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INEQUALITIES FOR MEAN VALUES OVER QUASIBALLS

FOR FUNCTIONS DEFINED ON ARBITRARY OPEN SETS

V. I. BURENKOV AND T. V. TARARYKOVA

(communicated by J. Pečarić)

Abstract. Sharp two-sided estimates for mean values over quasiballs are established, which allow
reducing the problem of obtaining certain weighted integral inequalities for arbitrary open sets
to appropriate inequalities for quasiballs.

1. Quasidistances, quasiballs, quasispheres

Let d : R
n × R

n → R be any quasidistance on R
n , i. e.,

i) d(x, y) � 0; d(x, y) = 0 ⇐⇒ x = y, x, y ∈ R
n;

ii) d(x, y) = d(y, x), x, y ∈ R
n;

iii) for some k � 1

d(x, z) � k(d(x, y) + d(y, z)), x, y, z ∈ R
n.

We note that from ii ), iii ) it follows that
iii′) d(x, z) � 1

k d(x, y) − d(y, z), 1
k d(y, z) − d(x, y).

(If k = 1 , then these inequalities are equivalent to |d(x, y) − d(y, z)| � d(x, z). )
Moreover, let Bd(x, r) and Sd(x, r) be an open quasiball, a quasisphere respec-

tively, centered at the point x ∈ R
n of radius r > 0 , i.e., an open ball, a sphere

respectively, with respect to the quasidistance d : Bd(x, r) = {y ∈ R
n : d(x, y) <

r}, Sd(x, r) = {y ∈ R
n : d(x, y) = r}.

Also, for x ∈ R
n, G ⊂ R

n, let �d(x, G) be the quasidistance from x to G , i.e.,
�d(x, G) = inf

y∈G
d(x, y) .

In general, a quasidistance on R
n , as a function of (x, y) ∈ R

2n, is not continuous
with respect to the Euclidean distance or even measurable with respect to the Lebesgue
measure. For example, if d(x, y) = g(|x−y|) , where x, y ∈ R

n , |x−y| is the Euclidean
distance and g : [0,∞) → [0,∞) is an arbitrary (in particular non-measurable) function
satisfying for some 0 < α1 < α2 < ∞ the inequality α1u � g(u) � α2u, u � 0 ,
then d(·, ·) is a quasidistance. Another example of a quasidistance could be obtained
if g : [0,∞) → [0,∞) satisfies the following conditions: g(0) = 0 , g is almost
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increasing, i.e., for some α3 � 1 , g(u1) � α3g(u2), 0 � u1 � u2 < ∞ , and also, for
some α4 � 1 , g(u1 + u2) � α4(g(u1) + g(u2)), 0 � u1, u2 < ∞ .

We shall also consider quasidistances satisfying the following condition:
iv) for each ε > 0 there exists C(ε) > 0 such that

d(x, z) � (1 + ε)d(x, y) + C(ε)d(x, y), x, y, z ∈ R
n.

We note that from iv) it follows that
iv′) |d(x, y) − d(y, z)| � εd(x, y) + C(ε)d(x, z).

Indeed, by iv)

d(x, y) − C(ε)d(x, z)
1 + ε

� d(y, z) � (1 + ε)d(x, y) + C(ε)d(x, z). (1)

Hence,

εd(x, y) + C(ε)d(x, z)
1 + ε

� d(y, z) − d(x, y) � εd(x, y) + C(ε)d(x, z),

and iv′) follows.
Any quasidistance d satisfying iv) is a continuous function (with respect to the

quasidistance d ). This follows since by iv′) , for all x0, y0, x, y ∈ R
n and for all ε > 0 ,

|d(x, y) − d(x0, y0)| � |d(x, y) − d(x0, y)| + |d(x0, y) − d(x0, y0)|
� εd(x0, y) + C(ε)d(x, x0) + εd(x0, y0) + C(ε)d(y, y0)

� ε(2d(x0, y0) + C(1)d(y, y0)) + C(ε)d(x, x0) + εd(x0, y0) + C(ε)d(y, y0)

� 3εd(x0, y0) + (C(ε) + εC(1))(d(x, x0) + d(y, y0)).

By the continuity of d it follows, in particular, that all quasispheres are closed sets
(with respect to the quasidistance d ). Also all quasiballs Bd(x, r) are open sets
(with respect to the quasidistance d ). Indeed, if y ∈ Bd(x, r) , then the quasiball

Bd(x, �) ⊂ Bd(x, r) , where � = 1
2 (r − d(x, y))

(
C

(
r−d(x,y)
2d(x,y)

))−1

. This follows from

iv) , where ε = r−d(x,y)
2d(x,y) , since, for all z ∈ Bd(y, �)

d(z, x) � (1 + ε)d(x, y) + C(ε)d(y, z) < (1 + ε)d(x, y) + C(ε)� = r.

We shall say that a quasidistance on R
n is regular if it satisfies iv) and also

v) it is continuous with respect to the Euclidean distance,
vi) for all x ∈ R

n and r > 0 meas Sd(x, r) = 0,
vii) there exist two functions Cj : (0,∞) → (0,∞), j = 1, 2, such that for all

x ∈ R
n

C1

(
r2

r1

)
� meas Bd(x, r2)

meas Bd(x, r1)
� C2

(
r2

r1

)
.

If a quasidistance is regular, then all quasiballs Bd(x, r) are open sets with respect
to the Euclidean distance (hence, Lebesguemeasurable sets of positivemeasure). Since,
as was already proved, these quasiballs are open with respect to the quasidistance d ,
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to prove this it is enough to verify that each quasiball Bd(x, r) contains an Euclidean
ball B(x, �) for sufficiently small � , which follow from the continuity of a regular
quasidistance with respect to the Euclidean distance.

A typical example of a regular quasidistance, which will be of interest for us in
view of applications, is

d(x, y) =
(
α1|x1 − y1|β1 + · · · + αn|xn − yn|βn

)γ

, (2)

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ R
n and α1, β1, . . . ,αn, βn, γ are fixed

positive numbers.
Property iv) follows from the elementary inequality

(a + b)σ � (1 + ε)aσ + c(ε)bσ , a, b � 0, ε,σ > 0,

where c(ε) = 1 if σ � 1 and c(ε) =
(

1 − (1 + ε)
1

1−σ

)1−σ

if σ > 1 .

2. Regularity properties of the mean values over quasiballs

Let Ω ⊂ R
n be an open set,1 0 < ε � 1 and let d a quasidistance on R

n .
Assume that ϕ ∈ L(Ω) , i.e., ϕ is Lebesgue summable on Ω. We shall be interested
in the mean values ϕd,ε of the function ϕ over the quasiballs Bd(x, ε�d(x)) , where
x ∈ Ω and �d(x) ≡ �d(x, ∂Ω) :

ϕd,ε(x) =
1

measBd(x, ε�d(x))

∫
Bd(x,ε�d(x))

ϕ(y) dy. (3)

LEMMA 1. Let d be a quasidistance on R
n such that all quasiballs Bd(x, r) are

Lebesgue measurable sets of positive finite measure, and let 0 < ε � 1 . Moreover, let
Ω ⊂ R

n be an open set , Ω 	= R
n and ϕ ∈ L(Ω) .

Suppose that the set

Ad,ε = {(x, y) ∈ Ω×Ω : d(x, y) < ε�d(x)} ⊂ R
2n (4)

is Lebesgue measurable.
Then the mean value ϕd,ε is a function measurable on Ω .

Proof. Since the set Ad,ε is measurable, by the Fubini theorem the function
measBd(x, ε�d(x)) is measurable on Ω . The characteristic function χ

Ad,ε
of the set

Ad,ε is measurable on R
2n . Hence, for all k ∈ N , χ

Ad,ε
ϕ ∈ L((Ω ∩ B(0, k)) × Ω) ,

1 Here and in the sequel we mean an open set with respect to the Euclidean distance.
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where B(0, k) is the Euclidean ball. Again by the Fubini theorem it follows that the
function ∫

Ω

χ
Ad,ε

(x, y)ϕ(y) dy =
∫
Ω

χBd (x,ε�d (x) (y)ϕ(y) dy =
∫

Bd(x,ε�d(x))

ϕ(y) dy

is measurable on Ω ∩ B(0, k) for all k ∈ N and, hence, on Ω .
Since 0 < meas Bd(x, ε �d(x)) < ∞ for all x ∈ Ω , the function ϕd,ε is also

measurable on Ω . �

Suppose that Ω ⊂ R
n is an open set and that for each x ∈ Ω a set G(x) ⊂ R

n is
measurable. We shall say that the set-valued function G(·) is continious on Ω if, for
each x0 ∈ Ω , lim

x→x0

meas(G(x)ΔG(x0)) = 0, where G(x)ΔG(x0) = (G(x) \ G(x0)) ∪
(G(x0) \ G(x)) is the symmetric difference of the sets G(x) and G(x0) .

Let Ω ⊂ R
n be an open set and let ϕ ∈ Lloc(Ω) , i.e., ϕ ∈ L(K) for each compact

K ⊂ Ω. Suppose that a set valued function G(·) is continious on Ω and is such that
G(x) ⊂ Ω for each x ∈ Ω. Then by the absolute continuity of the Lebesgue integral it
follows that the function

∫
G(x)

ϕ(y) dy is continuous on Ω , since

∣∣∣∣
∫

G(x)

ϕ(y) dy −
∫

G(x0)

ϕ(y) dy

∣∣∣∣ �
∫

G(x)ΔG(x0)

|ϕ(y)| dy. (5)

LEMMA 2. Let d be a regular quasidistance on R
n and let 0 < ε < 1 . Moreover,

let Ω ⊂ R
n be an open set, Ω 	= R

n and ϕ ∈ L(Ω) .
Then the mean value ϕd,ε is a function continuous on Ω .

Proof. Let us prove that the set-valued function Bd(x, ε �d(x)) is continuous on
Ω . To do this, first we note that the function �d is continuous on Ω . Indeed, let x ∈ Ω
be fixed and let y ∈ Ω, z ∈ ∂Ω . By (1) it follows that for all γ > 0

d(x, z) − C(γ )d(x, y)
1 + γ

� d(y, z) � (1 + γ )d(x, z) + C(γ )d(x, y). (6)

By taking the infimums with respect to z ∈ ∂Ω we have

�d(x) − C(γ ) d(x, y)
1 + γ

� �d(y) � (1 + γ )�d(x) + C(γ )d(x, y).

Hence,

−
(
γ �d(x) + C(γ )d(x, y)

)
� −γ �d(x) + C(γ )d(x, y)

1 + γ
� �d(y) − �d(x) � γ �d(x) + C(γ )d(x, y).

Thus, for all γ > 0 ∣∣�d(y) − �d(x)
∣∣ � γ �d(x) + C(γ )d(x, y).
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Consequently, for all γ > 0

lim sup
y→x

|�d(y) − �d(x)| � γ �d(x) + C(γ ) lim
y→x

d(x, y) = γ �d(x).

Hence, lim
y→x

|�d(y) − �d(x)| = 0 and lim
y→x

�d(y) = �d(x).

We claim that for all σ > 0 there exists δ > 0 such that if |y − x| < δ , then

B(x, ε�d(x) − σ) ⊂ Bd(y, ε�d(y)) ⊂ Bd(x, ε�d(x) + σ). (7)

Indeed, let z ∈ B(x, ε�d(x) − σ) , then for all γ > 0

d(x, y) � (1 + γ ) d(z, x) + C(γ )d(y, x) < (1 + γ )(ε�d(x) − σ) + C(γ )d(y, x)

= ε�d(y) + ε(�d(x) − �d(y)) + γ �d(x) + C(γ )d(x, y) − σ.

Let γ = σ
3�d(x) . By the continuity of d and �d there exists δ > 0 such that ε(�d(x)−

�d(y)) < σ
3 and C(γ )d(y, x) < σ

3 if |y − x| < δ . Hence, for such y , for all
z ∈ B(x, ε�d(x)−σ) we have d(z, y) < ε�d(y) and the first inclusion (7) follows. The
second one is proved similarly.

Since by (7)

Bd(y, ε�d(y))ΔBd(x, ε�d(x)) ⊂ Bd(x, ε�d(x) + σ) \ Bd(x, ε�d(x) − σ)

if |y − x| < δ , and

lim
σ→0

meas (Bd(x, ε�d(x) + σ) \ Bd(x, ε�d(x) − σ))

= meas

( ⋂
σ>0

(Bd(x, ε�d(x) + σ) \ Bd(x, ε�d(x) − σ))
)

= meas Sd(x, ε�d(x)) = 0,

it follows that
lim
y→x

measBd(y, ε�d(y))ΔBd(x, ε�d(x)) = 0.

Since,
|measBd(y, ε�d(y)) − meas Bd(x, ε�d(x))|

� meas

(
Bd(y, ε�d(y))ΔBd(x, ε�d(x))

)
,

it follows that the function Bd(x, ε�d(x)) is continuous on Ω .
Since ϕ ∈ L(Ω) , by the absolute continuity of the Lebesgue integral, the function∫

Bd(x,ε�d(x))
ϕ(y) dy is continuous on Ω , and the continuity of ϕd,ε on Ω follows. �

REMARK 1. If all quasiballs Bd(x, r) are bounded, then one can replace the as-
sumption ϕ ∈ L(Ω) by ϕ ∈ Lloc(Ω) . This follows since for sufficiently small σ the
set Bd(x, ε�d(x) + σ) ⊂ Ω . Hence, for ϕ ∈ Lloc(Ω) , we have ϕ ∈ L(Bδ (x, ε�d(x))) .
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3. Estimates for the mean values over quasiballs

Together with the quasiballs Bd(x, ε�d(x)) we shall consider the conjugate quasi-
balls

B∗
d(x, ε�d(x)) =

{
y ∈ R

n : d(y, x) < ε�d(y)
}

(8)

The estimates in Theorems 1 – 3 below will be based on the following statement.

LEMMA 3. Let d be a quasidistance on R
n such that all quasiballs Bd(x, r) are

Lebesgue measurable sets of positive finite measure and let 0 < ε < 1 . Moreover, let
Ω ⊂ R

n be an open set, Ω 	= R
n . Suppose that the set Ad,ε defined by (4) is Lebesgue

measurable. Then

c1(d, ε) = inf
ϕ∈L(Ω),ϕ �∼0

‖ |ϕ|d,ε‖L(Ω)

‖ϕ‖L(Ω)
� sup

ϕ∈L(Ω),ϕ �∼0

‖ |ϕ|d,ε‖L(Ω)

‖ϕ‖L(Ω)
= c2(d, ε), (9)

where

c1(d, ε) = ess inf
y∈Ω

∫
B∗

d (y,ε�d(y))

dy
meas Bd(x, ε�d(x))

(10)

and

c2(d, ε) = ess sup
y∈Ω

∫
B∗

d (y,ε�d(y))

dy
meas Bd(x, ε�d(x))

. (11)

Proof. Since the characteristic function χ
Ad,ε

(x, y) is measurable on Ω × Ω ,

and the functions measBd(x, ε�d(x)) and |ϕ(y)| are measurable on Ω , the function
χ
Ad,ε

(x,y) |ϕ(y)|
meas Bd(x,ε�d(x)) is nonnegative and measurable on Ω×Ω .

Hence, by the Fubini theorem, taking into account that

χ
Ad,ε

(x, y) = χBd (x,ε�d (x)) (y) = χ
B∗
d

(y,ε�d (y))
(x), x, y ∈ R

n,

we have

I =
∫
Ω

|ϕ|d,ε(x) dx =
∫
Ω

(
1

meas Bd(x, ε�d(x))

∫
Bd(x,ε�d(x))

|ϕ(y)| dy

)
dx

=
∫
Ω

(∫
Ω

χBd(x,ε�d(x))|ϕ(y)|
meas Bd(x, ε�d(x))

dy

)
dx =

∫
Ω×Ω

χAd,ε (x, y)|ϕ(y)|
measBd(x, ε�d(x))

dx dy

=
∫
Ω

(∫
Ω

χB∗
d (y,ε�d(y))|ϕ(y)|

measBd(x, ε�d(x))
dx

)
dy

=
∫
Ω

( ∫
B∗

d (y,ε�d(y))

dx
measBd(x, ε�d(x))

)
|ϕ(y)| dy.
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In particular it follows that the function
∫

B∗
d (y,ε�d(y))

dx
meas Bd(x,ε�d(x)) , which could be

infinite for some x ∈ Ω , is measurable on Ω . Consequently,

c1(d, ε) ‖ϕ‖L(Ω) � I � c2(d, ε) ‖ϕ‖L(Ω).

If c2(d, ε) < ∞ , then by the definition of the essential supremum it follows that for all
k ∈ N there exist measurable sets Ωk ⊂ Ω such that 0 < measΩk < ∞ and

ess sup
y∈Ωk

∫
B∗

d (y,ε�d(y))

dx
measBd(x, ε�d(x))

� c2(d, ε) − 1
k
.

By considering the functions ϕk = χΩk it follows that the constant c2(d, ε) is sharp.
(If c2(d, ε) = ∞ , then it follows that sup

ϕ∈L(Ω),ϕ �∼0

I
‖ϕ‖L(Ω)

= ∞ ). The case of c1(d, ε)

is similar. �
THEOREM 1. Let d be a quasidistance on R

n such that all quasiballs Bd(x, r) are
Lebesgue measurable sets of positive finite measure. Moreover, let Ω ⊂ R

n be an open
set, Ω 	= R

n .
Suppose that for all 0 < ε < 1

k , the set Ad,ε defined by (4) is Lebesgue
measurable and for all 0 < ε < 1

k and 0 < δ < ∞

0 < ess inf
(x,y)∈Ad,ε

measBd(y, δ�d(y))
measBd(x, ε�d(x))

� ess sup
(x,y)∈Ad,ε

measBd(y, δ�d(y))
measBd(x, ε�d(x))

< ∞. (12)

Then for each 0 < ε < 1
k there exist c3(d, ε), c4(d, ε) > 0 such that for all

f ∈ L(Ω)

c3(d, ε)
∫
Ω

|f | dx �
∫
Ω

|f |d,ε dx � c4(d, ε)
∫
Ω

|f | dx. (13)

Proof. Let x, y ∈ Ω and z ∈ ∂Ω . Then

1
k

d(x, z) − d(x, y) � d(y, z) � k (d(x, z) − d(x, y).

By taking the infimums with respect to z ∈ Ω it follows that

1
k

�d(x) − d(x, y) � �d(y) � k(�d(x) + d(x, y)). (14)

Furthermore, for 0 < ε < 1
k ,

Bd

(
y,

ε
k(1 + ε)

�d(y)
)

⊂ B∗
d(y, ε�d(y)) ⊂ Bd

(
y,

kε
1 − kε

�d(y)
)

. (15)

Indeed, if x ∈ Bd(y,
ε�d(y)
k(1+ε) ) , then by (14)

d(x, y) <
ε�d(y)

k(1 + ε)
� ε

1 + ε
(�d(x) + d(x, y)).
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Hence, d(x, y) < ε�d(x) and x ∈ B∗
d(y, �d(y)) . On the other hand, if x ∈ B∗

d(y, �d(y)) ,
then d(x, y) < ε�d(x) � kε(�d(y) + d(x, y)) . Hence, d(x, y) < kε

1−kε �d(y) and

x ∈ Bd

(
y, kε

1−kε �d(y)
)

. Consequently,

c2(d, ε) � sup
(x,y)∈Ad,ε

meas Bd(y, kε
1−kε �d(y))

measBd(x, ε�d(x))
≡ c4(d, ε) < ∞. (16)

Similarly,

c1(d, ε) � inf
(x,y)∈Ad,ε

measBd(y, ε
k(1+ε)�d(y))

meas Bd(x, ε�d(x))
≡ c3(d, ε) > 0. (17)

Hence, (13) follows from (9). �
THEOREM 2. Let d be a regular quasidistance on R

n and let Ω ⊂ R
n be an open

set, Ω 	= R
n . Then for each 0 < ε < 1 there exist c5(d, ε), c6(d, ε) > 0 such that for

all f ∈ L(Ω)

c5(d, ε)
∫
Ω

|f | dx �
∫
Ω

|f |d,ε dx � c6(d, ε)
∫
Ω

|f | dx. (18)

Proof. We claim that for 0 < ε < 1

Bd

(
y,

ε
k(1 + ε)

�d(y)
)

⊂ B∗
d(y, ε�d(y)) ⊂ Bd

(
y,

2ε C( 1−ε
2ε )

1 − ε
�d(y)

)
. (19)

The first inclusion coincides with the first inclusion (15).
Let x ∈ B∗

d(y, �d(y)) , then by applying (6) we have

d(x, y) < ε�d(x) � ε(C(γ )�d(y) + (1 + γ )d(x, y)).

Hence,

d(x, y) <
εC(γ )

1 − ε(1 + γ )
�d(y) (20)

if 1 − ε(1 + γ ) > 0 . Taking γ = 1−ε
2ε we get the second inclusion (19).

We note that for x ∈ B∗
d(y, ε�d(y))

Bd(x, ε�d(x)) ⊂ Bd

(
y,

kε
1 − ε

(
(1 − ε)k + 2(1 + kε)C

(
1 − ε
2ε

))
�d(y)

)
. (21)

Indeed, if z ∈ Bd(x, ε�d(x)) , then by iii ), (14) and (20) (with γ = 1−ε
2ε )

d(z, y) � k(d(z, x) + d(x, y)) � k(ε�d(x) + d(x, y))

� k(ε k(�d(y) + d(x, y)) + d(x, y)) = ε k2�d(y) + k(1 + ε k)d(x, y)

�
(
ε k2 + k(1 + kε)

2ε C( 1−ε
2ε )

1 − ε

)
�d(y)
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=
kε

1 − ε

(
(1 − ε)k + 2(1 + kε)C

(
1 − ε
2ε

))
�d(y),

and (21) follows.
Finally, we notice that for x ∈ Bd(y, ε

2k�d(y))

Bd

(
y,

ε
2k

�d(y)
)

⊂ Bd(x, ε�d(x)). (22)

Indeed, if z ∈ Bd(y, ε
2k�d(y)) , then

d(z, x) � k(d(z, y) + d(x, y)) � k

(
ε
2k

�d(y) +
ε
2k

�d(y)
)

= ε�d(y).

Consequently, by (19) and (20) and vii)

c2(d, ε) � sup
(x,y)∈Ad,ε

meas Bd

(
y,

2ε C( 1−ε
2ε )

1−ε �d(y)
)

meas Bd(x, ε�d(x))

� sup
y∈Ω

measBd

(
y,

2ε C( 1−ε
2ε )

1−ε �d(y)
)

measBd

(
y, ε

2k�d(y)
) ≡ c6(d, ε) < ∞. (23)

Similarly, by (19), (21) and vii )

c1(d, ε) � inf
(x,y)∈Ad,ε

measBd

(
y, ε

k(1+ε)�d(y)
)

meas Bd(x, ε�d(x))

� inf
y∈Ω

meas Bd

(
y, ε

k(1+ε)�d(y)
)

meas Bd

(
y, kε

1−ε

(
(1 − ε)k + 2(1 + kε)C( 1−ε

2ε )
)

�d(y)
) ≡ c5(d, ε) > 0.

(24)
Hence, (18) follows from (9). �

If ‖ · ‖ : R
n → R+ is a norm on R

n , we shall write B‖·‖(x, r), �‖·‖(x,σ) for
Bd(x, r), �d(x,σ) respectively, where d(u, v) = ‖u − v‖ .

We note that

meas B‖·‖(x, r) = v‖·‖,nr
n, (25)

where v‖·‖,n = measB‖·‖(0, 1) is the volume of the unit quasiball in R
n with respect

to the norm ‖ · ‖ .
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THEOREM 3. Let ‖ · ‖ be any norm on R
n and let 0 < ε < 1 . Moreover, let

Ω ⊂ R
n be an open set, Ω 	= R

n and for x ∈ Ω , let �‖·‖(x) ≡ �‖·‖(x, ∂Ω) .
Then for all f ∈ L(Ω)(

1 − ε
1 + ε

)n ∫
Ω

|f | dx �
∫
Ω

|f |‖·‖,ε dx �
(

1 + ε
1 − ε

)n ∫
Ω

|f | dx. (26)

COROLLARY 1. For all2 f ∈ L(Ω)

lim
ε→0+

∫
Ω

|f |‖·‖,ε dx =
∫
Ω

|f | dx. (27)

Proof. In the case under consideration by (25) it follows that

c1(‖ · ‖, ε) =
1

v‖·‖,nεn
ess inf

y∈Ω

∫
B∗
‖·‖(y,ε�‖·‖(y))

dx
�n
‖·‖(x)

and

c2(‖ · ‖, ε) =
1

v‖·‖,nεn
ess sup

y∈Ω

∫
B∗
‖·‖(y,ε�‖·‖(y))

dx
�n
‖·‖(x)

.

Inclusions (15) take the form

B‖·‖

(
y,

ε
1 + ε

�‖·‖(y)
)

⊂ B∗
‖·‖((y, ε�‖·‖(y)) ⊂ B‖·‖

(
y,

ε
1 − ε

�‖·‖(y)
)

. (28)

Since, by the triangle inequality

|�‖·‖(x) − �‖·‖(y)| � ‖x − y‖,
it follows that for x ∈ B∗

‖·‖((y, ε�‖·‖(y))

�‖·‖(y) − ε�‖·‖(x) < �‖·‖(y) − ‖x − y‖ � �‖·‖(x)

� �‖·‖(y) + ‖x − y‖ < �‖·‖(y) + ε�‖·‖(x).
Hence

�‖·‖(y)
1 + ε

< �‖·‖(x) <
�‖·‖(y)
1 − ε

. (29)

Consequently,

c1(‖ · ‖, ε) � (1 − ε)n

v‖·‖,nεn
inf
y∈Ω

measB‖·‖(y, ε
1+ε �‖·‖(y))

�‖·‖(y)
n =

(
1 − ε
1 + ε

)n

.

Similarly

c2(‖ · ‖, ε) �
(

1 + ε
1 − ε

)n

.

Hence, (26) follows from (9). �
2 Note that in this case the Dominated Convergence Theorem cannot be applied for passing to the limit

under the integral sign, because the function (Mf )(x) = sup
0<ε< 1

2
|f |‖·‖,ε (x) , which is a variant of the

maximal function of the function f , in general, does not belong to L(Ω) . (See the books [1, 2] for details.)
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4. Examples

EXAMPLE 1. In this example we consider the one-dimensional case, which is much
simpler that the multidimensional one.

Since in this case all norms ‖ · ‖ are of the form: for some c > 0 , ‖x‖ = c|x| ,
x ∈ R , and each open set Ω ⊂ R is a finite or infinite union of disjoint open intervals,
the problem reduces to the case Ω = (a, b) and ‖x‖ = |x| .

LEMMA 4. Let Ω ⊂ R be an open set, Ω 	= R, �(x) = dist (x, ∂Ω) = min
y∈∂Ω

|x−y|
and 0 < ε < 1 .

Then for all f ∈ L(Ω)

∫
Ω

(
1

2ε�(x)

x+ε�(x)∫
x−ε�(x)

|f | dy

)
dx =

1
2ε

ln
1 + ε
1 − ε

∫
Ω

|f | dx, (30)

if all constituent intervals are infinite, and

1
ε

ln(1 + ε)
∫
Ω

|f | dx �
∫
Ω

(
1

2ε�(x)

x+ε�(x)∫
x−ε�(x)

|f | dy

)
dx

� 1
2ε

ln
1 + ε
1 − ε

∫
Ω

|f | dx (31)

otherwise.
Both of the constants in inequality (31) are sharp.

Proof. If all constituent intervals are infinite, then Ω = (a,∞),−∞ < a < ∞ or
Ω = (−∞, b),−∞ < b < ∞ or Ω = (−∞, b) ∪ (a,∞),−∞ < b � a < ∞ , and
equality (30) follows since, for example, for −∞ < a < ∞

∞∫
a

(
1

2ε(x − a)

x+ε(x−a)∫
x−ε(x−a)

|f | dy

)
dx =

1
2ε

ln
1 + ε
1 − ε

∞∫
a

|f | dy. (32)

If at least one of the constituent intervals is finite, then inequality (31) follows
since for −∞ < a < b < ∞

b∫
a

(
1

2ε�(x)

x+ε�(x)∫
x−ε�(x)

|f | dy

)
dx =

b∫
a

μ(y)|f (y)| dy, (33)

where −∞ < a < b < ∞, �(x) = min (x − a, b − x) and

μ(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
2ε ln 1+ε

1−ε , if a � y � a+b
2 − ε b−a

2 ,

1
2ε ln

(
b−a
y−a

b−a
b−y

(1+ε)2

4

)
, if a+b

2 − ε b−a
2 � y � a+b

2 + ε b−a
2 ,

1
2ε ln 1+ε

1−ε , if a+b
2 + ε b−a

2 � y � b.

(34)
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(Formula (33) could be derived by changing the order of integration.) To obtain (31) it
suffices to notice that min

a�y�b
μ(y) = 1

ε ln (1 + ε) and max
a�y�b

μ(y) = 1
2ε ln 1+ε

1−ε .

Let (a, b) be a finite constituent interval of Ω . If f ∼ 0 on ( a+b
2 − ε a−b

2 , a+b
2 +

ε a−b
2 ) and on Ω \ (a, b), then in the second inequality (31) there is equality. The

sharpness of the constant in the first inequality (31) can be verified by taking f =
χ( a+b

2 − 1
k , a+b

2 + 1
k ) and passing to the limit as k → ∞. �

EXAMPLE 2. Let Ω = R
n
+ = {x = (x1, . . . , xn) ∈ R

n : xn > 0} and let ‖x‖ =
max {|x1|, . . . , |xn|}. Then �‖·‖(x) = xn and for y ∈ R

n
+ and n � 2

B∗
‖·‖(y, εyn) = {x ∈ R

n
+ : |xk − yk| < εxn, k = 1, . . . , n}

= {x ∈ R
n
+ : |xk − yk| < εxn, k = 1, . . . , n − 1, |xn − y∗n | < b},

where b = εyn
1−ε2 and y∗n = yn

1−ε2 . Furthermore,

∫
B∗
‖·‖(y,εyn)

dx
xn
n

=

yn
1−ε∫
yn

1+ε

1
xn
n

( y1+εxn∫
y1−εxn

dx1 · · ·
y1+εxn∫

y1−εxn

dxn−1

)
dxn = (2ε)n−1 ln

1 + ε
1 − ε

.

Since v‖·‖,n = 2n , it follows that for all f ∈ L(Rn
+)∫

R
n
+

(
1

2nεnxn
n

∫
B‖·‖(x,εxn)

f (y) dy

)
dx =

1
2ε

ln
1 + ε
1 − ε

∫
R

n
+

f dx. (35)

This equality could also be easily derived by using the Fubini theorem and the one-
dimensional equality (32) where a = 0.

EXAMPLE 3. Let Ω = R
n
+ and let ‖x‖ = |x| =

√
x2
1 + · · · + x2

n. Then �‖·‖(x) =
xn and for y ∈ R

n
+ and3 n � 2

B∗(y, εyn) = {x ∈ R
n
+ : |x − y| < εxn}

=
{

x ∈ R
n
+ :

(
x1 − y1

a

)2

+ · · · +
(

xn−1 − yn−1

a

)2

+
(

xn − y∗n
b

)2

< 1

}
,

where a = εyn√
1−ε2

, and b and y∗n are defined as in Example 2. (If n = 1, then

B∗(y1, εy1) = {x1 ∈ R+ : |x1 − y∗1 | < b}. )
By changing variables x1 = y1 + aξ1, . . . , xn−1 = yn−1 + aξn−1, xn = y∗n + bξn =

b( 1
ε + ξn) we get ∫

B∗
‖·‖(y,εyn)

dx
xn
n

= (1 − ε2)
n−1

2

∫
|ξ |<1

dξ
( 1
ε + ξn)n

.

3 B(x, ε�(x)) and B∗(x, ε�(x)) , without index ‖ · ‖ , denote ordinary (=with respect to the Euclidean
distance) ball, conjugate ball respectively.
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Consequently, for all f ∈ L(Rn
+)∫

R
n
+

(
1

vnεnxn
n

∫
B(x,εxn)

f (y) dy

)
dx = An(ε)

∫
R

n
+

f dx, (36)

where

An(ε) =
(1 − ε2)

n−1
2

vnεn

∫
|ξ |<1

dξ
( 1
ε + ξn)n

.

If n = 1, then A1(ε) = 1
2ε ln 1+ε

1−ε , hence (35) coincides with (32) where a = 0 . If
n � 2, then one can verify that

A2(ε) =
2(1 −√

1 − ε2)
ε2

.

In particular, in contrast to the case n = 1 , lim
ε→1−

A2(1) = 2 < ∞. Hence, equality

(35) for n = 2 holds also for ε = 1. The same is true for all n � 2. Indeed, if n � 2
and ε = 1, then for y ∈ R

n
+

B∗
‖·‖(y, yn) = {x ∈ R

n
+ : |x − y| < xn}

=
{

x ∈ R
n
+ : xn >

1
2

(
yn +

(x1 − y1)2 + · · · + (xn−1 − yn−1)2

yn

)}
.

Let x̄ = (x1, . . . , xn−1). By integrating with respect to xn, passing to the spherical
coordinates and setting � = ynt , we get∫

B∗
‖·‖(y,yn)

dx
xn
n

=
∫

Rn−1

( ∫
xn> 1

2 (yn+
|x̄−ȳ|2

yn
)

dxn

xn
n

)
dx̄

=
2n−1σn−1

(n − 1)

∞∫
0

�n−2 d�

(yn + �2

yn
)n−1

= 2n−1vn−1

∞∫
0

tn−2 dt
(1 + t2)n−1

,

where σn−1 is the surface area of the unit sphere in R
n−1. Consequently,4

An(1) =
2n−1vn−1

vn
B

(
n − 1

2
,
n − 1

2

)
=

2n−1

√
π
Γ( n

2 + 1)Γ( n−1
2 )2

Γ( n+1
2 )Γ(n − 1)

=
n

n − 1
.

4 We apply the formulas:

∞∫
0

xm dx

(1 + xk)l
=

1
k
B

(
m + 1

k
, l − m + 1

k

)
,

where m > −1, k > 0, l > m+1
k , vn = π

n
2 (Γ( n

2 + 1))−1, Γ(α + 1) = αΓ(α),α > 0 and the doubling
formula

Γ(n − 1) =
2n−2
√
π

Γ

(
n − 1

2

)
Γ

(
n
2

)
.

Here Γ and B are the gamma and the beta functions. (See, for example, [3].)
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Thus, for n � 2 ∫
R

n
+

(
1

vnxn
n

∫
B‖·‖(x,xn)

f (y) dy

)
dx =

n
n − 1

∫
R

n
+

f dx. (37)

EXAMPLE 4. Let Ω = R
n
+ and let ‖x‖ = |x1| + · · · + |xn|. In this case also

�‖·‖(x) = xn. Furthermore

B∗
‖·‖(y, εyn) = {x ∈ R

n
+ : ‖x̄ − ȳ‖ + |xn − yn| < εxn}

=
{

x ∈ R
n
+ : ‖x̄ − ȳ‖ < εyn,

yn + ‖x̄ − ȳ‖
1 + ε

< xn <
yn − ‖x̄ − ȳ‖

1 − ε

}
.

By changing variables x1 = y1 + ξ1yn, . . . , xn−1 = yn−1 + ξn−1yn, xn = ξnyn and
appying symmetry, we get

∫
B∗
‖·‖(y,εyn)

dx
xn
n

=
∫

‖x̄−ȳ‖<εyn

dx̄

yn−‖x̄−ȳ‖
1−ε∫

yn+‖x̄−ȳ‖
1+ε

dxn

xn
n

= 2n−1
∫

0<ξ1+···+ξn−1<ε

dξ̄

1−ξ1−···−ξn−1
1−ε∫

1+ξ1+···+ξn−1
1+ε

dξn

ξ n
n

.

Since v‖·‖,n = 2n

n! , it follows that for all f ∈ L(Rn
+)∫

R
n
+

(
n!

2nεnxn
n

∫
B‖·‖(x,εxn)

f (y) dy

)
dx = Bn(ε)

∫
R

n
+

f dx, (38)

where

Bn(ε) =
(n − 2)! n

2εn

×
∫

0<ξ1+···+ξn−1<ε

[(
1 + ε

1 + ξ1 + · · · + ξn−1

)n−1

−
(

1 − ε
1 − ξ1 − · · · − ξn−1

)n−1]
dξ̄ .

If n = 2, then

B2(ε) =
(1 + ε) ln(1 + ε) + (1 − ε) ln(1 − ε)

ε2
.

As in Example 3 lim
ε→1−

B2(ε) = 2 ln 2 < ∞. Hence, equality (38) is also valid for

ε = 1. The same is true for all n � 2.

REMARK 2. From the formulas for conjugate balls in Examples 2 – 4 it follows,
in particular, that inclusions (28) are sharp, i.e., one cannot replace ε

1+ε in the first
inclusion by a larger quantity, ε

1−ε in the second inclusion by a smaller quantity
respectively.

REMARK 3. From Theorems 1 – 3 it follows, in particular, that under appropriate

assumptions ‖ (|f |p)d,ε‖
1
p
L1(Ω) is equivalent to ‖f ‖Lp(Ω), where 0 < p < ∞. This

equivalence could be used to derive some integral inequalities for arbitrary open sets
starting with appropriate inequalities for quasiballs.
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