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ON THE OSTROWSKI’S INTEGRAL INEQUALITY FOR

MAPPINGS WITH BOUNDED VARIATION AND APPLICATIONS

S. S. DRAGOMIR

(communicated by B. G. Pachpatte)

Abstract. A generalization of Ostrowski’s inequality for mappings with bounded variation and
applications in Numerical Analysis for Euler’s Beta function is given.

1. Introduction

The following theorem contains the integral inequality which is known in the
literature as Ostrowski’s inequality [2, p. 469].

THEOREM 1.1. Let f : [a, b] → R be a differentiable mapping on (a, b) whose
derivative is bounded on (a, b) and denote ‖f ′‖∞ = sup

t∈(a,b)
|f ′(t)| < ∞. Then for all

x ∈ [a, b] we have the inequality∣∣∣∣∣∣f (x) − 1
b − a

b∫
a

f (t)dt

∣∣∣∣∣∣ �
[

1
4

+

(
x − a+b

2

)2

(b − a)2

]
(b − a) ‖f ′‖∞ .

The constant 1
4 is sharp in the sense that it can not be replaced by a smaller one.

In this paper we prove an Ostrowski’s type inequality for mappings with bounded
variation and apply it in obtaining a Riemann’s type quadrature formula for this class
of mappings. Applications for Euler’s Beta function are also given.

2. Ostrowski’s inequality for mappings with bounded variation

The following inequality for mappings with bounded variation holds:

THEOREM 2.1. Let u : [a, b] → R be a mapping with bounded variation on [a, b].
Then for all x ∈ [a, b], we have the inequality∣∣∣∣∣∣

b∫
a

u(t)dt − u(x)(b − a)

∣∣∣∣∣∣ �
[
1
2
(b − a) +

∣∣∣∣x − a + b
2

∣∣∣∣
] b∨

a

(u). (2.1)
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where
∨b

a(u) denotes the total variation of u.

The constant 1
2 is the best possible one.

Proof. Using the integration by parts formula for Riemann-Stieltjes integral we
have

x∫
a

(t − a)du(t) = u(x)(x − a) −
x∫

a

u(t)dt

and
b∫

x

(t − b)du(t) = u(x)(b − x) −
b∫

x

u(t)dt.

If we add the above two equalities, we get

u(x)(b − a) −
b∫

a

u(t)dt =

b∫
a

p(x, t)du(t) (2.2)

where

p(x, t) :=

⎧⎨
⎩

t − a if t ∈ [a, x)

t − b if x ∈ [x, b],

for all x, t ∈ [a, b].
Now, assume that Δn : a = x(n)

0 < x(n)
1 < · · · < x(n)

n−1 < x(n)
n = b is a sequence of

divisions with ν(Δn) → 0 as n → ∞, where ν(Δn) := max
i∈{0,...,n−1}

(x(n)
i+1 − x(n)

i ) and

ξ (n)
i ∈

[
x(n)
i , x(n)

i+1

]
.

If p : [a, b] → R is continuous on [a, b] and v : [a, b] → R is with bounded variation
on [a, b], then∣∣∣∣∣∣

b∫
a

p(x)dv(x)

∣∣∣∣∣∣ =

∣∣∣∣∣ lim
ν(Δn)→0

n−1∑
i=0

p(ξ (n)
i )

[
v
(
x(n)
i+1) − v(x(n)

i

)]∣∣∣∣∣ (2.3)

� lim
ν(Δn)→0

n−1∑
i=0

∣∣∣p(ξ (n)
i )

∣∣∣ ∣∣∣v (
x(n)
i+1

)
− v

(
x(n)
i

)∣∣∣
� sup

x∈[a,b]
|p(x)| sup

Δn

n−1∑
i=0

∣∣∣v (
x(n)
i+1

)
− v

(
x(n)
i

)∣∣∣ = sup
x∈[a,b]

|p(x)|
b∨
a

(v).

Applying the inequality (2.3) for p(x, t) as above and v(x) = u(x), x ∈ [a, b], we
get ∣∣∣∣∣∣

b∫
a

p(x, t)du(t)

∣∣∣∣∣∣ � sup
t∈[a,b]

|p(x, t)|
b∨
a

(u) (2.4)
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= max {x − a, b − x}
b∨
a

(u) =
[
b − a

2
+

∣∣∣∣x − a + b
2

∣∣∣∣
] b∨

a

(u)

and then by (2.4) , via the identity (2.2) , we deduce the desired inequality (2.1) .
Now, assume that the inequality (2.1) holds with a constant C > 0, i.e.,∣∣∣∣∣∣

b∫
a

u(t)dt − u(x)(b − a)

∣∣∣∣∣∣ �
[
C(b − a) +

∣∣∣∣x − a + b
2

∣∣∣∣
] b∨

a

(u). (2.5)

for all x ∈ [a, b].
Consider the mapping u : [a, b] → R, given by

u(x) =

⎧⎨
⎩

0 if x ∈ [a, b]\{
a+b
2

}
1 if x = a+b

2

in (2.5) . Then u is with bounded variation on [a, b], and

b∨
a

(u) = 2,

∫ b

a
u(t)dt = 0

and for x = a+b
2 , we get in (2.5)

1 � 2C

which implies that C � 1
2 and the theorem is completely proved.

The following corollary holds:

COROLLARY 2.2. Let u : [a, b] → R be a monotonous mapping on [a, b]. Then
we have the inequality∣∣∣∣∣∣

b∫
a

u(t)dt − u(x)(b − a)

∣∣∣∣∣∣ �
[
1
2
(b − a) +

∣∣∣∣x − a + b
2

∣∣∣∣
]
|u(b) − u(a)| .

The case of lipschitzian mappings is embodied in the following corollary.

COROLLARY 2.3. Let u : [a, b] → R be an L -lipschitzian mapping on [a, b], i.e.,
we recall

|u(x) − u(y)| � L |x − y| for all x, y ∈ [a, b].

Then we have the inequality∣∣∣∣∣∣
b∫

a

u(t)dt − u(x)(b − a)

∣∣∣∣∣∣ � L

[
1
2
(b − a) +

∣∣∣∣x − a + b
2

∣∣∣∣
]

(b − a).
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The best inequality we can get from (2.1) is that one for which x = a+b
2 obtaining

COROLLARY 2.4. Let u : [a, b] → R be as above . Then we have the inequality:∣∣∣∣∣∣
b∫

a

u(t)dx − u

(
a + b

2

)
(b − a)

∣∣∣∣∣∣ � 1
2
(b − a)

b∨
a

(u). (2.6)

Similar inequalities can be found if we assume that u is monotonousor lipschitzian
on [a, b]. We shall omit the details.

REMARK 2.1. If we assume that u is continuous differentiable on (a, b) and u′ is
integrable on (a, b), then by (2.1) we get∣∣∣∣∣∣

b∫
a

u(t)dx − u

(
a + b

2

)
(b − a)

∣∣∣∣∣∣ �
[
1
2

(b − a) +
∣∣∣∣x − a + b

2

∣∣∣∣
]
‖u′‖1

which is the inequality obtained by Dragomir and Wang in the recent paper [1].

REMARK 2.2. It is well known that if f : [a, b] → R is a convex mapping on
[a, b] , then Hermite-Hadamard’s inequality holds

f

(
a + b

2

)
� 1

b − a

b∫
a

f (x)dx � f (a) + f (b)
2

. (2.7)

Now, if we assume that f : I ⊂ R → R is convex on I and a, b ∈ Int(I), a < b;
then f ′

+ is monotonous nondecreasing on [a, b] and by Corollary 2.4 we get

0 � 1
b − a

b∫
a

f (x)dx − f

(
a + b

2

)
� 1

2
‖f ′

+‖1 (2.8)

which gives a counterpart for the first membership of Hadamard’s inequality.
Similar results can be obtained if we assume that f is convex and monotonous or

convex and lipschitzian on [a, b].

3. A quadrature formula of Riemann type

Let In : a = x0 < x1 < · · · < xn−1 < xn = b be a division of the interval
[a, b] and ξi ∈ [xi, xi+1] (i = 0, . . . , n − 1) a sequence of intermediate points for In.
Construct the Riemann sums

Rn (f , In, ξ) =
n−1∑
i=0

f (ξi) hi

where hi := xi+1 − xi.
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We have the following quadrature formula

THEOREM 3.1. Let f : [a, b] → R be a mapping with bounded variation on
[a, b] and In, ξi (i = 0, . . . , n − 1) be as above. Then we have the Riemann quadrature
formula

b∫
a

f (x)dx = Rn(f , In, ξ) + Wn(f , In, ξ) (3.1)

where the remainder satisfies the estimation

|Wn(f , In, ξ)| � sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
] b∨

a

(f )

�
[

1
2
ν(h) + sup

i=0,...,n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
]

b∨
a

(f ) � ν(h)
b∨
a

(f ) (3.2)

for all ξi(i = 0, . . . , n − 1) as above, where ν(h) := max
i=0,...,n

hi .

The constant 1
2 is sharp in (3.2) .

Proof. Apply Theorem 2.1 on the interval [xi, xi+1] to get∣∣∣∣∣∣
xi+1∫
xi

f (x)dx − f (ξi)hi

∣∣∣∣∣∣ �
[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
] xi+1∨

xi

(f ). (3.3)

Summing over i from 0 to n− 1 and using the generalized triangle inequality we
get

|Wn(f , In, ξ)| �
n−1∑
i=0

∣∣∣∣∣∣
xi+1∫
xi

f (x)dx − f (ξi)hi

∣∣∣∣∣∣
�

n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
] xi+1∨

xi

(f )

� sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
] n−1∑

i=0

xi+1∨
xi

(f ).

= sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
] b∨

a

(f )

The second inequality follows by the properties of sup(.).
Now, as ∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣ � 1
2
hi

for all ξi ∈ [xi, xi+1] (i = 0, . . . , n − 1) the last part of (3.2) is also proved.
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COROLLARY 3.2. Let f : [a, b] → R be a monotonous mapping on [a, b] and
In, ξi (i = 0, . . . , n − 1) be as above. Then we have the Riemann quadrature formula
(3.1) and the remainder satisfies the estimation

|Wn(f , In, ξ)| � sup
i=0,...,n

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
]
|f (b) − f (a)|

�
[

1
2
ν (h) + sup

i=0,...,n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
]
|f (b) − f (a)| � ν (h) |f (b) − f (a)|

for all ξi (i = 0, . . . , n − 1) as above.

The case of lipschitzian mappings is embodied into the following corollary.

COROLLARY 3.3. Let f : [a, b] → R be an L -lipschitzian mapping on [a, b] and
In, ξi (i = 0, . . . , n − 1) be as above. Then we have the Riemann quadrature formula
(3.1) and the remainder satisfies the estimation

|Wn(f , In, ξ)| � L
n−1∑
i=0

[
1
2
hi +

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
]

hi

� L
n−1∑
i=0

h2
i

The proof is obvious by Corollary 2.3 applied on the intervals [xi, xi+1] and sum-
ming the obtained inequalities.

We shall omit the details.
Note that the best estimation we can get from (3.2) is that one for which

ξi = xi+xi+1

2 obtaining the following midpoint formula:

COROLLARY 3.4. Let f , In be as Theorem 3.1. Then we have the midpoint rule

b∫
a

f (x)dx = Mn(f , In) + Sn(f , In)

where

Mn (f , In) =
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

and the remainder Sn(f , In) satisfies the estimation

|Sn(f , In)| � 1
2
ν(h)

b∨
a

(f ).

Similar results can be obtained from Corollaries 3.2 and 3.3.

REMARK 3.1. If we assume that f : [a, b] → R is differentiable on (a, b) and
whose derivative f ′ is integrable on (a, b) we can put instead of

∨b
a(f ) the L1−norm

‖f ′‖1 obtaining the estimation due to Dragomir-Wang from the paper [1].
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4. Applications for Euler’s Beta mapping

Consider the mapping Beta for real numbers

B(p, q) :=

1∫
0

tp−1(1 − t)q−1dt, p, q > 0

and the mapping ep,q(t) := tp−1(1 − t)q−1, t ∈ [0, 1].
We have for p, q > 1 that

e′p,q(t) = ep−1,q−1(t)[p − 1 − (p + q − 2)t]

and as
|p − 1 − (p + q − 2)t| � max{p − 1, q − 1}

for all t ∈ [0, 1] , then ∥∥e′p,q

∥∥
1

� max{p − 1, q − 1} ‖ep−2,q−2‖1 (4.1)

= max{p − 1, q − 1}B(p − 1, q − 1); p, q > 1.

The following inequality for Beta mapping holds

PROPOSITION 4.1. Let p, q > 1 and x ∈ [0, 1]. Then we have the inequality∣∣B(p, q)− xp−1(1 − x)q−1
∣∣ (4.2)

� max {p − 1, q − 1}B (p − 1, q − 1)
[
1
2

+
∣∣∣∣x − 1

2

∣∣∣∣
]

.

The proof follows by Theorem 2.1 applied for the mapping ep,q and taking into
account that

∥∥e′p,q

∥∥
1

satisfies the inequality (4.1) .

COROLLARY 4.2. Let p, q > 1. Then we have the inequality∣∣∣∣B(p, q) − 1
2p+q−2

∣∣∣∣ � 1
2

max {p − 1, q − 1}B (p − 1, q − 1) .

Now, if we apply Theorem 3.1 for the mapping ep,q we get the following approxi-
mation of Beta mapping in terms of Riemann sums.

PROPOSITION 4.3. Let In : a = x0 < x1 < · · · < xn−1 < xn = b be a division of
the interval [a, b] , ξi ∈ [xi, xi+1] (i = 0, . . . , n − 1) a sequence of intermediate points
for In and p, q > 1. Then we have the formula

B(p, q) =
n−1∑
i=0

ξ p−1
i (1 − ξi)

q−1 hi + Tn (p, q)

where the remainder Tn(p, q) satisfies the estimation

|Tn(p, q)|

� max {p − 1, q − 1}
[

1
2
ν(h) + sup

i=0,...,n

∣∣∣∣ξi − xi + xi+1

2

∣∣∣∣
]

B(p − 1, q − 1)
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� max {p − 1, q − 1} ν(h)B (p − 1, q − 1) .

Particularly, if we choose above ξi = xi+xi+1

2 (i = 0, . . . , n − 1) then we get the approx-
imation

B(p, q) =
1

2p+q−2

n−1∑
i=0

(xi + xi+1)
p−1 (2 − xi − xi+1)

q−1 + Vn(p, q)

where

|Vn(p, q)| � 1
2

max {p − 1, q − 1} ν(h)B(p − 1, q − 1).
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