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SUNDMAN’S INEQUALITIES IN N–BODY

PROBLEMS AND THEIR APPLICATIONS
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(communicated by R. U. Verma)

Abstract. In this paper, we study the necessary and sufficient conditions which make Sundman’s
inequalities become equalities and the relationships between the period and energy and angular
momentum and the momentum of inertia for uniformly rotating planar circular solutions and the
straight line solutions of N-body problems with homogeneous potentials.

1. The main results

THEOREM 1.1. For the uniformly rotating planar circular T-periodic solutions (for
example, those orbits produced by rotating planar central configurations) of N-body
problems with homogeneous potentials:

miq̈i =
∂U(q)
∂qi

, i = 1, · · · , N (1.1)

U(q) = U(q1, · · · , qN) =
1
2

∑
1�i�=j�N

mimj

|qi − qj|α (1.2)

Where qi ∈ Rk,α > 0,α �= 2 , we have the following relationships:

|C| =
α

2 − α
1
π
× (−h)T =

2π
T

I (1.3)

C2 =
4α

2 − α
(−h)I (1.4)

where

C =
N∑

i=1

miqi(t) × q̇i(t) (1.5)

denotes the angular momentum of systems (1.1)-(1.2) and

h = K(q) − U(q) (1.6)
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denotes the total energy for (1.1)-(1.2),
where

K =
1
2

N∑
i=1

mi|q̇i|2 (1.7)

denotes the kinetic energy for (1.1)-(1.2),
where

2I =
N∑

i=1

mi|qi|2 (1.8)

denotes the momentum of inertia for (1.1)-(1.2).

THEROREM 1.2. For N-body problems (1.1)-(1.2),if N bodies always move on the
straight lines toward the center of masses,then we have

Ï − (2 − α)
∣∣∣∣d(I1/2)

dt

∣∣∣∣
2

− αh = 0 (1.9)

or
2r · r̈ + α ṙ2 − αh = 0 (1.10)

where
r = I

1
2 (1.11)

2. Some basic lemmas

LEMMA 2.1. (Lagrange-Jacobi identity [2,3,4,5])

Ï = (2 − α)U(q) + 2h = (2 − α)K + αh (2.1)

LEMMA 2.2. (Sundman’s inequality [2,3,4,5,6])

C2 � 4IK (2.2)

LEMMA 2.3. Sundman’s inequality (2.2) takes the equality if and only if qi(t)(i =
1, 2, . . . , N) locates on the same plane and qi(t) rotates on the circles with the same
instaneous angular velocity ω around the center of masses or all bodies locate at the
center of masses forever.

Proof.

C2 =
( N∑

i=1

miqi × q̇i

)2

(2.3)

�
( N∑

i=1

|miqi × q̇i|
)2

(2.4)

�
[

N∑
i=1

|√miqi| · |√miq̇i|
]

(2.5)
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�
(

N∑
i=1

mi|qi|2
)(

N∑
i=1

mi|q̇i|2
)

(2.6)

= 4IK. (2.7)

The inequality (2.2) takes the equality if and only if inequalities (2.4)-(2.7) take
equalities simultaneously, so we have

(1)q1 × q̇1 ,q2 × q̇2, · · · , qN × q̇N are parallel to each other and have the same
direction.

(2)qi · q̇i = 0, i = 1, 2, · · · , N.

(3)
|q̇1|
|q1| = · · · =

|q̇N |
|qN | is a positive number (which may depend on t ) or

qi(t) ≡ 0, (i = 1, · · · , N)

That is, the Lemma 2.3 is true.

LEMMA 2.4. (Sundman’s inequality [2,3,4,5,6])

2

(
dI1/2

dt

)2

�
N∑

i=1

miq̇
2
i =

N∑
i=1

mi
(qi · q̇i)2

|qi|2 (2.8)

LEMMA 2.5. Sundman’s inequality (2.8) takes the equality if and only if

q̇i(t) = λi(t)qi(t), λi(t) � 0 or λi(t) � 0, i = 1, · · · , N (2.9)

Proof. By the definition of I we have

2I1/2 dI1/2

dt
=

N∑
i=1

miqi · q̇i (2.10)

By Cauchy-Schwartz’s inequality we have(
N∑

i=1

miqi · q̇i

)2

�
N∑

i=1

miq
2
i

N∑
i=1

miq̇
2
i = 2I

N∑
i=1

miq̇
2
i (2.11)

Hence by (2.10) and (2.11) we have

2

(
dI1/2

dt

)2

�
N∑

i=1

miq̇
2
i (2.12)

=
N∑

i=1

mi
(qi · q̇i)2

|qi|2 (2.13)

The inequality (2.8) or (2.13) takes the equality if and only if inequality (2.11) takes
the equality, hence we have (2.9)
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LEMMA 2.6. (Sundman’s inequality [2,3,4,5,6])

2
2 − α

Ï +
2α

2 − α
(−h) − 2

(
dI1/2

dt

)2

� C2

2I
(2.14)

LEMMA 2.7. Let λ1, · · · , λi, · · · , λN ∈ R;α1, · · · ,αi, · · · ,αN ∈ RK , thenwe have
(1) |λ1α1 + · · · + λNαN |2 � (λ 2

1 + · · · + λ 2
N) · (α2

1 + · · · + α2
N),

(2) the above inequality takes the equality if and only if

λiαj = λjαi, 1 � i �= j � N.

LEMMA 2.8. Sundman’s inequality (2.14) takes the equality if and only if there
holds (2.9).

Proof. By Lemma 2.7 we have

C2 =
( N∑

i=1

mi(qi × q̇i)
)2

�
( N∑

i=1

mi|qi|2
)( N∑

i=1

mi|qi × q̇i|2
|qi|2

)
(2.15)

Hence we have

C2

2I
�

N∑
i=1

mi
|qi × q̇i|2
|qi|2 (2.16)

By (2.16) and (2.8) we have

2

(
dI1/2

dt

)2

+
C2

2I
�

N∑
i=1

mi

|qi|2 [(qi · q̇i)2 + |qi × q̇i|2] (2.17)

=
N∑

i=1

mi

|qi|2 [q2
i · q̇2

i ] (2.18)

=
N∑

i=1

miq̇
2
i = 2K (2.19)

By Lemma 2.1 we have

2

(
dI1/2

dt

)2

+
C2

2I
� 2

2 − α
Ï − 2αh

2 − α
(2.20)

The inequality (2.20) or (2.14) takes the equality if and only if inequalities (2.15)
and (2.8) take the equalities simultaneously, hence the result is true.
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3. Jacobi’s coordinates and Sundman’s inequalities

We introduce the Jacobi’s coordinates (For N = 3 see [1]):

x1 = q2 − q1

x2 = q3 −

2∑
j=1

mjqj

M2

· · ·

xi = qi+1 −

i∑
j=1

mjqj

Mi
(3.1)

· · ·

xN−1 = qN −

N−1∑
j=1

mjqj

MN−1

where

Mi =
i∑

j=1

mj (3.2)

We assume the center of masses m1, · · · , mN is at the origin:

N∑
i=1

miqi = 0 (3.3)

Then we have

THEOREM 3.1. The inverse transformations of Jacobi’s coordinates are:

qN =
MN−1

MN
xN−1

qN−1 =
MN−2

MN−1
xN−2 − mN

MN
xN−1

qN−2 =
MN−3

MN−2
xN−3 − mN−1

MN−1
xN−2 − mN

MN
xN−1

· · ·

qN−i =
MN−i−1

MN−i
xN−i−1 −

N∑
j=N−i+1

mj

Mj
xj−1, i �= N − 1, (3.4)

When i = N − 1 ,

q1 = −
N∑

j=2

mj

Mj
xj−1 (3.5)
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THEOREM 3.2.. Under the Jacobi’s Coordinates, I , K and C have the following
representations:

I =
1
2

N∑
i=1

mi|qi|2 =
1
2

N−1∑
j=1

mj+1Mj

Mj+1
x2
j ≡

∼
I (x) (3.6)

K =
1
2

N∑
j=1

mi|q̇i|2 =
1
2

N−1∑
j=1

mj+1Mj

Mj+1
ẋ2
j ≡

∼
K (ẋ) (3.7)

C =
N∑

i=1

miq̇i × qi =
N−1∑
j=1

mj+1Mj

Mj+1
ẋj × xj ≡

∼
C (3.8)

By Theorem 3.2 and similar proof of Lemma 2.2 we have

THEOREM 3.3. The Sundman’s inequality

∼
C

2
� 4

∼
I · ∼

K (3.9)

takes the equality if and only if there hold the following conditions:
(1◦) x1 × ẋ1, · · · , xN−1 × ẋN−1 are parallel to each other and have the same

direction.
(2◦) xi · ẋi = 0, i = 1, · · · , N − 1.
(3◦) ẋi = λi(t) · xi(t), λi(t) � 0 or λi � 0, i = 1, · · · , N − 1.

Using the Theorem 2.2 and Lemma 2.1 and the similar proof of Lemma 2.8, we
have

THEOREM 3.4. Sundman’s inequalities:

(
d

∼
I

1/2

dt

)2

�
∼
K (x) (3.10)

2
2 − α

∼̈
I +

2α
2 − α

(−h) − 2

(
d

∼
I

1/2

dt

)2

�
∼
C

2

2
∼
I

(3.11)

take equality,respectively,if and only if there hold

ẋi(t) = λi(t)xi(t), λi � 0 or λi � 0 i = 1, · · · , .N − 1 (3.12)

Similar to the Thorem 1.2 ,we have

THEOREM 3.5. If the relative motion xi(t) of qi+1(i = 1, · · · , N − 1)with respect
to the mass center of the former i bodies satisfies (3.12),that is, in the Jacobi’s relative
coordinates, the N-1 bodies with masses mj+1Mj/Mj+1(j = 1, · · · , N−1) always move
on the straight lines toward the center of masses, then we bave the relationship between
∼
I and h:

∼̈
I − (2 − α)

(
d

∼
I

1/2

dt

)2

− αh = 0 (3.13)
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or

2
∼
r ·∼̈r + α

∼̇
r

2
− αh = 0 (3.14)

where
∼
r=

∼
I

1/2
(3.15)

4. The proofs of Theorem 1.1 and Theorem 1.2

Firstly we prove Theorem 1.1: By Lemma 2.1 and Lemma 2.2 we have

C2 � 4I

(
1

2 − α
Ï − α

2 − α
h

)
(4.1)

By the assumptions for the orbit q(t) = (q1(t), · · · , qN(t)) of the N-body problems, we
have that (2.2) and (4.1) take equalities and Ï = 0 , hence we have

C2 =
4α

2 − α
(−h)I (4.2)

For q(t) we use (1.5) to get

|C| =
N∑

i=1

mi|qi||q̇i| =

(
N∑

i=1

mi|qi|2
)
ω = 2I · ω = 2I · 2π

T
(4.3)

Hence by (4.2) and (4.3) we have

|C| =
2α

2 − α
(−h)ω−1 =

α
2 − α

1
π

(−h)T (4.4)

For the proof of Theorem 1.2, we notice that for the motions on the straight lines toward
the center of masses,we have q̇i(t) = λi(t)qi(t), λi(t) � 0 and the angular momentum
C = 0 , hence Theorem 1.2 follows from Lemma 2.8.
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