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RELATIVE BOUNDEDNESS–COMPACTNESS INEQUALITIES

FOR A SECOND ORDER DIFFERENTIAL OPERATOR

DON B. HINTON AND SUZANNE COLLIER MELESCUE

(communicated by M. K. Kwong)

Abstract. For a one-term second order differential operator with power coefficients and in the
limit circle case, we give necessary and sufficient conditions for perturbations to be relatively
bounded or relatively compact. These conditions are expressed in terms of integrals of the
coefficients of the perturbing operators and are easily verified in many cases. An application is
given to the energy operator of the hydrogen atom.

1. Introduction

Two useful concepts in the spectral theory of differential operators are those of
relative boundedness and compactness. If C and D are linear operators having domains
D(C) and D(D) in a Hilbert space H with norm ‖ · ‖, then D is said to be relatively
boundedwith respect to C or C -bounded if D(C) ⊂ D(D) and there exist nonnegative
constants α and β such that for all y ∈ D(C), ‖Dy‖ � α‖y‖+β‖Cy‖. The infimum
of all such β is called the relative bound of D with respect to C. Further, D is
said to be relatively compact with respect to C or C -compact if D(C) ⊂ D(D) and
D is a compact operator acting on the graph of C with graph norm ‖y‖ + ‖Cy‖ ,
denoted by ‖y‖C. Many important properties are preserved under relatively bounded
or relatively compact perturbations, e.g., the essential spectrum is preserved under a
relatively compact perturbation.

Many linear operators are associated with a given linear differential expression
depending on boundary conditions. We consider a second order differential expression
of the form

M[y] =
1
w

[−(py′)′ + qy]

on an interval I = [c,∞), c > 0, or I = (0, d], d > 0, where the coefficient func-
tions w, p, q are real, w(x), p(x) > 0 on I and w, 1/p, q are locally Lebesgue inte-
grable on I. The operator acts in the Hilbert space L 2(w, I) of functions f satisfying∫

I w(x)|f (x)|2 dx < ∞. The maximal operator M1 associated with M is the restriction
of M to the domain

D(M1) = {y ∈ L 2(w, I) : y, py′ ∈ ACloc(I), M[y] ∈ L 2(w, I)},
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where ACloc(I) is the set of functions that are absolutely continuous on compact subin-
tervals of I. The unclosed minimal operator M′

0 associated with M is defined as the
restriction of M1 to the functions with compact support in the interior of I, and the
minimal operator M0 is defined as the closure of M′

0. When I = [c,∞) or I = (0, d]
with only one singular endpoint, M is said to be limit circle at the singular point ∞
or 0 if all solutions of M[y] = 0 are in L 2(w, I); otherwise, M is said to be in the
limit point case. A complete discussion of these properties may be found in the books
of Naimark [6] and Weidmann [8].

We consider perturbation expressions A and B of M of the form

A[y] =
1
w

a y, B[y] =
1
w

b y′, (1)

where the coefficient functions a(x) and b(x) are real or complex-valued functions on
I and are locally Lebesgue integrable. The maximal operators A1 and B1 for A and B
are defined with domains

D(A1) = {y ∈ L 2(w, I) : A[y] ∈ L 2(w, I)} and

D(B1) = {y ∈ L 2(w, I) : y ∈ ACloc(I), B[y] ∈ L 2(w, I)}.
The minimal operators A0, B0 are defined for A, B similarly to that of M. Since A is
a multiplication operator, it can be shown that A0 = A1 . However, M0 �= M1 , so it is
possible for A1 to be M0 -bounded without being M1 -bounded.

In the limit point case A0 is M0−bounded (compact) if and only if A1 is M1 -
bounded (compact) [2, 5]. A similar result holds for B0 and B1. The significance of
this result is that relative boundedness is usually easier to prove for minimal operators
but is more useful for maximal operators. For example, suppose A1 is M1 -bounded
with relative bound less than one and a(x) is real. Then A1 is self-adjoint, and if Ma is
a self-adjoint operator obtained by appropriately restricting the domain of M1, then A1

is also Ma -bounded with relative bound less than one. Moreover, Ma + A1 restricted
to the domain of Ma is self-adjoint (Kato-Rellich Theorem).

In [1] an investigationwas begun for the special case of M with w(x) = xγ , p(x) =
xα , i.e.,

L[y](x) = −x−γ [xαy′(x)]′. (2)

We can easily determine if L is in the limit point or limit circle case from the
general solution of L[y] = 0 [3, Theorem 9.11.2], which is

y(x) =
{

c1 + c2x1−α , if α �= 1
c1 + c2 ln x, if α = 1

.

Thus if I = [c,∞) , L is in the limit circle case if and only if γ < min{−1, 2α − 3};
and if I = (0, d] , L is in the limit circle case if and only if γ > max{−1, 2α− 3}. For
the limit point case the results of [1] are complete except for the rays {(α,−1) : α � 1}
and {(α, 2α − 3) : α � 1}. We state two theorems from [1] for comparison purposes
with the limit circle results in this paper.
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THEOREM 1.1. Suppose I = [c,∞), γ � α − 2, and L1, A1, and B1 are
the maximal operators defined by L, A, and B. Define s(x) = x(α−γ )/2 , N0 = |γ −
α|c(α−γ )/2/2,

g0,δ (x) =
1

s(x)

∫ x+δs(x)

x
u−2γ |a(u)|2 du,

g1,δ (x) =
1

s(x)

∫ x+δs(x)

x
u−γ−α |b(u)|2 du

Then
(i) A1 is L1 -bounded if and only if sup

c�x<∞
g0,δ (x) < ∞ for some δ ∈ (0, 1

2N0
),

(ii) A1 is L1 -compact if and only if lim
x→∞ g0,δ (x) = 0 for some δ ∈ (0, 1

2N0
),

(iii) B1 is L1 -bounded if and only if sup
c�x<∞

g1,δ (x) < ∞ for some δ ∈ (0, 1
2N0

),

(iv) B1 is L1 -compact if and only if lim
x→∞ g1,δ (x) = 0 for some δ ∈ (0, 1

2N0
).

THEOREM 1.2. Suppose γ � α − 2 and either γ > −1 or γ > 2α − 3. Let
I, L1, A1, and B1 be as in Theorem 1.1. Define

ε0 =
{

(3/2)1/(γ+1) − 1, if γ > −1
(3/2)1/(γ−2α+3) − 1, if γ > 2α − 3

,

h0,ε(x) =
1
x

∫ x+εx

x
u−2α+4 |a(u)|2 du,

h1,ε(x) =
1
x

∫ x+εx

x
u−2α+2 |b(u)|2 du.

Then
(i) A1 is L1 -bounded if and only if sup

c�x<∞
h0,ε(x) < ∞ for some ε ∈ (0, ε0),

(ii) A1 is L1 -compact if and only if lim
x→∞ h0,ε(x) = 0 for some ε ∈ (0, ε0),

(iii) B1 is L1 -bounded if and only if sup
c�x<∞

h1,ε(x) < ∞ for some ε ∈ (0, ε0),

(iv) B1 is L1 -compact if and only if lim
x→∞ h1,ε(x) = 0 for some ε ∈ (0, ε0).

Only partial results were given in [1] for the limit circle case. In this paper we give
a complete solution of necessary and sufficient criteria for L in the limit circle case for
relative boundedness or compactness for both maximal and minimal operators. Unlike
the limit point case, the criteria for the limit circle case are different for maximal and
minimal operators.

2. Preliminaries

We state in this section some results which are used in later proofs. The first three
theorems may be found in [5]. While these theorems hold for differential expressions of
arbitrary order, we apply them in the situation where F is L and G is either A or B .
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THEOREM 2.1. Let F and G be formal differential expressions on an interval I
where F is symmetric, the order of G is less than the order of F, and the coefficients of
F and G are sufficiently smooth so that D(F′

0) ⊂ D(G′
0) .

(i) If G′
0 is F′

0 -bounded, then G0 is F0 -bounded.
(ii) If G′

0 is F′
0 -compact, then G0 is F0 -compact.

THEOREM 2.2. Let F and G be as in Theorem 2.1 and let D(F1) ⊂ D(G1) . Then
(i) G1 is F1 -bounded.
(ii) G0 is F0 -bounded.
(iii) If G1 is F1 -compact, then G0 is F0 -compact.

THEOREM 2.3. Let F and G be as in Theorem 2.1, G0 be F0 -compact, and
D(F1) ⊂ D(G1) . Then G1 is F1 -compact.

The following interpolation theorem from [4] is needed as well as the following
lemma, also from [4], which allows a function to be treated as approximately constant
on sufficiently short intervals.

THEOREM 2.4. Let I = [a,∞) and let N, W, and P be positive measurable
functions such that N, W−1, and P−1 ∈ Lloc(I) . Suppose there exists an ε0 > 0 and
a positive continuous function f = f (t) on I such that

S1(ε) := sup
t∈I

{f 2 [
1
εf

∫ t+εf

t
P−1] [

1
εf

∫ t+εf

t
N]} < ∞

and

S2(ε) := sup
t∈I

{[ 1
εf

∫ t+εf

t
W−1] [

1
εf

∫ t+εf

t
N]} < ∞

for all ε ∈ (0, ε0) . Then there exists a constant k > 0 such that for all ε ∈ (0, ε0) and
y ∈ D, ∫

I
N|y|2 � k{S2(ε)

∫
I

W|y|2 + ε2S1(ε)
∫

I
P|y′|2}

where

D = {y : y ∈ ACloc(I),
∫

I
W|y|2 < ∞, and

∫
I

P|y′|2 < ∞}.

LEMMA 2.5. Let f , g ∈ ACloc(I) be positive functions on an interval I = [a,∞)
satisfying |f ′(t)| � N0 and |f (t) g′(t)| � M0 g(t) a.e. on I for some constants N0 and
M0 . Then for each t ∈ I , 0 < ε < 1

N0
, and t � u � t + εf (t) , we have that

(1 − εN0)f (t) � f (u) � (1 + εN0)f (t)

and
e−

M0
N0 g(t) � g(u) � e

M0
N0 g(t) .

Finally, we need Hardy’s inequality with power weights [7] which is stated for a
function in AC[c, d] as∫ d

c
xβ |y(x)|2 dx � 4

(β + 1)2

∫ d

c
xβ+2|y′(x)|2 dx, (3)

where 0 < c < d < ∞ , β �= −1 , and y(c) = 0 = y(d) .
Two consequences of Hardy’s inequality are the following lemmas.
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LEMMA 2.6. If y has compact support in [c, d] , c > 0 , and is absolutely
continuous, then for γ �= 2α − 3 ,∫ d

c
x−γ+2α−4|y(x)|2 dx � 4

(−γ + 2α − 3)2

∫ d

c
x−γ+2α−2|y′(x)|2 dx.

Proof. Since y(c) = 0 = y(d) and γ �= 2α − 3 , we apply Hardy’s inequality
with β = −γ − 4 + 2α to obtain the result.

LEMMA 2.7. If y has compact support in [c, d] , c > 0 , and is absolutely
continuous, then for γ �= −1,∫ d

c
x−γ+2α−2|y′(x)|2 dx � 4

(−γ − 1)2

∫ d

c
x−γ |[xαy′(x)]′|2 dx.

Proof. Notice that
∫ d

c
x−γ+2α−2|y′(x)|2 =

∫ d

c
x−γ−2|xαy′(x)|2 . Since y′(c) =

0 = y′(d) and γ �= −1 , we apply Hardy’s inequality with β = −γ − 2 to obtain the
result.

3. Perturbations A

In this section, we consider perturbations A of a higher-ordered, symmetric dif-
ferential operator L in the limit circle case. These operators L and A are defined on
an interval I by the equations (2) and (1), with weight w(x) = xγ .

THEOREM 3.1. Let I = [c,∞) for some c > 0 and let γ < min{−1, 2α − 3} .
Then

(i) A0 is L0 -bounded if and only if

sup
x∈I

1
x

∫ x+εx

x
u2(2−α) |a(u)|2 du < ∞, (4)

for some ε ∈ (0, 1
2 ) ;

(ii) A0 is L0 -compact if and only if

lim
x→∞

1
x

∫ x+εx

x
u2(2−α) |a(u)|2 du = 0, (5)

for some ε ∈ (0, 1
2 ) .

Proof.
(i) Sufficiency We begin by showing that A′

0 is L′
0 -bounded if inequality (4)

holds. Let us consider y ∈ D(L′
0) . Since y has compact support in the interior of I,

there exists a d < ∞ such that the support of y is contained in [c, d] . Then we have

‖y‖2 =
∫ d

c
xγ |y(x)|2 dx, (6)

‖Ay‖2 =
∫ d

c
x−γ |a(x)|2|y(x)|2 dx, and (7)

‖Ly‖2 =
∫ d

c
x−γ |[xαy′(x)]′|2 dx. (8)
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Now, we show that the hypotheses of Theorem 2.4 hold for some ε ∈ (0, 1
2 ) with

N = x−γ |a(x)|2 , W = x−γ+2α−4 , P = x−γ+2α−2 , and f = x . By applying Lemma 2.5
with g ≡ 1 and f = x , we know that positive and negative powers of x are essentially
constant on intervals of length εx . Thus, we have for some constants C1, C2 > 0

S1 = sup
x∈I

{
1
ε2

[∫ x+εx

x
uγ−2α+2 du

][∫ x+εx

x
u−γ |a(u)|2 du

]}
(9)

� C1

ε
sup
x∈I

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}
and

S2 = sup
x∈I

{
1

ε2x2

[∫ x+εx

x
uγ+4−2α du

] [∫ x+εx

x
u−γ |a(u)|2 du

]}
(10)

� C2

ε
sup
x∈I

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du]

}
for some ε ∈ (0, 1

2 ) . Inequalities (4), (9), and (10) give us S1, S2 < ∞ for some
ε ∈ (0, 1

2 ) . Therefore (via Theorem 2.4), there exists a constant C3 > 0 such that∫ d

c
x−γ |a(x)|2|y(x)|2 dx � C3

{∫ d

c
x−γ+2α−4|y(x)|2 dx + ε2

∫ d

c
x−γ+2α−2|y′(x)|2 dx

}
.

(11)
Via Lemmas 2.6 and 2.7 each integral on the right-hand side is bounded above by a
constant multiple of ‖Ly‖2 . Therefore, we obtain for some constant C4 > 0

‖Ay‖2 � C4 ‖Ly‖2 � C4 ‖y‖2
L′0

. (12)

Thus, y ∈ D(A′
0) . Since y is arbitrary, the inequality above implies that A′

0 is L′
0 -

bounded. Via Theorem 2.1, A0 is L0 -bounded.

Necessity. Let φ be a function in C∞
0 (R) such that φ ≡ 1 on [0, 1] and

supp(φ) = [−2, 2] . Fix ε ∈ (0, 1
2 ) . For each r � c we define φr(x) = φ

(
x − r
εr

)
,

for x � c . Then φr ≡ 1 on [r, r + εr] and supp(φr) = [r − 2εr, r + 2εr] . Via
Lemma 2.5, a change of variables, the continuity of φ , and the fact that γ < −1 , there
exist constants C1 , C2 , and C3 > 0 such that for each r � c

‖φr‖2 =
∫

I
xγ φ2

r (x) dx � C1εrγ+1
∫ 2

−2
φ2(u) du � C2 rγ+1 � C3. (13)

Notice that for each r � c

‖Lφr‖2 =
∫

I
x−γ

∣∣∣∣ d
dx

{
xα
[

d
dx
φr(x)

]}∣∣∣∣2 dx

�
∫ r+2εr

r−2εr
x−γ

{∣∣∣∣xα [ d2

dx2
φr(x)

]∣∣∣∣+ ∣∣∣∣αxα−1

[
d
dx
φr(x)

]∣∣∣∣}2

dx.
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Applying Lemma 2.5, a change of variables, and the continuity of φ ′ and φ ′′ , we obtain
for some constants C4 and C5 > 0 for each r � c

‖Lφr‖2 � C4

{
r−γ+2α

∫ r+2εr

r−2εr

[
d2

dx2
φr(x)

]2

dx + r−γ+2α−2
∫ r+2εr

r−2εr

[
d
dx
φr(x)

]2

dx

}

= C4r
−γ+2α−3

{
ε−3

∫ 2

−2
[φ ′′(u)]2 du + ε−1

∫ 2

−2
[φ ′(u)]2 du

}
(14)

� C5 r−γ+2α−3.

Since φr ≡ 1 on [r, r + εr] and supp(φr )= [r − 2εr, r + 2εr] ,∫ r+εr

r
x−γ |a(x)|2 dx �

∫ r+2εr

r−2εr
x−γ |a(x)|2φ2

r (x) dx = ‖Aφr‖2. (15)

Thus, via the L0 -boundedness of A0 and inequalities (13) - (15), there exists a constant
C6 > 0 such that ∫ r+εr

r
x−γ |a(x)|2 dx � C6 (C3 + C5r

−γ+2α−3) .

Aftermultiplying the above inequality by rγ−2α+3 , we apply Lemma2.5 to the left-hand
side and obtain a constant C7 > 0 such that

1
r

∫ r+εr

r
x2(2−α)|a(x)|2 dx � C7 (rγ−2α+3 + 1).

Since γ − 2α + 3 < 0 , the right-hand side of the above inequality is bounded on
I. Hence, inequality (4) holds.

(ii) Sufficiency By the previous argument A0 is L0 -bounded. Thus, D(L0) ⊂
D(A0) . For every positive integer N > c , define AN on D(L0) by

ANy =
{

Ay on [c, N]
0 on (N,∞)

Notice that each AN is L0 -bounded with the same norm as A0 since ‖ANy‖ � ‖Ay‖ .
In order to simplify the proof, we break the argument into two Claims.

CLAIM 3.1.1. AN → A0 in the space of bounded operators on D(L0) with the
L0 -norm.

Proof of Claim 3.1.1. By definition L0 is closed. Therefore, D(L0) is complete
under the L0 -norm.

Let y ∈ D(L0) . Since L0 is the closure of L′
0 , for each integer n � 1 there exists

a yn ∈ D(L′
0) such that

‖y − yn‖ + ‖Ly − Lyn‖ <
1
n
. (16)
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For each yn ∈ L′
0 we have

‖Ayn − ANyn‖2 =
∫ ∞

N
x−γ |a(x)|2|yn(x)|2 dx. (17)

Since each yn has compact support in the interior of I, there exists a d < ∞
such that the support of yn is contained in [c, d] . Thus, we can apply the sufficiency
argument in part (i) with IN = [N,∞) to inequality (17).

Via Theorem 2.4 and inequalities (9), (10), (11), and (17), there exists a constant
k1 > 0 such that

‖Ayn − ANyn‖2 � k1 sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}
×

×
{∫ d

c
x−γ+2α−4|yn(x)|2 dx + ε2

∫ d

c
x−γ+2α−2|y′n(x)|2 dx

}
.

We apply Lemmas 2.6 and 2.7, as before, to obtain a constant k2 > 0 such that

‖Ayn−ANyn‖2 � k2 sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}
· ‖Lyn‖2 (18)

� k2 sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}
·‖yn‖2

L′0
.

Therefore, via the triangle inequality, the L0 -boundedness of A0 , and inequalities
(16) and (18), we have for each n

‖Ay − ANy‖ � ‖Ay− Ayn‖ + ‖Ayn − ANyn‖ + ‖ANyn − ANy‖
� 2k3 (‖y − yn‖ + ‖Ly − Lyn‖) + ‖Ayn − ANyn‖

<
2k3

n
+ k

1
2
2

(
sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}) 1
2

‖yn‖L′0

for some constant k3 > 0 . By applying the triangle inequality and inequality (16)
again, we obtain for each n

‖Ay − ANy‖ � 2k3

n
+ k

1
2
2

(
sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}) 1
2

(‖yn − y‖L0 + ‖y‖L0)

<
2k3

n
+ k

1
2
2

(
sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}) 1
2 (

1
n

+ ‖y‖L0

)
.

We let n → ∞ to obtain for each N

‖Ay− ANy‖ � k
1
2
2

(
sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}) 1
2

‖y‖L0 .
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Since IN = [N,∞) , equation (5) implies that sup
x∈IN

{
1
x

∫ x+εx

x
u2(2−α)|a(u)|2 du

}
→ 0

as N → ∞ so that, via the above inequality, we have for y �= 0

‖A − AN‖ → 0 as N → ∞ . �

CLAIM 3.1.2. Each AN is L0 -compact.

Proof of Claim 3.1.2. Let {yn}∞n=1 ⊂ D(L0) be an L0 -bounded sequence. By part
(ii) of Theorem 2.1, it is sufficient to consider only yn with compact support. We need
to show that for each N the sequence {ANyn}∞n=1 has a convergent subsequence. We
make use of the Arzela-Ascoli Theorem.

Since the interval [c, N] is compact and c > 0 , powers of x are bounded above
and below on [c, N] by positive constants. It is clear then from the boundedness of

{‖yn‖L0}∞n=1 and Lemma 2.7 that the sequence

{∫ N

c
|y′n(x)|2 dx

}∞

n=1

is bounded. Via

the compact support of each yn and the Cauchy-Schwarz inequality, we have for each
n

|yn(x)| = |yn(x)−yn(c)| = |
∫ x

c
y′n(u) du| � |N−c| 1

2

(∫ N

c
|y′n(u)|2 du

) 1
2

, c � x � N.

Thus, the sequence {yn(x)}∞n=1 is uniformly bounded on [c, N] . We also have that
{yn}∞n=1 is equicontinuous on [c, N] since by the Cauchy-Schwarz inequality

|yn(s) − yn(t)| = |
∫ s

t
y′n(u) du| � |s − t| 1

2

(∫ N

c
|y′n(u)|2 du

) 1
2

.

Therefore, via the Arzela-Ascoli Theorem we conclude that there exists a sub-
sequence of {yn}∞n=1 which converges uniformly on [c, N] . WLOG, we assume the
sequence {yn}∞n=1 converges uniformly on [c, N] .

Now, we have for each N

‖ANyn − ANym‖2 =
∫ N

c
u−γ |a(u)|2|yn(u) − ym(u)|2 du

� sup
c�x�N

|yn(x) − ym(x)|2
∫ N

c
u−γ |a(u)|2 du.

Since the integral on the right-hand side is finite, there exists a constant K > 0 such
that

‖ANyn − ANym‖2 � K sup
c�x�N

|yn(x) − ym(x)|2.

Since {yn}∞n=1 is a Cauchy sequence in the uniform norm, the above inequality implies
that the sequence {ANyn}∞n=1 is Cauchy in L 2(xγ , I) for each N. Therefore, {ANyn}∞n=1
converges for each N as n → ∞ since L 2(xγ , I) is complete. Hence, each AN is
L0 -compact. �
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Since A0 is the uniform limit of L0 -compact operators, A0 is L0 -compact.
Necessity. We use a contradiction argument to show that equation (5) must hold.

Suppose that for some ε ∈ (0, 1
2 ) there exists a ρ > 0 and a sequence {rn}∞n=1 of

positive numbers such that rn → ∞ as n → ∞ and for each n

1
rn

∫ rn+εrn

rn

x2(2−α)|a(x)|2 dx � ρ. (19)

Let {φr}r�c be defined as in part (i). Then via inequalities (13) and (14) there
exist constants C3, C5 > 0 such that for each n

‖φrn‖2
L0

= (‖φrn‖+‖Lφrn‖)2 � 2 (‖φrn‖2 +‖Lφrn‖2) � 2C3 +2C5 r−γ+2α−3
n . (20)

For each r � c define φ̂r(x) = r
1
2 (γ−2α+3)φr(x) for x � c . Via inequality (20) we

have for each n

‖φ̂rn‖2
L0

= rγ−2α+3
n ‖φrn‖2

L0
� 2C3 rγ−2α+3

n + 2C5.

Since γ − 2α + 3 < 0 , the above inequality implies that {φ̂rn}∞n=1 is an L0 -
bounded sequence. Via the L0 -compactness of A0 , {Aφ̂rn}∞n=1 has a convergent
subsequence. WLOG, we assume {Aφ̂rn}∞n=1 converges, say to some y0 . Via inequality
(19), properties of φrn , and Lemma 2.5, there exists a constant K > 0 such that for
each n

ρ � 1
rn

∫ rn+εrn

rn

x2(2−α)|a(x)|2 dx

� 1
rn

∫ rn+2εrn

rn−2εrn
x2(2−α)|a(x)|2φ2

rn(x) dx

� K rγ−2α+3
n

∫ rn+2εrn

rn−2εrn
x−γ |a(x)|2φ2

rn(x) dx

= K ‖Aφ̂rn‖2 .

Hence, ‖Aφ̂rn‖ �
( ρ

K

) 1
2 > 0 for each n.

Notice that a contradiction is reached if we show that y0 = 0 a.e. in [c,∞) . Let
J0 be a finite subinterval of [c,∞) . Since rn → ∞ as n → ∞ and supp(φrn ) =
[rn − 2εf (rn), rn + 2εf (rn)] , we conclude that φrn ≡ 0 on J0 for sufficiently large n.
Hence, Aφrn ≡ 0 on J0 for sufficiently large n. For such n

‖y0‖J0 = ‖y0 − Aφrn‖J0 � ‖y0 − Aφrn‖.
Since Aφrn → y0 as n → ∞ and the left-hand side of the above inequality is indepen-
dent of n, we have that ‖y0‖J0 = 0 . Thus, y0 = 0 a.e. in [c,∞) since the interval J0

is arbitrary. This contradiction implies that equation (5) holds.
Next, we prove a corollary of Theorem 3.1. We consider the minimal operators

L0 and A0 associated with the differential expressions (2) and (1), respectively, on
the interval (0, 1

c ] . We prove this result by using a unitary transformation to transform
the singularity at 0 to a singularity at ∞ and then applying Theorem 3.1 to the new
operators. Note that L is limit circle at zero if and only if γ > max{−1, 2α − 3} .
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COROLLARY 3.2. Let I = (0, 1
c ] for some c > 0 and let γ > max{−1, 2α − 3} .

Then
(i) A0 is L0 -bounded if and only if

sup
x∈I

1
x

∫ x

x−ε′x
u2(2−α) |a(u)|2 du < ∞, (21)

for some sufficiently small ε′ ;
(ii) A0 is L0 -compact if and only if

lim
x→0

1
x

∫ x

x−ε′x
u2(2−α) |a(u)|2 du = 0, (22)

for some sufficiently small ε′ .

Proof. By applying the argument in [1, p.152] (with Uy = z and z(t) = y(x)
where t = 1

x ), we transform the operators L and A unitarily into the operators
L̂ = ULU−1 and Â = UAU−1 , which are defined on [c,∞) by the equations

L̂[z](t) = −tγ+2[t2−αz′(t)]′ and (23)

Â[z](t) = tγ+2[t−2 a (1/t)]z(t). (24)

Notice that the operators L̂ and Â are of the form (2) and (1), respectively, if we
replace −γ with −γ ′ = γ + 2 , α with α′ = 2−α , and a(x) with t−2a(1/t) , where
t = 1

x . Thus, the condition of Theorem 3.1 that γ ′ < min{−1, 2α′ − 3} becomes
γ > max{−1, 2α − 3} . We apply Theorem 3.1, with the appropriate replacements, to
the minimal operators L̂0 and Â0 , associated with the differential expressions (23) and
(24), respectively, to obtain the following results:

(i) Â0 is L̂0 -bounded if and only if

sup
t∈[c,∞)

1
t

∫ t+εt

t
τ2(α−2)|a(1/τ)|2 dτ < ∞, (25)

for some ε ∈ (0, 1
2 ) .

(ii) Â0 is L̂0 -compact if and only if

lim
t→∞

1
t

∫ t+εt

t
τ2(α−2)|a(1/τ)|2 dτ = 0, (26)

for some ε ∈ (0, 1
2 ) .

Via a change of variables, we can show that (25) and (26) are equivalent to (21)
and (22), respectively, with ε′ = ε/(1 + ε) .

In the next result, we consider the maximal operators, L1 and A1 , and the min-
imal operators, L0 and A0 , associated with the differential expressions (2) and (1),
respectively, on the interval I = [c,∞) .
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THEOREM 3.3. Let I = [c,∞) for some c > 0 and let γ < min{−1, 2α − 3} .
Then the following three statements are equivalent.

(i) If α < 1 , then
∫

I
x−γ−2α+2 |a(x)|2dx < ∞;

if α = 1 , then
∫

I
x−γ |a(x)|2[ln(x)]2dx < ∞;

and if α > 1 , then
∫

I
x−γ |a(x)|2dx < ∞ .

(ii) A1 is L1 -bounded.
(iii) A1 is L1 -compact.

Proof. (i) ⇒ (iii) First we show that
∫

I x3−2α |a(x)|2dx < ∞. If α < 1 ,
then γ < −1 implies∫

I
x3−2α |a(x)|2dx �

∫ 1

c
x3−2α |a(x)|2dx +

∫ ∞

1
x−γ−2α+2 |a(x)|2dx < ∞.

The cases α > 1,α = 1 are similar. Hence, (i) implies that A0 is L0 -compact via
Theorem 3.1. Therefore, D(L0) ⊂ D(A0) .

Via the first formula of Von Neumann [8], we can write

D(L1) = D(L0) ⊕ S, (27)

where S has dimension four since L is regular at c and limit circle at ∞ .

CLAIM 3.3.1. S ⊂ D(A1) .

Proof of Claim 3.3.1. Set z1(x) =
{

x1−α if α �= 1
ln x if α = 1

and z2(x) ≡ 1 . Let z3

and z4 be functions in C(2)(R) with compact support in [c-1, c+1] such that z3(c) = 1 ,
z′3(c) = 0 , z4(x) = 0 , and z′4(c) = 1 . Notice that these four real-valued functions are
linearly independent.

We show that each zi ∈ L 2(xγ , I) . Since γ < min{−1, 2α − 3} ,

‖z1‖2 =
{ ∫

I xγ−2α+2 dx if α �= 1∫
I xγ [ln x]2 dx if α = 1

is finite. We also have that ‖z2‖2 =
∫

I xγ dx < ∞ since γ < −1 . Lastly, since z3 and
z4 are continuous on I and have compact support, ‖z3‖ and ‖z4‖ are finite.

Now, we show that each Lzi ∈ L 2(xγ , I) , so that each zi ∈ D(L1) . We have that
‖Lz1‖ = 0 = ‖Lz2‖ since Lz1 = 0 = Lz2 . Moreover, since z3 and z4 have continuous
second derivatives and compact support, ‖Lz3‖ and ‖Lz4‖ are finite.

Define S = span{z1, z2, z3, z4} . We now prove that D(L1) = D(L0)⊕ S, i.e., we
show that no linear combination of the zi is in D(L0) . Suppose to the contrary that
there exist constants k1, k2, k3, k4 (not all zero) such that z := k1z1+k2z2+k3z3+k4z4 ∈
D(L0). Since L is regular at c and z ∈ D(L1) , we have that z ∈ D(L0) if and only
if z(c) = 0 = z′(c) and [y, z](x) → 0 as x → ∞ for every y ∈ D(L1) , where the
Lagrange identity is defined by [y, ŷ](x) = y(x)[xα ŷ′(x)]− [xαy′(x)]ŷ(x) for real-valued
functions y and ŷ [8, Theorem 3.12].
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For α �= 1 we have that limx→∞ [z2, z1](x) = limx→∞ [xα(x1−α)′] = (1 − α);
and for α = 1 we have that limx→∞ [z2, z1](x) = limx→∞ [x(ln x)′] = 1. Since
limx→∞ [z2, z1](x) �= 0 , we must take k1 = 0 . Note that [z1, z2](x) = −[z2, z1](x) , so
we must also take k2 = 0 . Thus, z = k3z3 + k4z4 . Since z3(c) and z′4(c) are not zero,
we must take k3 = 0 and k4 = 0 . Hence, no linear combination of the zi is in D(L0) .

If α �= 1 , then ‖Az1‖2 =
∫

I x−γ |a(x)|2|z1(x)|2 dx =
∫

I x−γ−2α+2 |a(x)|2 dx; and
if α = 1 , then ‖Az1‖2 =

∫
I x−γ |a(x)|2|z1(x)|2 dx =

∫
I x−γ |a(x)|2[ln x]2 dx. Thus,

‖Az1‖ is finite via the inequalities in (i). Moreover, ‖Az2‖2 =
∫

I x−γ |a(x)|2|z2(x)|2 dx =∫
I x−γ |a(x)|2 dx , which is finite via the inequalities in (i). Since z3 and z4 are con-

tinuous and have compact support, ‖Az3‖ and ‖Az4‖ are finite. Therefore, each
zi ∈ D(A1) . �

Equation (27) and Claim 3.3.1 imply that D(L1) ⊂ D(A1) . Via Theorem 2.3 A1

is L1 -compact.
(iii) ⇒ (ii) Since A1 is L1 -compact, D(L1) ⊂ D(A1) . Via Theorem 2.2 A1 is

L1 -bounded.
(ii) ⇒ (i) Since A1 is L1 -bounded, D(L1) ⊂ D(A1) . Via equation (27)

S ⊂ D(A1) . Therefore, ‖Azi‖ < ∞ for each i , i.e., the inequalities in (i) hold.
We obtain a similar result for the maximal operators, L1 and A1 , associated with

the differential expressions (2) and (1), respectively, on the interval I = (0, 1
c ] .

COROLLARY 3.4. Let I = (0, 1
c ] for some c > 0 and let γ > max{−1, 2α − 3} .

Then the following three statements are equivalent.

(i) If α > 1 , then
∫

I
x−γ−2α+2 |a(x)|2dx < ∞;

if α = 1 , then
∫

I
x−γ |a(x)|2[ln(x)]2dx < ∞;

and if α < 1 , then
∫

I
x−γ |a(x)|2dx < ∞ .

(ii) A1 is L1 -bounded.
(iii) A1 is L1 -compact.

Proof. As in the proof of Corollary 3.2, we unitarily transform the singularity at 0
to one at ∞ . We apply Theorem 3.3, with the appropriate replacements, to the maximal
operators L̂1 and Â1 associated with the transformed differential expressions (23) and
(24), respectively, to obtain the equivalence of the following three statements:

( i′ ) If α > 1 , then
∫ ∞

c
tγ+2α−4 |a(1/t)|2dt < ∞;

if α = 1 , then
∫ ∞

c
tγ−2 |a(1/t)|2[ln(t)]2dt < ∞;

and if α < 1 , then
∫ ∞

c
tγ−2 |a(1/t)|2dt < ∞ .

( ii′ ) Â1 is L̂1 -bounded.
( iii′ ) Â1 is L̂1 -compact.
Via a change of variables and the unitary transformation, we obtain the desired

result.
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4. Perturbations B

In this section, we consider perturbations B of L in the limit circle case, where
the operators are defined on an interval I by equation (1), with weight w(x) = xγ , and
equation (2).

THEOREM 4.1. Let I = [c,∞) for some c > 0 and let γ < min{−1, 2α − 3} .
Then

(i) B0 is L0 -bounded if and only if

sup
x∈I

1
x

∫ x+εx

x
u2(1−α) |b(u)|2 du < ∞, (28)

for some ε ∈ (0, 1
2 ) ;

(ii) B0 is L0 -compact if and only if

lim
x→∞

1
x

∫ x+εx

x
u2(1−α) |b(u)|2 du = 0, (29)

for some ε ∈ (0, 1
2 ) .

Proof. (i) Sufficiency We begin by showing that B′
0 is L′

0 -bounded if inequality
(28) holds. Let us consider y ∈ D(L′

0) . Since y has compact support in the interior of
I, there exists a d < ∞ such that the support of y is contained in [c, d] . Then we have

‖y‖2 =
∫ d

c
xγ |y(x)|2 dx, (30)

‖By‖2 =
∫ d

c
x−γ |b(x)|2|y′(x)|2 dx, and (31)

‖Ly‖2 =
∫ d

c
x−γ |[xαy′(x)]′|2 dx. (32)

We show that the hypotheses of Theorem 2.4 hold for some ε ∈ (0, 1
2 ) with

N = x−γ−2α |b(x)|2 , W = x−γ−2 , P = x−γ , and f = x . By applying Lemma 2.5
with g ≡ 1 and f = x , we know that positive and negative powers of x are essentially
constant on intervals of length εx . Thus, we have for some constants C1, C2 > 0

S1 = sup
x∈I

{
1
ε2

[∫ x+εx

x
uγ du

] [∫ x+εx

x
u−γ−2α |b(u)|2 du

]}
(33)

� C1

ε
sup
x∈I

{
1
x

∫ x+εx

x
u2(1−α)|b(u)|2 du

}
and

S2 = sup
x∈I

{
1

ε2x2

[∫ x+εx

x
uγ+2 du

] [∫ x+εx

x
u−γ−2α |b(u)|2 du

]}
(34)

� C2

ε
sup
x∈I

{
1
x

∫ x+εx

x
u2(1−α)|b(u)|2 du]

}
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for some ε ∈ (0, 1
2 ) . Inequalities (28), (33), and (34) give us S1, S2 < ∞ for some

ε ∈ (0, 1
2 ) . Therefore (via Theorem 2.4), there exists a constant C3 > 0 such that∫ d

c
x−γ−2α |b(x)|2|xαy′(x)|2 dx (35)

� C3

{∫ d

c
x−γ−2|xαy′(x)|2 dx + ε2

∫ d

c
x−γ |[xαy′(x)]′|2 dx

}

= C3

{∫ d

c
x−γ+2α−2|y′(x)|2 dx + ε2‖Ly‖2

}
Via Lemma 2.7 the integral on the right-hand side is bounded above by a constant
multiple of ‖Ly‖2 . Therefore, we obtain for some constant C4 > 0

‖By‖2 � C4 ‖Ly‖2 � C4 (‖y‖ + ‖Ly‖)2. (36)

Thus, y ∈ D(B′
0) . Since y is arbitrary, the inequality above implies that B′

0 is L′
0 -

bounded. Via Theorem 2.1, B0 is L0 -bounded.

We omit the remaining proofs of Theorem 4.1. The proofs are modifications of
the proofs of the corresponding parts of Theorem 3.1, but have the same structure. In
particular, for the necessity proofs, the same function φ is used, but with φ ′ ≡ 1 on
[0, 1] .

Next, we prove a corollary of Theorem 4.1. We consider the minimal operators
L0 and B0 associated with the differential expressions (2) and (1), respectively, on
the interval (0, 1

c ] . We prove this result by using a unitary transformation to transform
the singularity at 0 to a singularity at ∞ and then applying Theorem 4.1 to the new
operators.

COROLLARY 4.2. Let I = (0, 1
c ] for some c > 0 and let γ > max{−1, 2α − 3} .

Then
(i) B0 is L0 -bounded if and only if

sup
x∈I

1
x

∫ x

x−ε′x
u2(1−α) |b(u)|2 du < ∞, (37)

for some sufficiently small ε′ ;
(ii) B0 is L0 -compact if and only if

lim
x→0

1
x

∫ x

x−ε′x
u2(1−α) |b(u)|2 du = 0, (38)

for some sufficiently small ε′ .

Proof. By applying the same unitary transformation as in Corollary 3.2, we trans-
form the operators L and B into the operators L̂ = ULU−1 and B̂ = UBU−1 , which
are defined on [c,∞) by (23) and

B̂[z](t) = −tγ+2 b(1/t)z′(t) (39)
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Notice that the operators L̂ and B̂ are of the form (2) and (1), respectively, if we
replace −γ with −γ ′ = γ + 2 , α with α′ = 2 − α , and b(x) with −b(1/t) , where
t = 1

x . Thus, the condition of Theorem 4.1 that γ ′ < min{−1, 2α′ − 3} becomes
γ > max{−1, 2α − 3} . We apply Theorem 4.1, with the appropriate replacements, to
the minimal operators L̂0 and B̂0 , associated with the differential expressions (23) and
(39), respectively, to obtain the following results:

(i) B̂0 is L̂0 -bounded if and only if

sup
t∈[c,∞)

1
t

∫ t+εt

t
τ2(α−1)|b(1/τ)|2 dτ < ∞, (40)

for some ε ∈ (0, 1
2 ) .

(ii) B̂0 is L̂0 -compact if and only if

lim
t→∞

1
t

∫ t+εt

t
τ2(α−1)|b(1/τ)|2 dτ = 0, (41)

for some ε ∈ (0, 1
2 ) .

Via a change of variables, we can show that (40) and (41) are equivalent to (37)
and (38), respectively, with ε′ = ε/(1 + ε) .

In the next result, we consider the maximal operators, L1 and B1 , and the min-
imal operators, L0 and B0 , associated with the differential expressions (2) and (1),
respectively, on the interval I = [c,∞) .

THEOREM 4.3. Let I = [c,∞) for some c > 0 and let γ < min{−1, 2α − 3} .
Then the following three statements are equivalent.

(i)
∫

I
x−γ−2α |b(x)|2dx < ∞ .

(ii) B1 is L1 -bounded.
(iii) B1 is L1 -compact.

Proof. (i) ⇒ (iii) We have that
∫

I x1−2α |b(x)|2dx �
∫ 1

c x1−2α |b(x)|2dx +∫∞
1 x−γ−2α |b(x)|2dx since γ < −1 . Hence, (i) implies that B0 is L0 -compact

via Theorem 4.1. Therefore, D(L0) ⊂ D(B0) .
Via the first formula of Von Neumann, we can write

D(L1) = D(L0) ⊕ S, (42)

where S has dimension four since L is regular at c and limit circle at ∞ .

CLAIM 4.3.1. S ⊂ D(B1) .

Proof of Claim 4.3.1. Define z1 , z2 , z3 , and z4 as in the proof of Claim 3.3.1.
As before, each of these linearly independent functions is contained in D(L1) .

Define S = span{z1, z2, z3, z4} . Since the proof of Claim 3.3.1 shows that no
linear combination of the zi is in D(L0) , we have that D(L1) = D(L0)⊕ S . Now, we
show that each of the zi is in D(B1) .
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We have that ‖Bz1‖2 =
∫

I x−γ |b(x)|2|z′1(x)|2 dx = k
∫

I x−γ−2α |b(x)|2 dx , where
the constant k = (1 − α) if α �= 1 and k = 1 if α = 1 . Thus, ‖Bz1‖ is finite
via inequality (i). Since z′2(x) ≡ 0 , ‖Bz2‖2 = 0 . Moreover, ‖Bz3‖ and ‖Bz4‖ are
finite since z3 and z4 are continuous and have compact support. Therefore, each
zi ∈ D(B1) . �

Equation (42) and Claim 4.3.1 imply that D(L1) ⊂ D(B1) . Via Theorem 2.3 B1

is L1 -compact.
(iii) ⇒ (ii) Since B1 is L1 -compact, D(L1) ⊂ D(B1) . Via Theorem 2.2 B1 is

L1 -bounded.
(ii) ⇒ (i) Since B1 is L1 -bounded, D(L1) ⊂ D(B1) . Via equation (42)

S ⊂ D(B1) . Therefore, ‖Bzi‖ < ∞ for each i , i.e.,∫
I
x−γ−2α |b(x)|2 dx < ∞.

Next, we obtain a similar result for the maximal operators, L1 and B1 , associated
with the differential expressions (2) and (1), respectively, on the interval I = (0, 1

c ] .

COROLLARY 4.4. Let I = (0, 1
c ] for some c > 0 and let γ > max{−1, 2α − 3} .

Then the following three statements are equivalent.

(i)
∫

I
x−γ−2α |b(x)|2dx < ∞ .

(ii) B1 is L1 -bounded.
(iii) B1 is L1 -compact.

Proof. As in the proof of Corollary 3.2, we unitarily transform the singularity at 0
to one at ∞ . We apply Theorem 4.3, with the appropriate replacements, to the maximal
operators L̂1 and B̂1 associated with the transformed differential expressions (23) and
(39), respectively, to obtain the equivalence of the following three statements:

( i′ )
∫ ∞

c
tγ+2α−2|b(1/t)|2 dt < ∞ .

( ii′ ) B̂1 is L̂1 -bounded.
( iii′ ) B̂1 is L̂1 -compact.
Via a change of variables and the unitary transformation, we obtain the desired

result.
We close with an application of Corollary 3.4 to the energy operator of the hydrogen

atom,

M[y](x) = −y′′(x) +
[
�(� + 1)

x2
+ V(x)

]
y(x), 0 < x � 1, 0 � �,

(M acts in L 2(1, I) ) in the limit circle case, i.e., 0 � � < 1/2. In [2] it was proved
that V(x) y is a relatively compact perturbation of the maximal operator N1 for

N[y](x) = −y′′(x) +
[
�(� + 1)

x2

]
y(x),
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in the limit point case � > 1/2 if and only if

lim
x→0

1
x

∫ x

x−εx
u4 |V(u)|2 du = 0

for some sufficiently small ε. To apply Corollary 3.4, we transform M as in [2] by
the unitary transformation Uy = z where z(t) = x�y(x), t = x1−2�/(1 − 2�). Then
K = UMU−1 is given by

K[z](t) = −[P(t)ż(t)]˙ + Q(t)z(t), ˙=
d
dt

, P(t) = x−4�, Q(t) = V(x).

Applying Corollary 3.4 to K and transforming back to M yields the result that the
multiplication operator V(x) y is a relatively compact perturbation of N1 in the limit
circle case if and only if∫ 1/(1−2�)

0
t−2α+2|Q(t)|2 dt < ∞ ⇐⇒

∫ 1

0
x2+2�|V(x)|2 dx < ∞,

where α = −4�/(1 − 2�). As in the limit point case, a Coulomb type potential
V(x) = c/x is a relatively compact perturbation of N1.
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