))2 < 1/4 , and we can check that

3/4 � x < (1 + 2
√

7)/8 ⇒ {(4x − 1/2)2} � 1/4,

(1 + 2
√

7)/8 � x < 5/6 ⇒ {(3x − 1/2)2} � (61 − 12
√

7)/64 = 0.457047 · · · ,

5/6 � x < (1 + 2
√

2)/4 ⇒ {(2x − 1/2)2} � 1/3.

So the result is proved. �
For any integers N � 3 and α � 2 , the function sα(N) (α even) seems to have

the extremal value
(1/2 − 1/(N + 1))α

at x = 1/(N + 1) . But we have not resolved this question. For α � 3 odd, it seems
hard to find the value of sα(N) by looking at the graphs generated by computer algebra.
The value does not seem to have a simple form.
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