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Abstract. Best possible bounds for real numbers λ1 � · · · � λn > 0 with prescribed sum
a = λ1 + · · · + λn and product d = λ1 · · ·λn are presented. These bounds can be expressed
algebraically only in certain special cases. In the general case, explicit bounds are found by using
extra bounds. The results are applied to eigenvalue estimation, when the λk ’s are regarded as
eigenvalues of an n by n matrix A , a = tr A , and d = det A . The case when the eigenvalues
are real but not necessarily positive is also discussed. The bounds are compared with bounds
using a and b = λ 2

1 + · · · + λ 2
n ; i.e, with eigenvalue bounds using tr A and tr A2 .

1. Introduction

Throughout this paper, we consider real numbers λ1 � · · · � λn (n � 2 ) with
prescribed sum, sum of squares, and product,

a = λ1 + · · · + λn, b = λ 2
1 + · · · + λ 2

n , d = λ1 · · · λn.

Then nb � a2 . If λn > 0 , we have a > 0 and 0 < nnd � an .
The problem to find the best possible bounds for n ordered real numbers with

prescribed arithmetic mean and standard deviation is widely studied by many solvers.
Jensen and Styan [3, 4] credit priorities to Laguerre, Samuelson, Brunk, Boyd, and
Hawkins. An equivalent question is to find bounds for an individual λk , using only a
and b (and, of course, n and k ). Wolkowicz and Styan [13] applied these results to
eigenvalue estimation, regarding the λk ’s as eigenvalues of an n by n matrix A with

a = tr A, b = tr A2.

We call these bounds Wolkowicz–Styan bounds (shortly WS bounds) rather than
"Laguerre–Samuelson–Brunk–Boyd–Hawkins–etc. bounds".

More generally, the best possible bounds for

skl = λk + · · · + λl (1 � k � l � n),

using only a and b , were presented in [13]. Under an assumption to guarantee λl > 0 ,
the best possible bounds for λk/λl were found in [6].
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The problem to find bounds for n ordered positive numbers with prescribed arith-
metic mean and geometric mean has received less attention.

Regarding the λk ’s as eigenvalues with λn > 0 , the problem to find an upper
bound for λ1/λn with prescribed

a = tr A, d = det A

was discussed by Guggenheimer, Edelman, and Johnson [2]. The best possible bound
was found in [8], [7]. Bounds for skl and

pkl = λk · · · λl (1 � k � l � n),

involving only a and d , have also been found ([9], [10]), but these bounds are not the
best possible.

We pursue this topic further. We will first (Sec. 2.) find the best possible bounds
for λk (and, more generally, for skl and pkl ), using only a and d (and, of course, n ,
k , and l ). We will then meet a pair of equations (Lemma 1), which cannot be solved
algebraically in general, but can be if n is even and k = n/2 (Sec. 3.). Next (Sec. 4.)
we will consider other cases. Thereafter (Sec. 5.), we will compare our bounds with the
WS bounds. Further (Sec. 6.), we will show that the WS eigenvalue bounds of A are
obtained by applying our bounds to A + tI , subtracting t , and letting t → ∞ . Finally
(Sec. 7.), we will study eigenvalue estimation with examples.

A more general approach would be possible. Instead of skl and pkl , we may
consider any elementary symmetric function of λk , . . . , λl . Instead of prescribing a
and d , we may fix the values of any two (or more) elementary symmetric functions of
λ1 , . . . , λn . Instead of prescribing a and b , we may fix the values of any two (or
more) power sums, thus generalizing [13]. Further, we may generalize power sums to
g(λ1) + · · · + g(λn) where g is a given strictly convex or concave function. See [11].

2. Bounds as solutions of equations

LEMMA 1. Let 1 � k < n . The function

f k(x) = xk

(
a − kx
n − k

)n−k

is strictly decreasing on the interval [a/n, a/k] . Moreover, the system

kx + (n − k)y = a,
xkyn−k = d,
x � y > 0

(S)

has a unique solution x , y .

Proof. Denoting

g(x) = (n − k)n−kf k(x) = xk(a − kx)n−k,
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we have, for a/n < x < a/k ,

g′(x) = kxk−1(a − kx)n−k−1(a − nx) < 0.

Therefore g is strictly decreasing, and so is also f k .
Eliminating y from (S) , we have

f k(x) = xk

(
a − kx
n − k

)n−k

= d,

where
a − kx
n − k

� x <
a
k
; i.e.,

a
n

� x <
a
k
.

Since
f k

(a
n

)
=
(a

n

)n
� d, f k

(a
k

)
= 0 < d,

a solution exists, and, since f is strictly decreasing, the solution is unique.

We denote the solution (x, y) of (S) by (ξk(n, a, d),ηk(n, a, d)) or shortly by
(ξk,ηk) .

THEOREM 1. Assume λn > 0 . The best possible bounds for the λi ’s, using only
a and d , are

(ξn−1,η1,η2, . . . ,ηn−1) �

(λ1, λ2, λ3, . . . , λn) �

(ξ1, ξ2, . . . , ξn−1,η1).

Here � denotes elementwise ordering.

Proof. To show λi � ξi (1 � i < n) , suppose λi > ξi . Then

(λ1 · · ·λi)(λi+1 · · ·λn) �
(
λ1 + · · · + λi

i

)i(λi+1 + · · · + λn

n − i

)n−i

=

f i

(
λ1 + · · · + λi

i

)
< f i(ξi) = d,

since f i is strictly decreasing by Lemma 1, and

λ1 + · · · + λi

i
� λi > ξi.

But this contradicts λ1λ2 · · · λn = d . Therefore λi � ξi and, as above,

λ1 + · · · + λi

i
� ξi.
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To show λi � ηi−1 (1 < i � n) , we now get

λ1 + · · · + λi−1 � (i − 1)ξi−1.

Hence

λi � λi + · · · + λn

n − i + 1
� a − (i − 1)ξi−1

n − i + 1
= ηi−1.

To show λ1 � ξn−1 , suppose λ1 < ξn−1 . If x � y � t > 0 , then clearly
(x + t)(y − t) < xy . By applying this fact n − 1 times, we get

λ1λ2 · · ·λn >

ξn−1λ2 · · · λn−1(λn − (ξn−1 − λ1)) > · · · >

ξ n−1
n−1 (λn − (ξn−1 − λ1) − (ξn−1 − λ2) − · · · − (ξn−1 − λn−1)) =

ξ n−1
n−1 (a − (n − 1)ξn−1) =

ξ n−1
n−1ηn−1 = d,

which is a contradiction.
To show λn � η1 , suppose λn > η1 . Then

λ1λ2 · · ·λn >

(λ1 + (λn − η1))λ2 · · ·λn−1η1 > · · · >

(λ1 + (λn − η1) + (λn−1 − η1) + · · · + (λ2 − η1))ηn−1
1 =

(a − (n − 1)η1)ηn−1
1 = ξ1ηn−1

1 = d,

which is a contradiction. This completes the proof of the inequalities.
To show that the bounds are the best possible, we note that, for given a and d (with

0 < d � (a/n)n ) and i (1 � i < n ), there exist by Lemma 1 λ1 = · · · = λi = ξi ,
λi+1 = · · · = λn = ηi satisfying λ1 + · · · + λn = a , λ1 · · · λn = d .

The proof of Theorem 1 implies also the following:

THEOREM 2. Assume λn > 0 . Then

λ1 = ξn−1 (λn = ηn−1) if and only if λ1 = · · · = λn−1 = ξn−1 and λn = ηn−1,

λ1 = ξ1 (λn = η1) if and only if λ1 = ξ1 and λ2 = · · · = λn = η1

and, for 1 < k < n,

λk = ξk if and only if λ1 = · · · = λk = ξk and λk+1 = · · · = λn = ηk,

λk = ηk−1 if and only if λ1 = · · · = λk−1 = ξk−1 and λk = · · · = λn = ηk−1.
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The best possible bounds for λ1 + λn and λ1λn , using only a , d , are obviously

ξn−1 + ηn−1 � λ1 + λn � ξ1 + η1,

ξn−1ηn−1 � λ1λn � ξ1η1.

Next, we study skl and pkl (1 � k � l < n ). We have

skl = λk + · · · + λl �

(l − k + 1)
λ1 + · · · + λl

l
�

(l − k + 1)ξl.

Similarly,

pkl = λk · · · λl �
(
λk + · · · + λl

l − k + 1

)l−k+1

� ξ l−k+1
l .

These are the best possible upper bounds for skl and pkl . In a similar way we see that
if 1 < k � l � n , then the the best possible lower bound for skl is (l − k + 1)ηk−1 .
Since

λk · · · λl �

(λk · · ·λn)
l−k+1
n−k+1 =

(
d

λ1 · · · λk−1

) l−k+1
n−k+1

�

(
d

ξ k−1
k−1

) l−k+1
n−k+1

=

ηl−k+1
k−1 ,

the best possible lower bound for pkl is ηl−k+1
k−1 . The problems of finding upper bounds

in the case 1 < k � l = n and lower bounds in the case 1 = k � l < n are more
complicated, see [11].
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3. Special case

If n is even and k = n/2 , we can solve algebraically (S) , which in this case is

n
2
x +

n
2
y = a,

x
n
2 y

n
2 = d,

x � y > 0;

i.e.,

x + y =
2a
n

,

xy = d
2
n ,

x � y > 0.

The solution is

x = U(n, a, d) =
a
n

+

√(a
n

)2
− d

2
n ,

y = L(n, a, d) =
a
n
−
√(a

n

)2
− d

2
n .

Hence, by Theorem 1, we obtain

THEOREM 3. Assume n even, λn > 0 . Then

a
n
−
√(a

n

)2
− d

2
n � λ n

2 +1 � λ n
2

� a
n

+

√(a
n

)2
− d

2
n .

These bounds are the best possible, using only a and d .

Consider the orderedmultiset {μ1, . . . ,μ2n} = {λ1, λ1, . . . , λn, λn} . Then μ2i−1 =
μ2i = λi (1 � i � n) , μ1 + · · · + μ2n = 2a , μ1 · · ·μ2n = d2 . Moreover,
L(2n, 2a, d2) = L(n, a, d) and U(2n, 2a, d2) = U(n, a, d) . Applying Theorem 3
to the μi ’s, we have

THEOREM 4. Assume λn > 0 . Then

a
n
−
√(a

n

)2
− d

2
n � λ� n+1

2 � � λ� n+1
2 � � a

n
+

√(a
n

)2
− d

2
n .

Here �x� denotes the smallest integer � x and �x� the largest integer � x . If n
is odd, these bounds are not the best possible.
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4. General case

Let α > 0 . Define μ1 � μ2 � · · · � μn+r as

{μ1,μ2, · · · ,μn+r} = {λ1, . . . , λn,α, . . . ,α},
where the multiset on the right is not neccessarily ordered. By Theorem 4,

L(n + r, a + rα, dαr) � μ� n+r+1
2 � � μ� n+r+1

2 � � U(n + r, a + rα, dαr). (∗)
If α is some bound for λk , say a lower bound, we can get an upper bound and

a new lower bound for λk by choosing r suitably and applying (∗) . The seemingly
most interesting applications are presented in the following two theorems.

THEOREM 5. Assume λn > 0 . Let 1 � k � n/2 . If λk � βk , then

λk � a + (n − 2k)βk

2(n − k)
+

√(
a + (n − 2k)βk

2(n − k)

)2

− (dβn−2k
k )

1
n−k .

Proof. Choose r = n − 2k , α = βk . Then

{μn−k, . . . ,μ2(n−k)} = {λk, . . . , λn}
in this order. Hence

μ� n+r+1
2 � = μn−k = λk

and the theorem follows from (*).

In a similar way, by choosing r = 2k − 2 − n , α = αk , we get

THEOREM 6. Assume λn > 0 . Let 1 + n/2 � k � n . If αk � λk , then

a + (2k − 2 − n)αk

2(k − 1)
−
√(

a + (2k − 2 − n)αk

2(k − 1)

)2

− (dα2k−2−n
k )

1
k−1 � λk.

We study, whether the bounds of Theorem 5 and Theorem 6 are better than the
original bounds βk and αk .

Since trivially 0 < λk � a/k , we assume that αk > 0 and βk � a/k . Let
k � n/2 and t > 0 . Denote

x(t) = U(2(n − k), a + (n − 2k)t, dtn−2k),

y(t) = L(2(n − k), a + (n − 2k)t, dtn−2k).

Then
(n − k)x(t) + (n − k)y(t) = a + (n − 2k)t,

x(t)n−ky(t)n−k = dtn−2k,

x(t) � y(t) > 0.
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Thus x(t) = t if and only if

kt + (n − k)y(t) = a,

tky(t)n−k = d,

t � y(t) > 0,

i.e., if and only if t = ξk (and y(t) = ηk ), see Lemma 1.
Now,

x
(a

n

)
= U

(
2(n − k), a + (n − 2k)

a
n
, d
(a

n

)n−2k
)

=

a
n

+

√(a
n

)2
−
(

d
(a

n

)n−2k
) 1

n−k

� a
n
.

(Equality holds if and only if d = (a/n)n . Then ξk = a/n .) Moreover,

x
(a

k

)
=

a
2k

+

√( a
2k

)2
−
(

d
(a

k

)n−2k
) 1

n−k

<
a
k
.

Since x(t) is continuous, we have

x(t) > t if a/n � t < ξk,
x(t) = t if t = ξk,
x(t) < t if t > ξk.

If βk < a/n , then

U(2(n − k), a + (n − 2k)βk, dβn−2k
k ) �

a + (n − 2k)βk

2(n − k)
=

a
2(n − k)

+ βk − nβk

2(n − k)
> βk.

We have proved

THEOREM 7. Assume λn > 0 . Let 1 � k � n/2 . If λk � βk � a/k , then

a + (n − 2k)βk

2(n − k)
+

√(
a + (n − 2k)βk

2(n − k)

)2

− (dβn−2k
k )

1
n−k

<

>
βk

if and only if

ξk
<

>
βk.
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Thus U(2(n− k), a + (n− 2k)βk, dβn−2k
k ) is a better upper bound for λk than βk

if and only if βk is a worse upper bound for λk than ξk .
Next, let 1 + n/2 � k � n . Denoting

x(t) = U(2(k − 1), a + (2k − 2 − n)t, dt2k−2−n),

y(t) = L(2(k − 1), a + (2k − 2 − n)t, dt2k−2−n),

we analogously see that y(t) = t if and only if t = ηk−1 . Moreover,

y
(a

n

)
� a + (2k − 2 − n)a/n

2(k − 1)
=

a
n
.

A straightforward computation yields that if t � a/n , then

y(t) =
a + (2k − 2 − n)t

2(k − 1)
−
√(

a + (2k − 2 − n)t
2(k − 1)

)2

− (dt2k−2−n)
1

k−1 > t

if and only if (
a − nt

2(k − 1)

)2

>

(
a + (2k − 2 − n)t

2(k − 1)

)2

− (dt2k−2−n)
1

k−1

if and only if

d
1

k−1 > t1−
2k−2−n

k−1
a + (k − 1 − n)t

k − 1
,

which clearly holds if t is small enough. (Note that 0 � (2k − 2 − n)/(k − 1) < 1 .)
Since

L(2(k − 1), a + (2k − 2 − n)αk, dα2k−2−n
k ) � a + (2k − 2 − n)αk

2(k − 1)
= αk +

a − nαk

2(k − 1)
,

αk > a/n implies

L(2(k − 1), a + (2k − 2 − n)αk, dα2k−2−n
k ) < αk.

We have now proved

THEOREM 8. Assume λn > 0 . Let 1 + n/2 � k � n . If 0 < αk � λk , then

a + (2k − 2 − n)αk

2(k − 1)
−
√(

a + (2k − 2 − n)αk

2(k − 1)

)2

− (dα2k−2−n
k )

1
k−1

<

>
αk

if and only if

ηk−1
<

>
αk.

Thus L(2(k − 1), a + (2k − 2 − n)αk, dα2k−2−n
k ) is a better lower bound for λk

than αk if and only if αk is a worse lower bound for λk than ηk−1 .
Using Theorem5, we find upper bounds for λ1, λ2, . . . , λ�n/2� , and using Theorem

6, we find lower bounds for λ�n/2�+1, λ�n/2�+2, . . . , λn . We complete our list of bounds
as follows:
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THEOREM 9. Assume λn > 0 . Let 1 < k � n and 1 � l < n . If αk � ηk−1 (�
λk) , then

λk−1 � a − (n − k + 1)αk

k − 1
and if (λl �) ξl � βl , then

λl+1 � a − lβl

n − l
.

Proof. By Theorem 1,

λk−1 � ξk−1 =
a − (n − k + 1)ηk−1

k − 1
� a − (n − k + 1)αk

k − 1

and

λl+1 � ηl =
a − lξl

n − l
� a − lβl

n − l
.

5. Comparison with the WS bounds

Denote

γk = γk(n, a, b) =
a
n

+

√
n − k

k
1
n

(
b − a2

n

)
,

δk = δk(n, a, b) =
a
n
−
√

k
n − k

1
n

(
b − a2

n

)
.

Then (not requiring positivity of λi ’s)

(γn−1, δ1, δ2, . . . , δn−1) �

(λ1, λ2, λ3, . . . , λn) �

(γ1, γ2, . . . , γn−1, δ1),

see [13]. These WS bounds are the best possible bounds for λi ’s, using only a and b .
It is easy to see that (x, y) = (γk, δk) is the solution of

kx + (n − k)y = a,

kx2 + (n − k)y2 = b,

x � y,

and that
δn−1 � δn−2 � · · · � δ1 � γn−1 � · · · � γ2 � γ1.

We prove that the WS bounds for λ1 are always at least as good as ours and that
our bounds for λn are at least as good as the WS bounds:
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THEOREM 10. Assume λn > 0 . Then

ξn−1 � γn−1 (� λ1) � γ1 � ξ1

and
δn−1 � ηn−1 (� λn) � η1 � δ1.

This also means that the WS lower bound for λ2 is at least as good as ours and our
upper bound for λn−1 is at least as good as the WS upper bound. To prove the theorem,
we need a theorem on d with prescribed a and b , due to Grone, Johnson, de Sá, and
Wolkowicz [1, Theorem 3.1].

THEOREM 11. Assume λn � 0 . Then

max(0, γ n−1
n−1 δn−1) � d � γ1δ n−1

1 .

These bounds are the best possible, using only a and b . Further, d = γ1δ n−1
1 if and

only if λ1 = γ1 and λ2 = · · · = λn = δ1 . If δn−1 � 0 , then d = γ n−1
n−1 δn−1 if and only

if λ1 = · · · = λn−1 = γn−1 and λn = δn−1 .

We prove Theorem 10 by contradiction. If ξ1 < γ1 , we see as in the proof of
Theorem 1 that

ξ1ηn−1
1 >(

ξ1 +
γ1 − ξ1

n − 1

)
ηn−2

1

(
η1 − γ1 − ξ1

n − 1

)
> · · · >

(
ξ1 + (n − 1)

γ1 − ξ1

n − 1

)(
η1 − γ1 − ξ1

n − 1

)n−1

.

Since ξ1 + (n − 1)η1 = γ1 + (n − 1)δ1 , i.e.,

δ1 = η1 − γ1 − ξ1

n − 1
,

we obtain ξ1ηn−1
1 > γ1δ n−1

1 . But Theorem 11 implies

d = ξ1ηn−1
1 � γ1δ n−1

1 .

Hence ξ1 � γ1 and, consequently, η1 � δ1 .
Since, by Theorem 11,

γ n−1
n−1 δn−1 � ξ n−1

n−1ηn−1 = d,

we get similarly ξn−1 � γn−1 and δn−1 � ηn−1 . Thus we have proved Theorem 10.
From the equality conditions of Theorem 11 it follows easily, that, for example,

δn−1 = ηn−1 if and only if λn = δn−1 = ηn−1 (and λ1 = · · · = λn−1 = γn−1 = ξn−1 ).
Hence Theorems 8 and 10 imply that if δn−1 > 0 , then

a + (n − 2)δn−1

2n − 2
−
√(

a + (n − 2)δn−1

2n − 2

)2

− (d δ n−2
n−1 )

1
n−1
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is a better lower bound for λn than δn−1 unless they both are equal to ηn−1 (and to
λn ).

6. Eigenvalue bounds applied to A + tI

Let us regard the λi ’s as eigenvalues of an n by n matrix A . If some of them are
not positive, and we know only a = tr A and d = det A , we cannot use our bounds.
But if they are real and we know also b = tr A2 , we can apply our bounds to A2 and
get bounds for squares and so also for the absolute values of eigenvalues of A .

If we know A explicitly and an upper bound for λn , we can choose such t that
the eigenvalues of A + tI are positive, and apply our bounds to A + tI .

Let B = A + tI , where t > −λn . Then eigenvalues of B are λi + t (i =
1, 2, . . . , n) , which are positive. By Theorem 1,

ξn−1(n, a + nt, det (A + tI)) − t � λ1 � ξ1(n, a + nt, det (A + tI)) − t,
η1(n, a + nt, det (A + tI)) − t � λ2 � ξ2(n, a + nt, det (A + tI)) − t,

...
...

...
ηn−2(n, a + nt, det (A + tI)) − t � λn−1 � ξn−1(n, a + nt, det (A + tI)) − t,
ηn−1(n, a + nt, det (A + tI)) − t � λn � η1(n, a + nt, det (A + tI)) − t.

Note that the WS bounds do not depend on t .
We will show that as t tends to infinity, the above bounds tend to the WS bounds.

We denote by Sk(x1, . . . , xn) the k th elementary symmetric function of x1, . . . , xn . We
also denote

(x(k), y(n−k)) = ( x, . . . , x︸ ︷︷ ︸
k times

, y, . . . , y︸ ︷︷ ︸
n−k times

).

LEMMA 2. Let 1 � k < n and 0 < a/n � c < a/k . Consider a function
x(t) , which, for sufficiently large values of t , is defined, continuous, and satisfies
a/n � x(t) < a/k . If

lim
t→∞ S2

(
x(t)(k),

(
a − k x(t)

n − k

)(n−k)
)

= S2

(
c(k),

(
a − k c
n − k

)(n−k)
)

,

then
lim

t→∞ x(t) = c.

Proof. Since

S2

(
c(k),

(
a − kc
n − k

)(n−k)
)

=

(
k
2

)
c2 + k(n − k)c

a − kc
n − k

+
(

n − k
2

)(
a − kc
n − k

)2

=

−kn
2(n − k)

c2 +
ak

n − k
c +

n − k − 1
n − k

a2

2
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and

S2

(
x(t)(k),

(
a − kx(t)

n − k

)(n−k)
)

=

−kn
2(n − k)

x(t)2 +
ak

n − k
x(t) +

n − k − 1
n − k

a2

2
,

we have

lim
t→∞

( −kn
2(n − k)

x(t)2 +
ak

n − k
x(t)
)

=
−kn

2(n − k)
c2 +

ak
n − k

c.

It follows that

lim
t→∞(c − x(t))

(
2a
n

− c − x(t)
)

= 0,

and further, since x(t) is continuous,

lim
t→∞ x(t) = c or lim

t→∞ x(t) =
2a
n

− c.

Since 2a/n − c � a/n and a/n � x(t) , we have lim
t→∞ x(t) = c .

THEOREM 12. Let 1 � k < n . Then

lim
t→∞(ξk(n, a + nt, det (A + tI)) − t) = γk (= γk(n, a, b))

and
lim

t→∞(ηk(n, a + nt, det (A + tI)) − t) = δk (= δk(n, a, b)).

Proof. Denoting λ = (λ1, . . . , λn) , we have

det (A + tI) =
n∑

k=0

Sk(λ )tn−k.

If t > −λn , then the solution of

kx + (n − k)y = a + nt,

xkyn−k =
n∑

k=0

Sk(λ )tn−k,

x � y > 0

is (x, y) = (ξk(n, a + nt, det (A + tI)),ηk(n, a + nt, det (A + tI))) . Hence an upper
bound for λk is xk(t) = ξk(n, a + nt, det (A + tI)) − t , and a lower bound for λk+1 is
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yk(t) = ηk(n, a + nt, det (A + tI)) − t . Moreover,

kxk(t) + (n − k)yk(t) = a,

(xk(t) + t)k(yk(t) + t)n−k =
n∑

k=0

Sk(λ )tn−k,

xk(t) � yk(t) > 0.

Denote zk(t) = (xk(t)(k), yk(t)(n−k)) . Since S0 = 1 , S1(zk(t)) = a = S1(λ ) , and

n∑
k=0

Sk(zk(t))t
n−k =

n∑
k=0

Sk(λ )tn−k,

we have

S2(zk(t)) +
n∑

k=3

Sk(zk(t))
1

tk−2
= S2(λ ) +

n∑
k=3

Sk(λ )
1

tk−2
.

Clearly the set {Sk(zk(t)) | t ∈ R} is bounded. Hence, S2(zk(t)) → S2(λ ) as t → ∞ .
On the other hand,

kγk + (n − k)δk = a =
∑

λi

and
kγ 2

k + (n − k)δ 2
k = b =

∑
λ 2

i ,

and so

S2(εk) =
a2 − b

2
= S2(λ ),

where εk = (γ (k)
k , δ (n−k)

k ) .
Consequently,

kxk(t) + (n − k)yk(t) = kγk + (n − k)δk, for all t > −λn,

S2(zk(t)) → S2(εk) as t → ∞.

Since the zeros of a polynomial depend continuously on the coefficients, x(t) is con-
tinuous. By Lemma 2, xk(t) → γk as t → ∞ , which implies that also yk(t) → δk .

7. Examples

EXAMPLE 1. ([13], Example 4)

A =

⎛
⎜⎜⎝

4 0 2 3
0 5 0 1
2 0 6 0
3 1 0 7

⎞
⎟⎟⎠ ,

a = 22, b = 154, d = 410,

(λ1, . . . , λ4) = (9.376, 6.423, 4.775, 1.426).
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First we accept only the bounds which can be expressed algebraically.
The WS bounds (best possible using a and b ) are

(γ3, δ1, δ2, δ3) = (7.158, 3.842, 2.628, 0.525)
� (λ1, λ2, λ3, λ4)
� (γ1, γ2, γ3, δ1)
= (10.475, 8.372, 7.158, 3.842).

We can improve λ4 � δ3 by applying Theorem 6 with α4 = δ3 . We get λ4 �
0.692 = δ ′

3 . We can continue similarly. Putting α4 = δ ′
3 we obtain a still better bound

λ4 � 0.835 etc. It appears that λ3 � δ2 cannot be improved in this way and that neither
λ1 � γ1 nor λ2 � γ2 can be improved by applying Theorem 5.

Since δ ′
3 > δ3 (= α4 ) we have η3 > δ3 (= α4 ) by Theorem 8, and so we can

apply Theorem 9 with α4 = δ3 . We obtain λ3 � 7.158 . Similarly, putting α4 = δ ′
3 ,

we get λ3 � 7.103 , etc.
The bounds of Theorem 3 (best possible using a and d ) are

η2 = 2.337 � λ3 � λ2 � ξ2 = 8.663.

They do not improve the WS bounds. In conclusion, we have

(7.158, 3.842, 2.628, 0.835) = (λ1, λ2, λ3, λ4)
� (10.475, 8.372, 7.103, 3.842).

Next, we accept also the non-algebraic bounds of Theorem 1 (best possible using
a and d ). They can be computed iteratively in the view of Theorems 7 and 8.

(ξ3,η1,η2,η3) = (6.921, 3.213, 2.337, 1.237)
� (λ1, λ2, λ3, λ4)
= (ξ1, ξ2, ξ3,η1)
= (12.361, 8.663, 6.921, 3.213),

The inequalities η3 > δ3 and η2 < δ2 confirm, by Theorem 8, that Theorem 6 with
α4 = δ3 indeed improves λ4 � δ3 , but does not improve λ3 � δ2 with α3 = δ2 . The
inequalities ξ1 > γ1 and ξ2 > γ2 confirm, by Theorem 7, that Theorem 5 with β1 = γ1
or β2 = γ2 does not indeed improve λ1 � γ1 or λ2 � γ2 .

In conclusion of all the above, we have

(7.158, 3.842, 2.628, 1.237) � (λ1, λ2, λ3, λ4) � (10.475, 8.372, 6.921, 3.213).

EXAMPLE 2. ([13], Example 5)

A =

⎛
⎜⎜⎜⎜⎝

4 1 1 2 2
1 5 1 1 1
1 1 6 1 1
2 1 1 7 1
2 1 1 1 8

⎞
⎟⎟⎟⎟⎠ ,

a = 30, b = 222, d = 4377,

(λ1, . . . , λ5) = (11.171, 6.527, 5.435, 4.296, 2.571).
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The WS bounds are

(7.449, 4.551, 3.634, 2.450, 0.203) � (λ1, λ2, λ3, λ4, λ5)
� (11.797, 9.550, 8.366, 7.449, 4.551).

(The lower bound for λ3 is in four decimals 3.6336.) Using the tricks described in
Example 1, we find for λ3 , λ4 and λ5 better lower bounds λ3 � 3.6341 , λ4 � 2.725 ,
λ5 � 0.337 and better upper bounds for λ2 , λ3 and λ4 : λ2 � 9.549 , λ3 � 8.183 ,
λ4 � 7.416 . The best possible bounds using only a and d are

(7.059, 4.300, 3.634, 2.881, 1.762) � (λ1, λ2, λ3, λ4, λ5)
� (12.799, 9.548, 8.079, 7.059, 4.300).

(The lower bound for λ3 is in four decimals 3.6345.)

EXAMPLE 3. In [9] and [10] we found several explicite bounds involving a and d
for eigenvalues. We considered A = diag (1, 2, 3, . . . , 8) with a = 36 , b = 204 and
d = 40320 . The WS bounds are

(5.366, 3.634, 3.177, 2.725, 2.209, 1.542, 0.531,−1.562)
� (8, 7, 6, 5, 4, 3, 2, 1)
� (10.562, 8.469, 7.458, 6.791, 6.275, 5.823, 5.366, 3.634).

The WS bounds are better than any of our bounds of [9] and [10] except lower bounds
for λ7 and λ8 and upper bounds for λ6 and λ7 .

The best possible bounds obtained by using only a and d are

(5.077, 3.114, 2.738, 2.392, 2.034, 1.629, 1.129, 0.464)
� (8, 7, 6, 5, 4, 3, 2, 1)
� (14.203, 9.787, 8.013, 6.966, 6.223, 5.624, 5.077, 3.114).

Now our lower bounds for λ6 , λ7 and λ8 and our upper bounds for λ5 , λ6 , λ7 and
λ8 are better than the WS bounds.

EXAMPLE 4. In [12], a technique to improve WS bounds using certain extra bounds
was presented. For

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 4 1 1 3 1
4 −1 2 3 1 2
1 2 −3 2 1 −1
1 3 2 3 1 1
3 1 1 1 1 −2
1 2 −1 1 −2 −2

⎞
⎟⎟⎟⎟⎟⎟⎠ ,

a = 0, b = 144, d = −1851,

(λ1, . . . , λ6) = (8.82, 2.74, 1.12,−2.91,−4.16,−5.62

the WS bounds yield

(2.19,−2.19,−3.46,−4.90,−6.93,−10.95) � (λ1, λ2, λ3, λ4, λ5, λ6)
� (10.95, 6.93, 4.90, 3.46, 2.19,−2.19).
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Since A is symmetric, its eigenvalues majorize the diagonal elements. Using these
extra bounds, we get

3 � λ1 � 10.92,
−1.97 � λ2,
λ5 � 1.97,

−10.92 � λ6 � −3

The eigenvalues of B = A + 10.92I are positive. Applying our bounds to B , we
get

(1.57,−2.66,−3.63,−4.64,−5.90,−7.85) � (λ1, λ2, λ3, λ4, λ5, λ6)
� (13.28, 7.27, 4.64, 2.95, 1.57,−2.66).

Now our lower bounds for λ4 , λ5 and λ6 and upper bounds for λ3 , λ4 and λ5

are better than the WS bounds and the improved bounds of [12]. Our upper bound for
λ6 is better than the WS bound but worse than the improved bound.

In [5], bounds for singular values, involving tr A , tr A2 and tr AHA , were pre-
sented. Some of these results are analogous to the WS bounds. If we know tr AHA
and det A (or det AHA = |det A|2 ), we can apply our bounds for finding bounds for
singular values. Our last example illustrates this.

EXAMPLE 5. ([5], Example 1)

A =

⎛
⎝ 1 1 1

0 1 1
0 0 1

⎞
⎠ .

Thebest boundsobtained in [5] for singular values (σ1,σ2,σ3) = (2.2470, 0.802, 0.555)
are

2.236 � σ1 � 2.2483,
0.687 � σ2 � 1,

(0 �)σ3 � 0.687.

The eigenvalues of AHA are σ2
1 , σ2

2 and σ2
3 , tr AHA = 6 and det AHA = 1 .

Our bounds yield now bounds for σ2
1 , σ2

2 and σ2
3 . By taking square roots, we get

1.715 � σ1 � 2.262,
0.665 � σ2 � 1.715,
0.340 � σ3 � 0.665,

improving the bounds for σ3 .
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