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Abstract. New classes of non-smooth bounded domains D , for which the embedding operator
from H1(D) into L2(D) is compact, are introduced. These classes include, in particular, the
domains whose boundary locally are graphs of C− functions, but also contain much larger classes
of domains. Examples of non-smooth domains for which the above embedding is compact are
given. Applications to scattering by rough obstacles are mentioned.

1. Introduction

In this paper we prove some results about compactness of the embedding operator
H1(Ω) → L2(Ω) for rough bounded domains, that is, for domains with non-smooth
boundaries which do not satisfy the usual for the embedding theorems conditions,
such as cone condition, Lipschitz domains, and extension domains (Ext-domains).
First, we prove compactness of the embedding operators for “elementary” domains
which can be approximated by Lipschitz domains in the sense described below (see
the paragraph above Lemma 1.2). This class ET of “elementary” domains is larger
then the known classes of domains used in embedding theorems. Let us give some
bibliographical discussion. In [12] a necessary and sufficient condition for compactness
of the embedding operator is given in an abstract setting. A version of this result
is presented in the Appendix. Compactness of the embedding operator for bounded
domains with “segment property” is proved in [1]. In [9] it was shown that the class
of domains with “segment property” coincides with the class C of domains whose
boundaries are locally graphs of continuous functions. Compactness of the embeddings
for the class C was proved in [2]. The reader can found an interesting discussion of
these results in [11]. The class ET is much larger than the class C and includes (in
the two-dimensional case) bounded domains whose boundaries are locally graphs of
piecewise-continuous functions with “jump”-type discontinuity at a finite number of
points. Boundaries of the domains of class ET can have singularities more complicated
than the “jump”-type singularities (see example 3.4).

Using lemma 3.10 for the union of “elementary” domains of the class ET we
extend this result to domains of the class T which are finite unions of the “elementary”
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domains. Simple examples demonstrate that boundary of a bounded domain of class T
can have countablymany connected components (see example 3.12). This is impossible
for the classes of domains used in embedding theorems earlier (compare, for example,
classes C and E in [9], [11], [3] with our class T ).

Our construction can be generalized. First, we construct a class of “elementary”
domains with the compactness property for the embedding operator. Secondly, we
extend this compactness property to finite unions of “elementary” domains. This
scheme is used for quasiisometrical (the class L ) and 2−quasiconformal (the class
Q ) cases. Our class L includes the Fraenkel class E . Let us explain this. Note that
E in [9] is not the class of extension domains. According to [9], p. 411, any domain Ω
of class E is locally C1 -diffeomorphic at any boundary point to a domain of class C
and ∂Ω = ∂Ω , where Ω is the closure of Ω . Any domain of our class L is a finite
union of domains that are locally quasiisometrically equivalent at any boundary point
to domains of class ET . The condition ∂Ω = ∂Ω is not necessary for the domains in
this class. For example, if Ω is a disc with an extracted radius, then Ω is a domain of
the class L , but ∂Ω �= ∂Ω .

Our class Q is much larger then the class L and includes domains with some
“anisotropic” behavior of their boundaries (see section 4.3 for a detailed explanation).

Our results allow one to use the results in [13] and [14] on the existence and
uniqueness of the solutions to the scattering problem in the exterior of rough obstacles
and consider larger class of rough obstacles in scattering theory than it was done earlier.

2. Abstract result

In this section we prove some results which give conditions for the compactness
of an embedding operator, and use these results in a study of compactness of the
embeddings of Sobolev spaces. An abstract necessary and sufficient condition for the
compactness of an embedding operator is proved in [12]. Let H1 and H2 be Hilbert
spaces and H1 ⊂ H2 . Here the embeddings are understood as the set-theoretical
inclusions and the inequalities ‖u‖1 � ‖u‖2 are assumed, where ‖u‖j := ‖u‖Hj .
Suppose that Ts , s ∈ (0, 1) , is a family of closed subspaces of H2 and Tσ ⊂ Ts for
s < σ . Having in mind applications, we assume also that the closure of the union of
Ts for s > 0 equals H2 .

In our applications Ts = L2(Ds), where Ds ⊂ D , Ds ⊂ Dσ for s > σ. We
assume below (see lemma 1.2) that a domain D, for which we study the compactness
of the embedding operator from H1(D) into L2(D), contains a Lipschitz subdomain
Gs, Ds ⊂ Gs ⊂ D . Let Ps be the orthogonal projection onto Ts in H2 , i : H1 → H2 be
the embedding operator, and is := Psi . Let us state two results. The above assumptions
and notations are not repeated.

PROPOSITION 2.1. If the operator i : H1 → H2 is compact, then the operator is is
compact for any s ∈ (0, 1) .

Proof. If i : H1 → H2 is compact, then is is a composition of a bounded linear
operator Ps and a compact operator i , so is is compact. �
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The following proposition is used in the proof of proposition 2.4 below.

PROPOSITION 2.2. If the following conditions hold:
1) is is compact for all s ∈ (0, 1), lims→0 ‖Psu − u‖2 = 0, and
2) ‖u‖2 � a(s)‖u‖1 + b‖Psu‖2, a(s) > 0, lims→0 a(s) = 0, b � 1 for any u ∈

H1, where b is independent of s,
then the embedding i : H1 → H2 is compact.

Proof. Choose a sequence {sm} such that a(sm) < 1
m . Denote by Pm the

projection Psm . Let un be an arbitrary normalized sequence of elements of H1 . If is is
compact then ‖un‖1 = 1 implies ‖Psun‖2 � 1 and for any m there exists a subsequence
un,m and a number n(m) such that ‖Pm(un,m − un1,m)‖2 < 1

m for any n, n1 � n(m) .
Without loss of generality assume that the sequence un,m1 is a subsequence of un,m and
n(m) < n(m1) for m < m1 . Therefore

‖Pm(un(m),m − un(m1),m)‖2 <
1
m

for any m and for any m1 > m .
For the subsequence um := un(m),m condition 2) implies ‖um−um1‖2 � a(sm)‖um−

um1‖1 + b‖Pm(um − um1)‖2 . By the choice of the subsequence {um} this implies
‖um − um1‖2 < (1+ b) 1

m for any m . We have proved the convergence of {um} in H2 .
Because the original sequence ‖un‖1 = 1 was arbitrary, compactness of the operator i
is proved. �

We apply this abstract result to Sobolev spaces. Below we assume that D ⊂ Rn

is a bounded domain and {Ds} , 0 < s < 1 , is a family of subdomains such that
Ds ⊂ Dσ for any s > σ and for any s there exists a Lipschitz domain Gs such that
Ds ⊂ Gs ⊂ D . A bounded domain is a Lipschitz domain if its boundary is locally graph
of a Lipschitz function. Let H1

s (Ds) denote the set of functions which are restrictions
of the H1(D) -functions to Ds .

LEMMA 2.3. Suppose that {un} is a bounded sequence in H1(D) . Then there
exists a subsequence {unk} of the sequence {un} which converges in L2(Ds) , i.e.
is : H1

s (Ds) → L2(Ds) is compact for all s ∈ (0, 1) .

Proof. One takes a Lipschitz domain Gs such that Ds ⊂ Gs ⊂ D . By the
known embedding theorem for Lipschitz domains the embedding H1(Gs) → L2(Gs) is
compact. Since Ds ⊂ Gs ⊂ D , one obtains the conclusion of the lemma. �

PROPOSITION 2.4. If the following condition holds

‖u‖L2(D) � a(s)‖u‖H1(D) + b‖u‖L2(Ds), a(s) > 0, lim
s→0

a(s) = 0, b � 1,

for any u ∈ H1(D) , then the operator i : H1(D) → L2(D) is compact

By Lemma 2.3 is : H1
s (Ds) → L2(Ds) is compact for all s ∈ (0, 1) . Hence the

claim follows from Proposition 2.2.

In section 3-4 we describe classes of domains for which the conditions of propo-
sition 2.4 are satisfied.
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3. Domains of class T

Below we denote a domain by Ω . The main purpose of this section is to prove
compactness of the embedding operators H1(Ω) → L2(Ω) for domains of the class
T which we describe below. Domains of the class T are finite unions of elementary
domains of the class ET whose boundaries are locally graphs of “good” functions: these
domains can be approximated by Lipschitz subdomains in such a way, that conditions of
Proposition 2.4 hold. For example, in the two-dimensional case the function is “good”
if it is piecewise-continuous with discontinuity points of “finite jump” type.

In the first part of this section we describe exactly classes T and ET . In the second
part we derive an auxiliary one-dimensional inequality. This inequality is not new, but
its proof is. It is a version of Agmon’s inequality [1] adopted for our purposes. In the
final part of this section we prove compactness of the embedding operator for domains
of class T using the results of section 2.

3.1. Preliminaries.

Let x ∈ Rn , x = (x1, x2, ..., xn) and Qn = [0, 1]n be the standard closed cube in
Rn . Denote x

′
:= (x1, x2, ..., xn−1) .

A bounded function f : Qn−1 → R is an admissible function if f is continuous
on a set C{f } ⊂ Qn−1 such that μ(Qn−1 \C(f )) = 0 , where μ is n− 1 -dimensional
Lebesgue measure. Denote by IntA the set of all interior points of a set A. By
Qn + (0, 0, ..., f (x′)) we denote the set 0 � xn � 1 + f (x′), x′ ∈ Qn−1, and assume
1 + inf f > 0.

DEFINITION 3.1. We call U := Int{Qn + (0, ..., 0, f (x′))} a standard elementary
domain if the function f is admissible.

Let Qn,h = [h, 1 − h]n be a subcube of the standard cube Qn . If U := Int{Qn +
(0, ..., 0, f (x′))} is an elementary domain then denote
Uh = Int{Qn,h + (0, ..., 0, f (x′))} .

DEFINITION 3.2. We call a standard elementary domain U a standard elementary
domain of class ET if for any 0 < h < 1/3 there exists a Lipschitz domain Vh such
that Uh ⊂ Vh ⊂ U . We call U an elementary domain of class ET if it is an image of
a standard elementary domain of class ET under an affine invertible mapping of Rn

onto Rn .

EXAMPLE 3.3. Suppose that f : [0, 1] → R is a piecewise-continuous bounded
function with a finite number of discontinuity points x1, x2, .., xk and at any discontinuity
point the function f has right and left limits (i.e. discontinuity points are the “jump”
points). The domain U := Int{Q2 + (0, f (x))} is a standard elementary domain of the
class ET .

Proof. It is obvious that U is a standard elementary domain. Fix 0 < h < 1/3 .
The open set Wh = Int(U \ Uh) is a finite union of domains Ui = (xi−1, xi) × (1 −
h + f (x), 1 + f (x)) and domains Vi = (xi−1, xi) × (f (x), h + f (x)) , i = 1, ..., k + 1 ,
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x0 = a , xk+1 = b . Join any two points (xi−1, 1 − h/2 + limx→x+
i−1

f (x)) , (xi, 1 −
h/2+ limx→x−i

f (x)) by a smooth curve αi and any pair (xi−1, h/2+ limx→x+
i−1

f (x)) ,

(xi, h/2 + limx→x−i
f (x)) by a smooth curve βi . The set ∂U \ ∂Wh ∪ (∪k

i=1αi) ∪
(∪k

i=1βi) is a closed Lipschitz curve that is the boundary of a Lipschitz domain Vh . By
construction Uh ⊂ Vh ⊂ U . Therefore U is a standard elementary domain of the class
ET . �

EXAMPLE 3.4. Suppose that f : [0, 1] → R is a piecewise-continuous bounded
function with countably many isolated discontinuity points x1, x2, .., xk, ... and at any
discontinuity point the function f has right and left limits (i.e. any discontinuity points
are “jump” points). Suppose also that the sequence {xk} converges to x0 . The domain
U := Int{Q2 + (0, f (x))} is a standard elementary domain of class ET .

Proof. Because f is continuous in x0 for any 0 < h < 1/3 the open set Wh =
IntU \ Uh is a finite union of domains of the same type as in example 3.3. Therefore
the domain U := Int{Q2 + (0, f (x))} is a standard elementary domain of the class
ET . �

3.2. One-dimensional inequality.

LEMMA 3.5. If u ∈ H1((−h, h)) , then

|‖u‖L2((0,h)) − ‖u‖L2((−h,0))| �
√

2h‖du
dt

‖L2((−h,h)).

Proof. Since smooth functions are dense in H1((−h, h)) it is sufficient to prove the
desired estimate only for smooth functions u ∈ H1((−h, h)) . Integrating the inequality
|u(t + h) − u(t)|2 � (

∫ t+h
t | du

ds (s)|ds)2 � (
∫ h
−h | du

ds (s)|ds)2 with respect to t over the
segment [−h, 0] and using the Hölder inequality we obtain∫ 0

−h
|u(t + h) − u(t)|2dt � h(

∫ h

−h
|du
dt

(t)|dt)2 � 2h2
∫ h

−h
|du
dt

(t)|2dt.

For any normed space X and any x, y ∈ X the following inequality holds

|‖x‖ − ‖y‖| � ‖x − y‖.
Combining this inequality with the previous one, we obtain

|(
∫ 0

−h
|u(t + h)|2dt)1/2 − (

∫ 0

−h
|u(t)|2dt)1/2| � (

∫ 0

−h
|u(t + h) − u(t)|2dt)1/2

�
√

2h(
∫ h

−h
|du
dt

(t)|2dt)1/2.

Because
∫ 0
−h |u(t + h)|dt =

∫ h
0 |u(t)|dt we have finally

|‖u‖L2((0,h)) − ‖u‖L2((−h,0))| �
√

2h‖du
dt

‖L2((−h,h)).

�
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COROLLARY 3.6. If u ∈ H1((−h, h)) , then∫ h

0
|u(t)|2dt � 2

∫ 0

−h
|u(t)|2dt + 4h2

∫ h

−h
|du
dt

(t)|2dt,

and ∫ 0

−h
|u(t)|2dt � 2

∫ h

0
|u(t)|2dt + 4h2

∫ h

−h
|du
dt

(t)|2dt.

Proof. Using Lemma 3.5, one gets:∫ h

0
|u(t)|2dt � [

∫ 0

−h
|u(t)|2dt)1/2 +

√
2h(

∫ h

−h
|du
dt

(t)|2dt)1/2]2

� 2
∫ 0

−h
|u(t)|2dt + 4h2

∫ h

−h
|du
dt

(t)|2dt.

�

PROPOSITION 3.7. If u ∈ H1((a, b)) , then∫ b

a
|u(t)|2dt � 3

∫ b−h

a+h
|u(t)|2dt + 4h2

∫ b

a
|du(t)

dt
|2dt.

for any h < b−a
4 .

Proof. By the previous corollary∫ b

a
|u(t)|2dt �

∫ b

b−h
|u(t)|2dt +

∫ b−h

a+h
|u(t)|2 +

∫ a+h

a
|u(t)|2dt

� 2
∫ b−h

b−2h
|u(t)|2dt +

∫ b−h

a+h
|u(t)|2 + 2

∫ a+2h

a+h
|u(t)|2dt

+ 4h2
∫ a+h

a
|du
dt

(t)|2dt + 4h2
∫ b

b−h
|du
dt

(t)|2dt

� 3
∫ b−h

a+h
|u(t)|2dt + 4h2

∫ b

a
|du
dt

(t)|2dt.

�

3.3. Compactness for elementary domains of class ET .

PROPOSITION 3.8. If U is an elementary domain of the class ET , then the embed-
ding operator i : H1(U) ⇒ L2(U) is compact.

Proof. It is sufficient to prove this proposition for a standard elementary domain
of class ET .

Fix h < 1
3 and choose a sequence {un} ⊂ H1(U) , ‖un‖H1(U) � 1 for all n .
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Using Proposition 3.7 for almost all x′ in the domain of definition Qn−1 of an
admissible function f we get

∫ 1+f (x′)

0
|un(x′, t)|2dt � 3

∫ f (x′)+1−h

h
|un(x′, t)|2dt

+ 4h2
∫ 1+f (x′)

0
|dun

dt
(x′, t)|2dt.

Integrating this inequality over Qn−1 we obtain∫
U
|un(x)|2dx � 3

∫
Uh

|un(x)|2dx + 4h2
∫

U
|∇un|2dx.

The role of s in Proposition 2.4 is played by the parameter h , and by this Propo-
sition the embedding operator i is compact. �

3.4. Compactness for domains of class T .

DEFINITION 3.9. A domain Ω belongs to class T if it is a finite union of elementary
domains of class ET .

First, we prove

LEMMA3.10. Let Ω1 and Ω2 be such domains that embedding operators H1(Ω1) →
L2(Ω1) and H1(Ω2) → L2(Ω2) are compact, then the embedding operator H1(Ω1 ∪
Ω2) → L2(Ω1 ∪Ω2) is also compact.

Proof. Choose a sequence {wn} ⊂ H1(Ω1 ∪ Ω2) , ‖wn‖H1(Ω1∪Ω2) � 1 for all
n . Let un := wn|Ω1 and vn := wn|Ω2 . Then un ∈ H1(Ω1) , vn ∈ H1(Ω2) ,
‖un‖H1(Ω1) � 1 , ‖vn‖H1(Ω2) � 1 .

Because the embedding operator H1(Ω1) → L2(Ω1) is compact we can choose
a subsequence {unk} of the sequence {un} which converges in L2(Ω1) to a function
u0 ∈ L2(Ω1) . Because the second embedding operator H1(Ω2) ⇒ L2(Ω2) is also
compact we can choose a subsequence {vnkm

} of the sequence {vnk} which converges
in L2(Ω2) to a function v0 ∈ L2(Ω2) . It is evident that u0 = v0 almost everywhere
in Ω1 ∩ Ω2 and the function w0(x) which is defined as w0(x) := u0(x) on Ω1 and
w0(x) := v0(x) on Ω2 belongs to L2(Ω1 ∪Ω2) .

Hence

‖wnkm
− w0‖L2(Ω1∪Ω2) � ‖unkm

− u0‖L2(Ω1) + ‖vnkm
− v0‖L2(Ω2).

Therefore ‖wnkm
− w0‖L2(Ω1∪Ω2) → 0 for m → ∞ . �

From Proposition 3.8 and Lemma 3.10 the main result of this section follows
immediately:

THEOREM 3.11. If a domain Ω belongs to class T then the embedding operator
H1(Ω) → L2(Ω) is compact.
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The example below demonstrates the difference between class T and the class
of bounded domains whose boundaries are locally graphs of continuous functions (C -
domains). The boundary of a domain of class T can have countably many connected
components, while this is not possible for C -domains.

EXAMPLE 3.12. Take: U := {(x1, x2) : 0 < x1 < 1/π, x1 sin 1
x1

< x2 < x1 sin 1
x1

+
4} ; V = (0, 1/π)× (−2, 0) , Ω = U ∪ V .

Domains U and V are elementary domains of class ET. Therefore Ω is a domain
of class T . By Theorem 3.11 the embedding operator H1(Ω) ⇒ L2(Ω) is compact.

Let us discuss the structure of ∂Ω . The boundary ∂U is connected and contains
the graph Γf = {(x1, x2) : x2 = x1 sin 1

x1
of the function f : [0, 1

π ] → R , f (x1) =
x1 sin 1

x1
. The graph Γf can be divided on two parts: the “nonnegative” part Γ+

f :=
{(x1, x2) ⊂ Γf : x2 � 0} and “negative part Γ−

f := {(x1, x2) ⊂ Γf : x2 < 0} .

The “negative” part Γ−
f ⊂ V . Therefore the boundary ∂Ω of the plane domain

Ω does not contain Γ−
f and consists of the countably many connected components:

S1 = ([0, 1/π]×{−2})∪({0}×(−2, 4))∪({ 1
π }×(−2, 4))∪Γg , where Γg is the graph

of the function g : [0, 1
π ] → R , g(x1) = x1 sin 1

x1
+4 ; Si = ([ 1

(2i−1)π , 1
2(i−1)π ]×{0})∪Γi

i = 2, ... , Γi ⊂ Γ+
f is the graph of the restriction of the function f (x1) = x1 sin 1

x1
to

the segment [ 1
(2i−1)π , 1

2(i−1)π ] ; and S̃ = {0, 0} is also a point of the boundary ∂Ω .
Notice that any neighboorhoodof the point {0, 0} the boundary ∂Ω has countably

many connected components and therefore can not be presented as a graph of any
continuous function which is a connected set.

Higher-dimensional examples can be constructed using the rotation of
two-dimensional domain Ω around x1 -axis.

The following corollary is practically convenient for using the main theorem.

COROLLARY 3.13. If a bounded domain U is an extension domain, a domain V
belongs to class T and Ω := U ∪ V , then the embedding operator H1(Ω) → L2(Ω)
is compact.

This corollary follows from Theorem 3.11 and Lemma 3.10.

EXAMPLE 3.14. Let U := U(f , g, x
′
0, r) := {(x′ , xn) : g(x

′
) < xn < f (x

′
)} where

a continuous real-valued functions f , g defined on the closed ball B := Bn−1(x
′
0, r) ⊂

Rn−1 and H := maxx′∈B(f (x
′
)− g(x

′
)) > 0 . Then the embedding operator H1(U) →

L2(U) is compact.

The above claim follows from corollary 3.13. We need only to represent U as
a union of domains of class C and an extension domain (in our case a domain with
Lipschitz boundary).

REMARK. Extension domains can have very rough boundary. In the plane a
bounded domain U has an extension property if and only if it is an image of the
unit disc under quasiconformal homeomorphism φ : R2 → R2 (see [5],[6]). For
example the Hausdorff dimension of an image ∂U of a unit circle under quasiconformal
homeomorphism φ : R2 → R2 can be any number 1 � α < 2 [4].
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4. Quasiisometrical homeomorphisms and compact embeddings

A large class of bounded domains in Rn does not belong to class T but still have
“good” properties like compactness of the embedding H1(Ω) ⇒ L2(Ω) . To study these
domains we will introduce a larger and more flexible class of “elementary” domains, i.e.
quasiisometrical images of elementary domains of class ET. Then we extend the main
theorem to the finite unions of quasiisometrical elementary domains. Our proof is based
on the well-known fact that a quasiisometrical homeomorphism ϕ : U → V induces a
bounded composition operator ϕ∗ : H1(V) → H1(U) by the rule ϕ∗(u) = u ◦ ϕ (see,
for example [6] or [15]).

Recall the definition of a quasiisometrical homeomorphism.

DEFINITION 4.1. Let U and V be two domains in Rn . A homeomorphism ϕ :
U → V is Q−quasiisometrical (or simply quasiisometrical) if for any point x ∈ U
there exists such a ball B(x, r) ⊂ U that

Q−1|y − z| < |ϕ(y) − ϕ(z)| < Q|y − z| (1)

for any y, z ∈ B(x, r) . Here the constant Q > 0 does not depend on the choice of
x ∈ U .

Obviously the inverse homeomorphism ϕ−1 : V → U is also Q−quasiisometrical.
Domains U and V are quasiisometrically equivalent if there exists a quasiisometrical
homeomorphism ϕ : U → V .

Any quasiisometrical homeomorphism is a locally bi-Lipschitz, weakly differen-
tiable and differentiable almost everywhere.

Any diffeomorphism ϕ : U → V is quasiisometrical on a subdomain U1 ⊂ U if
the closure U1 of U1 belongs to U .

Let us demonstrate a practical way to construct a new quasiisometrical homeomor-
phism using a given one. Suppose that Sk(x) = kx is a similarity transformation (which
is called below a similarity) of Rn with the similarity coefficient k > 0 , Sk1(x) = k1x
is another similarity and ϕ : U → V is a Q−quasiisometrical homeomorphism. Then
a composition ψ := Sk ◦ ϕ ◦ Sk1 is a k1kQ -quasiisometrical homeomorphism.

It is easy to check this claim. Because ϕ : U → V is Q−quasiisometrical for any
point x ∈ U there exists such a ball B(x, r) ⊂ U that the inequality 2.2 holds.

Therefore

|ψ(y) − ψ(z)| = k|ϕ(k1y) − ϕ(k1z)| < kQ|k1y − k1z| < k1kQ|y − z|
for any y, z ∈ k−1

1 B(k−1
1 x, k−1

1 r) . By the same reasons

|ψ(y) − ψ(z)| > (k1kQ)−1|y − z|.
If k1 = k−1 then the homeomorphism ψ is Q−quasiisometrical.
This remark will be used in example 2.2 of a domain with “spiral” boundary which

is quasiisometrically equivalent to a cube. We start with a two-dimensional example.

EXAMPLE 4.2. We will construct a domain with “spiral” boundary with the help
of a quasiisometrical homeomorphism. We can start with the triangle T := {(s, t) :
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0 < s < 1, s < t < 2s} because T is quasiisometrically equivalent to the unit
square Q2 = (0, 1) × (0, 1) . Hence we need to construct only a quasiisometrical
homeomorphism ϕ0 from T into R2 .

Let (ρ, θ) be polar coordinates in the plane. Define first a mapping ϕ : R2
+ →

R2 as follows: ϕ(s, t) = (ρ(s, t), θ(s, t)) , ρ(s, t) = s , θ(s, t) = 2π ln t
s2 . Here

R2
+ := {(s, t)|0 < s < ∞, 0 < t < ∞} . An inverse mapping can be calculated easily:

ϕ−1(ρ, θ) = (s(ρ, θ), t(ρ, θ)) , s(ρ, θ) = ρ , t(ρ, θ)) = ρ2e
θ
2π . Therefore ϕ and

ϕ0 = ϕ|T are diffeomorphisms.
The image of the ray t = ks, s > 0, k > 0 is the logarithmic spiral ρ =

k exp(− θ
2π ) . Hence the image S := ϕ(T) = ϕ0(T) is an “elementary spiral” plane

domain, because ∂T is a union of two logarithmic spirals ρ = exp(− θ
2π ) , ρ =

2 exp(− θ
2π ) and the segment of the circle ρ = 1 .

The domain T is a union of countably many subdomains Tn := {(s, t) : e−(n+1) <
s < e−(n−1), s < t < 2s} , n = 1, 2, ... . On the first domain T1 the diffeomor-
phism ϕ1 := ϕ|T1 is Q−quasiisometrical, because ϕ1 is the restriction on T1 of a
diffeomorphism ϕ defined in R2

+ and T1 ⊂ R2
+ . We do not calculate the number Q .

If we will prove that any diffeomorphism ϕn := ϕ|Tn is the composition ϕn =
Se−(n−1) ◦ ϕ1 ◦ Sen−1 of similarities Se−(n−1) , Sen−1 and the Q−quasiisometrical dif-
feomorphism ϕ1 , then any diffeomorphism ϕn is Q−quasiisometrical, the diffeomor-
phism ϕ0 is also Q−quasiisometrical, and the “elementary spiral” domain U = ϕ0(T)
is quasiisometrically equivalent to the unit square.

Let us prove the representation ϕn = Se−(n−1) ◦ ϕ1 ◦ Sen−1 .
By construction the domain T1 is the image of Tn under the similarity transfor-

mation Sen−1(s, t) = en−1(s, t) . Therefore we need to prove only the representation
ϕ = Se−(n−1) ◦ ϕ ◦ Sen−1 . This representation follows from a direct calculation:

(Se−(n−1) ◦ ϕ ◦ Sen−1)(s, t) = Se−(n−1)(ρ(en−1s, en−1t), θ(en−1s, en−1t))

= (e−(n−1)ρ(en−1s, en−1t), θ(en−1s, en−1t)) = (s, 2π ln
t
s2

− 2π(n − 1))

= (ρ(s, t), θ(s, t)) = ϕ(s, t)

REMARK. By a rotation we can construct corresponding higher-dimensional ex-
amples of domains with “spiral” type singularities.

4.1. Domains of class L .

DEFINITION 4.3. A domain U is an elementary domain of class L if it is a quasi-
isometrical image of an elementary domain of class ET .

A domain U is a domain of class L if it is a finite union of elementary domains of
class L .

PROPOSITION 4.4. (see for example [6] or [15]) Let U and V be domains in
Rn . A quasiisometrical homeomorphism ϕ : U → V induces a bounded composition
operator ϕ∗ : H1(V) ⇒ H1(U) by the rule ϕ∗(u) = u ◦ ϕ .
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Combining this result with Theorem 3.11 and Lemma 3.10 we obtain:

THEOREM 4.5. If a domain Ω belongs to class L then the embedding operator
H1(Ω) → L2(Ω) is compact.

Proof. Let U be an elementarydomain of class L . Then there exists an elementary
domain V of class ET and a quasiisometrical homeomorphism ϕ : V → U . By the
previous theorem operators ϕ∗ : H1(V) ⇒ H1(U) and (ϕ−1)∗ : H1(U) → H1(V) are
bounded. By Theorem 3.8 the embedding operator IV : H1(V) → L2(V) is compact.
The embedding operator IU : H1(U) → L2(U) is the composition (ϕ−1)∗ ◦ IV ◦ ϕ∗ .
Therefore the embedding operator IU : H1(U) → L2(U) is compact.

Because any domain Ω of class L is a finite union of elementary domains of class
L the result follows from Lemma 3.10. �

5. Domains with nonlocal singularities of the boundaries

The previous section focuses on domainswhich are locally quasiisometrical images
of domains of class T. For the proof of the main result we used the compactness of
embedding operators for domains of class T and the boundedness of composition
operators induced by quasiisometrical homeomorphisms.

In this section we use similar arguments for the largest class of homeomorphisms
that induce bounded composition operators of the Sobolev spaces H1 .

We recall the main idea for a study of the embedding operators proposed in [8].
Let Ω be a domain with “good” boundary, for example, domain of class L , and U be a
domain with “bad” boundary. Suppose that there exists a homeomorphism φ : Ω → U
such that φ induces a bounded composition operator φ∗ : H1(U) → H1(Ω) by the
rule φ∗(u) = u ◦ ϕ and φ−1 induces a bounded composition operator (φ−1)∗ :
L2(Ω) → L2(U) . If the embedding operator IΩ : H1(Ω) → L2(Ω) is compact, then
the embedding operator IU = (φ−1)∗IΩφ∗ : H1(Ω) ⇒ L2(Ω) is also compact.

This method was used in [8] for a study of the embedding operators in domains
with “nonlocal” singularities.

5.1. 2-quasi-conformal homeomorphisms.

Composition operators for Sobolev spaces with first generalized derivatives were
studied in detail in [7]. We restrict ourselves to the practically important class of locally
bi-Lipschitz homeomorphisms.

DEFINITION 5.1. A locally bi-Lipschitz homeomorphism φ : Ω → U is 2-quasi-
conformal if there exists a constant K such that

‖φ ′(x)‖2 � K| detφ ′(x)|
for almost all x ∈ Ω . The 2-quasi-conformal dilatation K(φ) is a minimal number K
for which the previous inequality holds.
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Here φ ′(x) = ( ∂ϕi
∂xj

(x)), i, j = 1, 2, .., n, is the Jacobi matrix of the mapping ϕ at

the point x and ‖φ ′(x)‖ :=
√∑n

i,j=1 | ∂ϕi
∂xj

(x)|2 is the norm of the Jacobi matrix.

Obviously any quasiisometrical homeomorphism is 2-quasi-conformal. Composi-
tion of 2-quasi-conformal homeomorphisms is 2-quasi-conformal [8].

Choose two bounded domains Ω, U in Rn , n > 2 .

THEOREM 5.2. (see [8]) A locally bi-Lipschitz homeomorphism φ : Ω → U
induces a bounded composition operator φ∗ : H1(U) → H1(Ω) if and only if φ is
2-quasi-conformal.

This result was used in the following version of the so-called “relative” embedding
theorem.

THEOREM 5.3. (see [7]) Suppose that a homeomorphism φ : Ω → U is 2-quasi-
conformal and ‖ detφ ′(x)‖L∞(Ω) < ∞ . If the embedding operator IΩ : H1(Ω) →
L2(Ω) is compact then the embedding operator IU : H1(U) → L2(U) is also compact.

The following corollary helps to use this result practically:

COROLLARY 5.4. Suppose that Ω is domain of class L and there exists a 2-
quasi-conformal homeomorphism φ : Ω → U . If ‖ detφ ′(x)‖L∞(Ω) < ∞ , then the
embedding operator IU : H1(U) → L2(U) is compact.

This corollary follows immediately from the previous theorem and the embedding
theorem for T−domains.

It allows one to use the method of Section 2 for 2-quasi-conformal case.

5.2. Domains of class Q .

DEFINITION 5.5. A domain U is an elementary domain of class Q if there exist an
elementary domain V of class L and a 2-quasi-conformalhomeomorphism ϕ : U → V
such that ‖ detφ ′(x)‖L∞(Ω) < ∞ .

A domain U is a domain of class Q if it is a finite union of elementary domains of
class Q .

Combining Corollary 5.4 with the Theorem 4.5 and Lemma 3.10 we obtain

THEOREM 5.6. If a domain Ω belongs to class Q then the embedding operator
H1(Ω) ⇒ L2(Ω) is compact.

Proof. Let U be an elementary domain of class Q . Then there exists an elementary
domain V of class L and a 2-quasiisometrical homeomorphism ϕ : V → U such that
‖ detφ ′(x)‖L∞(Ω) < ∞ . By Theorem 5.2 operators ϕ∗ : H1(V) → H1(U) and
(ϕ−1)∗ : H1(U) ⇒ H1(V) are bounded. By Corollary 5.4 the embedding operator
IV : H1(V) → L2(V) is compact. The embedding operator IU : H1(U) → L2(U)
is equal to the composition (ϕ−1)∗ ◦ IV ◦ ϕ∗ . Therefore the embedding operator
IU : H1(U) → L2(U) is compact.
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Because any domain Ω of class Q is a finite union of elementary domains of class
Q , the result follows from Lemma 3.10. �

Let us demonstrate a simple example of an elementary domain of class Q with
“non local” singularity near the point {0} .

EXAMPLE 5.7. Let Ω ∈ R2 be the union of rectangles Tk = {x ∈ R2 : |x1 −
2−αk| � 2−α(k+2); 0 � x2 < 2−α(k+2)}, 0 < α and the square Q = (0, 1)× (−1, 0) . It
is easy to check that the homeomorphism ϕ(x1, x2) = (x1|x| 1

α−1, x2|x| 1
α−1} is 2-quasi-

conformal and Ω1 = ϕ(Ω) is the union of rectangles Pk = {x ∈ R2 : |x1 − 2−k| �
2−(k+2); 0 � x2 < 2−(k+2)}, 0 < α and the square Q = (0, 1) × (−1, 0) . In [10] a
quasiisometrical homeomorphism ψ from Ω1 to the unit square is constructed. Hence
the composition φ = ψ ◦ ϕ is a 2-quasi-conformal homeomorphism and by direct
calculation we can check that ‖ detφ ′(x)‖L∞(Ω) < ∞ . Therefore the domain Ω is an
elementary domain of class Q .

A projection of B(0, r) ∩ ∂Ω onto an arbitrary straight line L ∈ R2 is not a one-
to-one correspondence for any r and L . Therefore the domain Ω is not an elementary
domain of class C .

Higher-dimensional examples can be constructed using rotations.

5.3. Discussion of 2-quasiconformal homeomorphisms and
2-quasi-conformal domains.

Let us give first a geometrical interpretation of 2-quasi-conformality.
Suppose that φ : Rn → Rn is a linear homeomorphism, ϕ′ is its matrix and (φ ′)T

its adjoint matrix. Denote by λ 2
1 � λ 2

2 � ... � λ 2
n eigenvalues of (φ ′)Tφ ′ . There exist

two orthogonal bases e1, e2, ..., en and g1, g2, ..., gn such that φ(ei) = λigi for every
i = 1, 2, ..., n . Geometrically λi is length of i− th semi-axis of the ellipsoid φ(B(0, 1))
. The 2-quasi-conformal dilatation K(φ) = λn

λ1λ2...λn−1
.

If ϕ : Ω → U is a diffeomorphism then the numbers λ1(x) � λ2(x) � ... � λn(x)
correspond to the linear homeomorphism dφ and

K(φ) = sup
x∈Ω

[
λn(x)

λ1(x)λ2(x)...λn−1(x)
].

If ϕ : Ω → U is only locally Lipschitz then

K(φ) = ess sup
x∈Ω

[
λn(x)

λ1(x)λ2(x)...λn−1(x)
].

The relations of 2-quasi-conformal homeomorphisms with the traditional classes
can be described as follows:

1) In the two-dimensional case 2-quasi-conformal homeomorphisms are quasi-
conformal. A homeomorphism inverse to a quasi-conformal homeomorphism is also
quasi-conformal. Therefore a homeomorphism inverse to 2-quasi-conformal home-
omorphism is 2-quasi-conformal (for plane domains). Unfortunately, this property
does not hold in the higher-dimensional cases. In [7] an example of 2-quasi-conformal
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homeomorphism with non-2-quasi-conformal inverse homeomorphism is constructed.
Composition of 2-quasi-conformal homeomorphisms is a 2-quasi-conformal homeo-
morphism.

2) Two-dimensional conformalmappings are 2-quasi-conformalhomeomorphisms
with K(φ) = 1 .

3) Any quasiisometrical homeomorphism is 2-quasi-conformal.

Appendix

In this section an abstract necessary and sufficient condition for the embedding
operator to be compact is given. In our presentation the work [12] is used.

Let Hj, j = 1, 2, 3, be Hilbert spaces, H1 ⊂ H2 ⊂ H3, the embeddings mean set-
theoretical inclusions and the inequalities ‖u‖1 � ‖u‖2 � ‖u‖3 , where ‖u‖j := ‖u‖Hj .
This implies the compatibility of the norms:

if ‖un‖3 → 0 and ‖un − u‖2 → 0 then u = 0
Denote by i the embedding operator from H1 into H2 and by j the embedding

operator from H1 into H3 .

PROPOSITION 5.8. The operator i : H1 → H2 is compact if and only if the
following conditions hold:

1) j is compact,
and
2) ‖u‖2 � ε‖u‖1 + c(ε)‖u‖3 for all ε ∈ (0, ε0) , c(ε) = const > 0 , for all

u ∈ H1 .

Proof. Necessity: condition 1) is clearly necessary: if i : H1 → H2 is compact,
and H2 ⊂ H3 , ‖u‖2 � ‖u‖3 , then j : H1 → H3 is compact.

To prove 2), assume the contrary: there exists un ∈ H1 , ‖un‖1 = 1 , and ε ∈
(0, ε0) such that

‖un‖2 > ε‖un‖1 + n‖un‖3

for all n = 1, 2, ... .
Since ‖un‖1 = 1 � ‖un‖2 , one concludes fromprevious inequality that ‖un‖3 → 0

as n → ∞ and un ⇀ u in H1 , ⇀ stands for weak convergence. Since i : H1 → H2

is compact, it follows that ‖un − u‖2 → 0. Since ‖un‖3 → 0 it follows that u = 0
and ‖un‖2 → 0 . This is a contradiction: by condition 2) the inequality ‖un‖2 � ε > 0
holds. The necessity of the conditions 1) and 2) is established.

Sufficiency: if j is compact then ‖un‖1 = 1 implies that a subsequence un (denoted
again un ) converges in H3 , that is ‖un−um‖3 → 0 as n, m → ∞ . Condition 2) implies
‖un − um‖2 � ε‖un − um‖1 + c(ε)‖un − um‖3 .

Fix an arbitrary small δ > 0 . Note that ‖un − um‖1 � 2 . Choose ε = δ/4 and
fix it. Then choose n, m so large that c(ε)‖un − um‖3 < δ/2 . Then ‖un − um‖2 < δ .
This implies convergence of un in H2 . The sufficiency is proved. �
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