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Abstract. In this paper we construct a linear and positive approximation process of discrete type
which includes as a particular case the Meyer-König and Zeller operators. Based on several
inequalities we prove that the sequence converges to the identity operator. We obtain inequalities
regarding estimations of the remainder which are given by using the moduli of smoothness of
first and second order as well as the Lipschitz type maximal function. Also we establish that our
operators have the variation diminishing property.

1. Introduction

The operators of Meyer-König and Zeller in the slight modification of Cheney and
Sharma [6]

(Mnf )(x) =
∞∑
k=0

mn,k(x)f
(

k
n + k

)
, 0 � x < 1, (Mnf )(1) = f (1), (1)

and

mn,k(x) =
(

n + k
k

)
xk(1 − x)n+1,

were the subject of several investigations in approximation theory.
Among the first remarkable papers with this topic we would like to mention here

the results obtained by A. Lupaş and M.W. Müller [12]. In present days U. Abel [1]
has obtained the complete asymptotic expansion for Mn operators. These operators
are defined on the set B∗[0, 1] of all functions f which are bounded on [0, 1] and
continuous on [0, 1) . The integral analogue of Mn operators were more deeply studied
by M. W. Müller [13], V. Totik [16], Wenzhong Chen [5], see also [10].

In time, we point out that many generalizations were given, one of the most recent
being obtained in 1998 by O. Dŏgru [7].

In the present paper we define another sequence of generalized linear and positive
operators which includes the sequence obtained in [7]. We prove the convergence of
the sequence to the identity operator and under some additional assumptions we study
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the degree of approximation in terms of the moduli of smoothness of first and second
order. We establish that the variation diminishing property takes place and also we give
a local error estimate using Lipschitz type maximal function of order α ∈ (0, 1] .

2. Construction of the operators

Let’s define the sequences of real numbers (αn), (βk), (γn,k) , n ∈ N , k ∈ N ,
having the following properties

1 � αn = 1 + O

(
1
n

)
, 0 � βk � βk+1 + 1, 0 � γn,k = O

(
1
n

)
. (2)

Let a be a real number on the interval (0, 1) . Assume that a sequence of functions
(ϕn) satisfies the following conditions:

1◦ Every function ϕn is analytic on a domain Ω containing the disk
D = {z ∈ C : |z| � a} .

2◦ ϕ(0)
n (0) = ϕn(0) > 0 and ϕ(k)

n (0) =
dk

dxk
ϕn(x)

∣∣∣
x=0

> 0, k = 1, 2, . . .

3◦ ϕ(k)
n (0) = αn(k + n + βk)(1 + γn,k)ϕ

(k−1)
n (0) , k = 1, 2, . . . , such as the

conditions presented at (2) are fulfilled.
We introduce the sequence of operators

(Dnf )(x) =
1

ϕn(x)

∞∑
k=0

wn,k(x)f
(

k
k + n + βk

)
, (3)

where

wn,k(x) = ϕ(k)
n (0)

xk

k!
and f ∈ C[0, a].

It is clear that Dn is a linear and positive operator. If βk = 0 , k ∈ N , and
ϕn(x) = (1 − x)−n−1 after a few calculations we obtain αn = 1 , γn,k = 0 and Dn

becomes the operator Mn defined by (1).
By using (2) and taking into account the definition of the sequence γn,k we deduce

that there exists a constant c > 0 so that

γn,k � c
n
, for any k ∈ N. (4)

3. Approximation properties

Further the convergence of the (Dnf ) sequence to the function f will be proved.
In the sequel we denote by ei the i -th monomial, i = 0, 1, 2 . It is obvious that

(Dne0)(x) =
1

ϕn(x)

∞∑
k=0

wn,k(x) = 1. (5)

LEMMA 3.1. If the operator Dn is defined by (3) then the following inequalities

0 � (Dne1)(x) − x � x(αn − 1) +
xαnc

n
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hold.

Proof. By using (4) we can write successively

(Dne1)(x) =
1

ϕn(x)

∞∑
k=1

αn(1 + γn,k)
ϕ(k−1)

n (0)
(k − 1)!

xk =

=
xαn

ϕn(x)

∞∑
k=1

(1 + γn,k)wn,k−1(x) � xαn

(
1 +

c
n

)
(Dne0)(x).

In this way we obtain

(Dne1)(x) − x � x(αn − 1) +
xαnc

n
. (6)

On the other hand the requirement 3◦ allows us to write

(Dne1)(x) =
1

ϕn(x)

∞∑
k=1

k
n + k + βk

ϕ(k)
n (0)

xk

k!
=

αnx
ϕn(x)

∞∑
k=0

xk

k!
(1 + γn,k+1)ϕ(k)

n (0) =

= αnx(Dne0)(x) +
αnx
ϕn(x)

∞∑
k=0

xk

k!
γn,k+1ϕ(k)

n (0)

and consequently (Dne1)(x) − x = x(αn − 1) +
αnx
ϕn(x)

∞∑
k=0

wn,k(x)γn,k+1 .

Following (2), each term of the right side is non-negative, thus

(Dne1)(x) − x � 0. (7)

The relations (6) and (7) finish the proof.

LEMMA 3.2. If the operator Dn is defined by (3) then the following inequalities

0 � (Dne2)(x) − x2 � (α2
n − 1)x2 + αnx

(
2cαnx + 1

n
+

c(αncx + 1)
n2

)
hold.

Proof. By using again the requirement 3◦ we have

(Dne2)(x) =
1

ϕn(x)

∞∑
k=1

k2

(k + n + βk)2
wn,k(x) =

=
x2

ϕn(x)

∞∑
k=2

α2
n
k − 1 + n + βk−1

k + n + βk
(1 + γn,k)(1 + γn,k−1)wn,k−2(x)+

+
x

ϕn(x)

∞∑
k=1

αn(1 + γn,k)
k + n + βk

wn,k−1(x) � α2
n x2

ϕn(x)

(
1 +

c
n

)2 ∞∑
k=2

wn,k−2(x)+

+
αnx

nϕn(x)

(
1 +

c
n

) ∞∑
k=1

wn,k−1(x) = α2
n

(
1 +

c
n

)2
x2 +

αn

n

(
1 +

c
n

)
x.
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In this way we have obtained

(Dne2)(x) − x2 � (α2
n − 1)x2 +

1
n
(2c2α2

n x2 + αnx) +
1
n2

(α2
n c2x2 + cαnx). (8)

Because of e2 = (e1 − xe0)2 + 2xe1 − x2e0 we get

(Lne2)(x) − x2 = Dn((e1 − xe0)2; x) + 2xDn(e1 − xe0; x) � 0. (9)

We have also used the positivity of our operators and the inequality (7).
By taking into account the relations (8) and (9) the proof is complete.

THEOREM 3.3. If the operator Dn is defined by (3) then

lim
n→∞ ‖Dnf − f ‖ = 0, for every f ∈ C[0, a],

where ‖ · ‖ is the uniform norm.

Proof. Applying the hypothesis 3◦ , Lemma 3.1 and Lemma 3.2 guarantee
lim

n→∞Dnei = ei , i = 1, 2 . This fact together with (5) lead us to the desired result

in concordance with the well-known theorem of Bohman-Korovkin.
In order to investigate other properties of our operators we recall that the first,

respectively second, modulus of smoothness of a function f ∈ C(K) , (K a compact
interval of the real axis) are given for h � 0 by

ω1(f ; h) = sup{|f (x + δ) − f (x)| : x, x + δ ∈ K, 0 � δ � h},
ω2(f ; h) = sup{|f (x − δ) − 2f (x) + f (x + δ)| : x, x ± h ∈ K, 0 � δ � h}.
Let B(K) denote the Banach space of bounded and real-valued functions on K .

Our result requires the following proposition due to H. H. Gonska [9].

THEOREM 3.4. If K = [a, b] and L : C(K) → B(K) is a positive linear operator,
then for f ∈ C(K) , x ∈ K and each h > 0 the following holds

|L(f , x) − f (x)| �
[
3
2
(‖L‖ + 1) + L((e1 − x)2; x) max{h−2, (b − a)−2}

]
ω2(f ; h)+

+2|L(e1 − x; x) max{h−1, (b − a)−1}ω1(f ; h) + |L(e0; x) − 1|[‖f ‖K + ω1(f ; h)].

Here the moduli of smoothness are taken over K .

We recall that if the operator L maps an element f ∈ C(K) into an element
g ∈ B(K) we can denote this by g(x) = L(f , x) = (Lf )(x) , x ∈ K .

In our case K = [0, a] and Dn(C[0, a]) ⊂ C[0, a] . The relation (5) implies
‖Dn‖ = sup

‖f ‖�1
‖Dnf ‖ = 1 . If we set μn,s(x) := Dn((e1 − xe0)s; x) the s -th order

central moment of our operator then Lemma 3.1 respectively Lemma 3.2 lead us to the
following relations

|μn,1(x)| = |Dn(e1 − xe0; x)| � x

(
αn(n + c)

n
− 1

)
;
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μn,2(x) = Dn((e1 − xe0)2; x) = (Dne2)(x) − x2 + 2x(x − (Dne1)(x)) �

� (Dne2)(x) − x2 = x2

(
α2

n (n + c)2

n2
− 1

)
+

xαn(n + c)
n2

.

Choosing

hn =
(
αn(n + c)

n
− 1

)1/2

, (10)

we have obtained

|μn,1(x)| � xh2
n and μn,2(x) � x2h2

n(h
2
n + 2) +

x
n
(h2

n + 1). (11)

The relation (2) guarantees hn = O

(
1√
n

)
and for sufficiently large n we have

hn � a in other words max{h−j
n , a−j} = h−j

n , j = 1, 2 .
By using Theorem 3.4 and the above relations it results

THEOREM 3.5. Let (Dn) be given by (3). The following property

|(Dnf )(x) − f (x)| � (3 + x2(2 + h2
n) + x(1 + h−2

n )n−1)ω2(f ; hn) + 2xhnω1(f ; hn)

holds, where hn is defined by (10).

In [8] is established the inequality

ω1(f ; δ) �
(

3 +
I(K)
δ

)
ω2(f ; δ) +

6δ
I(K)

‖f ‖, 0 < δ � I(K), f ∈ C(K),

where I(K) represents the length of the interval compact K .
By using this fact and knowing that 0 � x � a < 1 Theorem 3.5 implies the

following

COROLLARY 3.6. Let (Dn) be given by (3). The following property

|(Dnf )(x) − f (x)| �
(

3 + a2(4 + h2
n) + a

(
h2

n + 1
nhn

+ 6hn

))
ω2(f ; hn) + 12h2

n‖f ‖

holds, where hn is defined by (10).

Also, we can establish a quantitative estimation only in terms of the first modulus.

To do this, from (11) we notice that |μn,1(x)| � xhn and μn,2(x) � 3h2
nx

2 +
2x
n

.

Now we apply some classical results concerning the linear and positive operators which
reproduce the monomial e0 , see for example F. Altomare [3], Theorem 5.1.2. After a
few calculations we get

THEOREM 3.7. Let (Dn) be given by (3) and f ∈ C[0, a] . We have
(i) |(Dnf )(x) − f (x)| � 2ω1(f ; δn) ,
(ii) If f is differentiable on [0, a] and f ′ ∈ C[0, a] then

|(Dnf )(x) − f (x)| � hnx|f ′(x)| + 2δnω1(f ′; δn),

where x ∈ [0, a] , δn =
(

3h2
nx

2 +
2x
n

)1/2

and hn is defined by (10).
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REMARKS. In the particular case Dn ≡ Mn presented in the previous paragraph
the results stated by (5) and Lemma 3.1 mean the well-known relations (Mne0)(x) = 1 ,
(Mne1)(x) = x . Because γn,k = 0 in (4) we can choose any constant c > 0 and
Lemma 3.2 implies

0 � (Mne2)(x) − x2 � cx

(
2x + c−1

n
+

cx + 1
n2

)
.

In time, many similar bounds for the numbers (Mne2)(x)− x2 have been obtained,
such as

(Mne2)(x) − x2 � x(1 − x)2

n + 1
+

x2(1 − x)(2 − x)
(n + 1)2

(Sikkema [15], 1970)

(Mne2)(x) − x2 � x(1 − x)2

n + 1

(
1 +

2x
n + 1

)
(Becker-Nessel [4], 1978)

In 1984Alkemade [2] was the first who succeeded in deriving an explicit expression
for the second moment in terms of a hypergeometric series. In this special case from
(10) we obtain hn =

√
c/n . Starting from Theorem 3.5 and Theorem 3.7 we are led to

the following properties verified by Mn for any constant c > 0 :

|(Mnf )(x)−f (x)| �
(

3 +
(
2 +

c
n

)
x2 +

(
1
c

+
1
n

)
x

)
ω2

(
f ;

√
c
n

)
+2x

√
c
n
ω1

(
f ;

√
c
n

)
,

|(Mnf )(x) − f (x)| � 2ω1

(
f ;

√
3cx2 + 2x

n

)
.

Returning to Dn we will present another property. Let f : Ω → R be an arbitrary
function where Ω is an interval of the form [a, b] or [a,∞) . If ξ (n)(ξ0, ξ1, . . . , ξn)
is a system of points in Ω such that ξ0 < ξ1 < · · · < ξn then V[f , ξ (n)] denotes the
number of changes of sign in the finite sequence of ordinates f (ξk) , where zeroes are
disregarded. VΩ[f ] stands for the number of changes of sign of f in the domain Ω and
is defined as follows VΩ[f ] := supV[f , ξ (n)] where the supremum is taken for all finite
systems ξ (n) . Let S be a set of real functions defined on Ω . We consider an operator
Λ transforming any f ∈ S in a Λf function defined on another interval K of the
real axis. According to I.J. Schoenberg [14] we say that the Λ operator is a variation
diminishing operator if

VK [Λf ] � VΩ[f ] for each f ∈ S .

THEOREM 3.8. The operator Dn defined by (3) is a variation diminishing operator,
that is

V[0,a′][Dnf ] � V[0,a][f ], f ∈ C[0, a],

where 0 � a′ � a .
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Proof. If V[0,a][f ] is not finite, then obviously our statement holds. Assume now
that V[0,a][f ] is finite and that f 	= 0 . Further we set by V[{αk}, k = 1, 2, . . . ] the
number of sign changes of the sequence α1,α2, . . . , where zeroes are disregarded.
Because wn,k > 0 , x ∈ [0, a] , we can write

V[0,a′][Dnf ] � V

[{
f

(
k

n + k + βk

)}
, k = 0, 1, 2, . . .

]
� V[0,a][f ]

and this completes the proof.

From (3) it is clear that we can extend (Dn) over all measurable and bounded
functions f on [0, 1] . We will characterize the local convergence for the positive linear
operator Dn by the elements of the Lipschitz class Lipα . Here the local behaviour
of a function will be measured by the Lipschitz-type maximal function of order α
introduced by B. Lenze [11] as

ω̃α(f , x) := sup
t 	=x,t∈[0,a]

|f (x) − f (t)|
|x − t|α , x ∈ [0, a], α ∈ (0, 1]. (12)

This function is homogeneous and subadditive. The finiteness of ω̃α(f , ·) gives a
local control for the smoothness of f . Boundedness of ω̃α(f , ·) is roughly speaking
equivalent to f ∈ Lipα on [0, 1] . We have the following local direct estimate.

THEOREM 3.9. Let α ∈ (0, 1] and f : [0, 1] → R be measurable and bounded.
Then for all x ∈ [0, a] we have

|f (x) − (Dnf )(x)| � xα/2

(
hαn + 1
nα/2

+ xα/2hαn (hαn + 2α/2)
)
ω̃α(f , x),

where hn is defined by (10).

Proof. From (12) we have for all x ∈ [0, a] and k � 0 integer the following
inequality ∣∣∣∣f (x) − f

(
k

k + n + βk

)∣∣∣∣ � ω̃α(f , x)
∣∣∣∣x − k

k + n + βk

∣∣∣∣α
and we obtain

|f (x) − (Dnf )(x)| =

∣∣∣∣∣
∞∑
k=0

wn,k(x)
(

f (x) − f

(
k

k + n + βk

))∣∣∣∣∣ �

� ω̃α(f , x)
∞∑
k=0

wn,k(x)
∣∣∣∣x − k

k + n + βk

∣∣∣∣α .

Applying Hölder’s inequality with r := 2/α and 1/s := 1 − 1/r we have

|f (x) − (Dnf )(x)| � ω̃α(f , x)
∞∑
k=0

wn,k(x)
∣∣∣∣x − k

k + n + βk

∣∣∣∣α �
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� ω̃α(f , x)

( ∞∑
k=0

wn,k(x)
(

x − k
k + n + βk

)2
)α

2
( ∞∑

k=0

wn,k(x)

)1− α
2

= ω̃α(f , x)μα/2
n,2 (x).

Using both the relation (11) and the known inequality (A + B)τ � Aτ + Bτ ,
τ ∈ (0, 1] , A � 0 , B � 0 , our assertion follows.
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