
Mathematical
Inequalities

& Applications
Volume 4, Number 1 (2001), 143–150

WEYL’S THEOREM FOR CLASS A OPERATORS

ATSUSHI UCHIYAMA ∗

(communicated by T. Furuta)

Abstract. In this paper, we show that Weyl’s theorem holds for class A operators under a certain
condition. We also show that a class A operator whose Weyl spectrum equals to the one-point
set {0} is always compact and normal.

1. Introduction

We denote the set of all bounded linear operators on a Hilbert space H by B(H) .
We say that an operator T ∈ B(H) belongs to the classA if |T2| � |T|2 . ClassA was
first introduced by Furuta-Ito-Yamazaki [5] as a subclass of paranormal operators which
includes the classes of p -hyponormal and log-hyponormal operators. The following
Theorem A is one of the results associated with classA .

THEOREM A ([5]).
(1) Every log-hyponormal operator is a classA operator.
(2) Every classA operator is a paranormal operator.

An operator T ∈ B(H) is called a Fredholm operator if TH is closed and both
KerT = {x ∈ H : Tx = 0} and KerT∗ are finite-dimensional. For any Fredholm
operator T there corresponds an integer ind(T) = dimKerT − dimKerT∗ , which is
called the index of T . Let F0 denote the class of all Fredholm operators in B(H) with
index 0. Then w(T) = {λ ∈ C : T − λ /∈ F0} is called the Weyl spectrum of T .
It is known that, for T ∈ B(H) , w(T) is non-empty and w(T) = ∩

K∈C(H)
σ(T + K) ,

where σ(T) and C(H) denote the spectrum of T and the set of all compact operators
in B(H) , respectively.

For T ∈ B(H) , let σp(T) and π00(T) denote the point spectrum and the set of
all isolated eigenvalues of finite multiplicity of T , respectively. According to Coburn
[3], we say that Weyl’s theorem holds for T if σ(T) \ w(T) = π00(T) . He showed
that Weyl’s theorem holds for hyponormal operators and this result was generalized
for p -hyponormal operators by Chō-Itoh-Ōshiro [4] and Stampfli [7] proved that if T
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is hyponormal and w(T) = {0} , then T is compact and normal. In this paper, we
shall prove that Weyl’s theorem holds for classA operators which satisfy the condition
KerT|[TH] = {0} and Stampfli’s result above also holds for classA operators. Here we
denote the norm closure of a subspace M ⊆ H by [M] .

2. Preliminaries

DEFINITION 1. If ‖Tx‖2 � ‖T2x‖ ‖x‖ for all x ∈ H , then we say that T is
paranormal.

The following results are well known.

PROPOSITION 1. If T is paranormal, then ‖T‖ = sup{|λ | ; λ ∈ σ(T)} .

PROPOSITION 2 (HANSEN’S INEQUALITY [6]). If A � 0 and ‖B‖ � 1 , then
(B∗AB)δ � B∗AδB for all δ ∈ (0, 1] .

PROPOSITION 3.. If T is an invertible paranormal operator, then T−1 is also
paranormal.

3. Main theorems

LEMMA 1. If T is a classA operator and M is an invariant subspace of T , then
T|M is also a classA operator.

Proof. Let

T =
(

A B
0 C

)
on H = M⊕M⊥,

and P be the projection onto M . Then we have P{(T∗2T2)
1
2 − (T∗T)}P � 0 . Hence,

we see that A∗A = P(T∗T)P � P(T∗2T2)
1
2 P � (PT∗2T2P)

1
2 = (A∗2A2)

1
2 by Hansen’s

inequality. This implies that A belongs to the classA and the proof is complete.

LEMMA 2 [5]. If T belongs to the classA , then T is paranormal.

COROLLARY 1. If T belongs to the classA and σ(T) = {0} , then T = 0 .

Proof. By Lemma 2 and Proposition 1, we have the conclusion.

LEMMA 3. If T is paranormal, then the restriction T|M to its invariant subspace
M is also paranormal.

Proof. Let x ∈ M be an arbitrary vector. Then we have,

‖T|Mx‖2 = ‖Tx‖2 � ‖T2x‖‖x‖ = ‖(T|M)2x‖‖x‖.
This implies that T|M is paranormal.

DEFINITION 2. An operator T is called isoloid if every isolated point of σ(T) is
an eigenvalue of T .



WEYL’S THEOREM FOR CLASS A OPERATORS 145

THEOREM 1. If T is paranormal, then T is isoloid.

Proof. Let λ ∈ σ(T) be an isolated point, then the range of Riesz projection
E = 1

2πi

∫
∂D(zI − T)−1 dz is an invariant closed subspace of T and σ(T|EH) = {λ} ,

where D is a closed disk with its center λ such that σ(T) ∩ D = {λ} .
If λ = 0 , then σ(T|EH) = {0} . Since T|EH is paranormal by Lemma 3,

T|EH = 0 by Proposition 1. Therefore 0 is an eigenvalue of T .
If λ �= 0 , then T|EH is an invertible paranormal operator and hence (T|EH)−1

is also paranormal by Proposition 3. By Proposition 1, we see ‖T|EH‖ = |λ | and
‖(T|EH)−1‖ = 1

|λ | . Let x ∈ EH be an arbitrary vector. Then ‖x‖ � ‖(T|EH)−1‖‖T|EHx‖ =
1
|λ |‖T|EHx‖ � 1

|λ | |λ |‖x‖ = ‖x‖ . This implies that 1
λ T|EH is unitary with its spectrum

σ( 1
λ T|EH) = {1} . Hence T|EH = λ and λ is an eigenvalue of T . This completes

the proof.

LEMMA 4. If T belongs to the classA and λ is a non-zero complex number, then
(T − λ )x = 0 implies that (T − λ )∗x = 0 .

Proof. We may assume x �= 0 . Since ‖|T2|x‖ = ‖T2x‖ = |λ |2‖x‖ , we have

|λ |2‖x‖2 = ‖Tx‖2 = 〈T∗Tx, x〉
� 〈 |T2|x, x〉 (since T belongs to the classA)

� ‖|T2|x‖‖x‖ (Cauchy-Schwarz inequality)

= |λ |2‖x‖2.

Since |T2|x and x are linearly dependent, we have |T2|x = |λ |2x . Since

‖(|T2| − T∗T)
1
2 x‖2 = 〈 |T2|x, x〉 − 〈T∗Tx, x〉 = 0,

we have T∗Tx = |T2|x = |λ |2x and therefore T∗x = λx . This completes the proof.

THEOREM 2. If T belongs to the classA and KerT|[TH] = {0} , then Weyl’s
theorem holds for T .

Proof. First, we shall prove σ(T) \ w(T) ⊆ π00(T) .
Let

T =
(

A S
0 0

)
on H = [TH] ⊕ KerT∗

be a classA operator such that KerA = {0} and λ ∈ σ(T) \w(T) . Then T −λ ∈ F0 .
This means that 0 < dimKer(T − λ ) = dimKer(T − λ )∗ < ∞ and (T − λ )H is
closed. Therefore, it suffices to show that λ is an isolated point of σ(T) .

If λ �= 0 , we have Ker(T − λ ) = Ker(T − λ )∗ by Lemma 4 and it is a reducing
subspace of T . Let E be the orthogonal projection onto Ker(T − λ ) . Then T =
λE ⊕ T(1 − E) on EH ⊕ (EH)⊥ and σ(T) = {λ} ∪ σ(T(1 − E)|(EH)⊥) . Since E
is a finite rank projection, ind(T(1 − E) − λ (1 − E)) = ind(T − λ ) = 0 and since
(T(1−E)−λ (1−E))|(EH)⊥ is one-to-one, (T(1−E)−λ (1−E))|(EH)⊥ is invertible.
This implies that λ �∈ σ(T(1 − E)|(EH)⊥) and λ is an isolated point of σ(T) . Hence
λ ∈ π00(T) .
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If λ = 0 , then A ∈ F0 because S is a finite rank operator and since A is
one-to-one A is invertible. Hence 0 ∈ π00(T) because σ(T) ⊆ σ(A) ∪ {0} .

Next, we shall show that π00(T) ⊆ σ(T) \ w(T) .
If λ ∈ π00(T) \ {0} , then λ is a normal eigenvalue of T by Lemma 4. Hence

T = λ ⊕ T ′ on H = Ker(T − λ ) ⊕ [Ker(T − λ )]⊥ and the isolatedness of λ ∈ σ(T)
implies either λ is an isolated point of σ(T ′) or λ �∈ σ(T ′) . Since T ′ is paranormal
(hence T ′ is isoloid) with Ker(T ′ − λ ) = {0} , λ is not an isolated point of σ(T ′)
and therefore T ′ − λ is invertible. T − λ ∈ F0 is immediately from this. Hence we
have λ ∈ σ(T) \ w(T) .

If 0 ∈ π00(T) , then 0 is an isolated point of σ(A) or A is invertible. Since A is
also a classA operator (and hence isoloid) with KerA = {0} , 0 is not an isolated point
of σ(A) and therefore A is invertible. It is easy to see that KerT = {−A−1Su⊕u ; u ∈
KerT∗} and hence dimKerT = dimKerT∗ < ∞ . The closedness of the range of T
follows from the invertibility of A . Hence 0 ∈ σ(T) \ w(T) and this completes the
proof.

REMARK. There are two conditions which are usually assumed by many mathe-
maticians who study paranormal operators. The conditions are following:

1) TH ⊆ T∗H .
2) KerT ⊆ KerT∗ .

We give a following condition:
3) KerT|[TH] = {0} .

3) is weaker than 1) and 2); indeed, 1) ⇒ 2) ⇒ 3).
The author showed an example of quasihyponormal operator (hence it is classA op-

erator)which does not satisfy condition 2) and also showed that every p -quasihyponormal
operator for 0 < p < 1 satisfies condition 3). See [8, 9]. Hence we see that if we
deal with paranormal operators, then conditions 1) and 2) are rather strong. So we use
condition 3) in this paper.

In addition, it is unknown whether paranormal operators satisfy condition 3).

THEOREM 3. If T belongs to the classA and w(T) = {0} , then T is compact
and normal.

Proof. Since Weyl’s theorem holds for T by Theorem 2 and w(T) = {0} by
the assumption and Lemma 4, every non-zero spectrum of T is an isolated normal
eigenvalue with finite dimensional eigenspace, which reduces T . Hence σ(T) \ w(T)
is a finite set or a countable infinity set whose accumulation point is only 0. Let
σ(T) \ w(T) = {λn} with |λ1| � |λ2| � |λ3| � · · · � 0 and let En be the orthogonal
projection onto Ker(T − λn) . Then TEn = EnT = λnEn and EnEm = 0 if n �= m . Put
E =

⊕
n En . Then T =

⊕
n λnEn⊕T|(1−E)H and σ(T|(1−E)H) = {0} . Since T|(1−E)H

also belongs to the classA because EH is a reducing subspace of T , T|(1−E)H = 0 by
Corollary 1.

Hence T =
⊕

n λnEn is normal. The compactness of T follows from the finiteness
or the countability of {λn}n satisfying |λn| ↓ 0 and each En is a finite rank projection.
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THEOREM 4. If T belongs to the classA with KerT|[TH] = {0} and f is a
polynomial, then Weyl’s theorem holds for f (T) .

Proof. We have only to prove that f is non-constant. Let λ ∈ σ(f (T))\w(f (T))
be an arbitrary point and let {μ1, . . . ,μn} be the set of all solutions of the equality
f (z)−λ = 0 . Then Ker(T−μk) ⊆ Ker(f (T)−λ ) and Ker(T−μk)∗ ⊆ Ker(f (T)−λ )∗

and both Ker(T − μk) and Ker(T − μk)∗ are finite dimensional for all 1 � k � n .
Since

(T − μk)H = (T − μk)[Πi�=k(T − μi)H] + (T − μk)Ker(Πi�=k(T − μi)∗)
⊆ [Πn

i=1(T − μi)H] + (T − μk)Ker(Πi�=k(T − μi)∗)
= [(f (T) − λ )H] + (T − μk)Ker(Πi�=k(T − μi)∗)
= (f (T) − λ )H + (T − μk)Ker(Πi�=k(T − μi)∗)
⊆ (T − μk)H,

we have (T − μk)H = (f (T) − λ )H + (T − μk)Ker(Πi�=k(T − μi)∗) and it is closed
because (f (T)−λ )H is closed and (T−μk)Ker(Πi�=k(T−μi)∗) is a finite dimensional
subspace. Hence T − μk is a Fredholm operator for every k .

Next, we show that T−μk ∈ F0 . Wemay assume that T−μk is not invertible for all
k since the assertion is trivial in case that T−μk is invertible. Since

∑n
i=1 ind(T−μi) =

ind(f (T) − λ ) = 0 , there exists μk1 such that ind(T − μk1) � 0 . By Lemma 4, if
μk1 �= 0 , then μk1 is a normal eigenvalue of T and therefore 0 � ind(T − μk1) =
ind((T − μk1)|[Ker(T−μk1

)]⊥) � 0 . Hence we have μk1 �∈ w(T) . Also if μk1 = 0 , then

0 � indT = indA � 0 because KerA = {0} and S is a finite rank operator. So we
obtain μk1 = 0 �∈ w(T) . Here A and S are same as in the proof of Theorem 2.

Similarly, since
∑

i�=k1
ind(T − μi) =

∑n
i=1 ind(T − μi) = 0 , there exists k2 �= k1

such that ind(T − μk2) � 0 . By using the previous argument, μk2 �∈ w(T) . By
induction, we have μk �∈ w(T) for all k .

Since Weyl’s theorem holds for T , ∅ �= {μ1, . . . ,μn} ∩ σ(T) ⊆ σ(T) \ w(T) =
π00(T) and from this fact it is immediately that λ = f (μk) is an isolated point of
σ(f (T)) . This implies that λ ∈ π00(f (T)) .

Conversely, let λ ∈ π00(f (T)) and let {μ1, . . . ,μn} be the set of all solutions of the
equality f (z) − λ = 0 . Then we have {μ1, . . . ,μn} ∩ σ(T) ⊆ π00(T) = σ(T) \ w(T)
and hence T − μk ∈ F0 for all k . Since f (T) − λ = αΠn

i=1(T − μi) for some
α �= 0 , f (T) − λ is Fredholm and ind(f (T) − λ ) =

∑n
i=1 ind(T − μi) = 0 . Hence

λ ∈ σ(f (T)) \ w(f (T)) . This completes the proof.

In the first part of the above proof, we have shown that αΠn
i=1(T−μi) ∈ F0, α �= 0

implies that T−μi ∈ F0 for all i . Since the converse is also true, Πn
i=1(T−μi) ∈ F0 if

and only if T−μi ∈ F0 for all i . Hence, for a classA operator T with KerT|[TH] = {0}
and every polynomial f , we have

λ ∈ w(f (T)) ⇐⇒ Πn
i=1(T − μi) �∈ F0

⇐⇒ T − μi �∈ F0 for some i

⇐⇒ λ ∈ f (w(T)),
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where f (z)− λ = αΠn
i=1(z− μi) for some α �= 0 . Many mathematicians have shown

that w(f (T)) = f (w(T)) for every polynomial f implies that w(f (T)) = f (w(T))
for every function f which is analytic on a neighborhood of σ(T) . That assertion and
proofs may be well-known, however, for the sake of completes in this paper we will
give a proof.

LEMMA 5. If T satisfies w(f (T)) = f (w(T)) for every polynomial f , then
w(h(T)) = h(w(T)) for every function h of the form h(z) = f (z)/g(z) for some
polynomials f and g such that g(T)−1 exists.

Proof. Let f and g be polynomials such that g(T)−1 exists and let h(z) =
f (z)/g(z) . Then we have that λ ∈ w(h(T)) is equivalent to 0 ∈ w(f (T) − λg(T)) .
By using above argument, this is also equivalent to 0 ∈ (f −λg)(w(T)) . Since the last
condition is clearly equivalent to λ ∈ h(w(T)) . Hence the assertion holds.

DEFINITION 3. For a sequence {δn}∞n=1 of compact subsets of complex plane C ,
we define lim supn→∞ δn and lim infn→∞ δn by

lim sup
n→∞

δn = {λ ∈ C : lim inf
n→∞ d(λ , δn) = 0},

lim inf
n→∞ δn = {λ ∈ C : lim

n→∞ d(λ , δn) = 0}.

If lim supn→∞ δn = lim infn→∞ δn , then we say that the sequence {δn}∞n=1 is conver-
gent and its limit set is given by limn→∞ δn = lim supn→∞ δn = lim infn→∞ δn .

DEFINITION 4. Let A be an operator on a Hilbert space H and let ϕ : B(H) →
{ compact subsets of C } be a set-valued function. We say that ϕ is upper-semi-
continuous at A if lim supn→∞ ϕ(An) ⊆ ϕ(A) whenever ‖An − A‖ → 0 . Also,
we say that ϕ is lower-semicontinuous at A if ϕ(A) ⊆ lim infn→∞ ϕ(An) whenever
‖An − A‖ → 0 . If ϕ is upper and lower-semicontinuous at A , we say that ϕ is
continuous at A .

THEOREM 5. If T satisfies w(f (T)) = f (w(T)) for every polynomial f , then
w(h(T)) = h(w(T)) for every function h which is analytic on a neighborhood of
σ(T) .

Proof. By the analytic functional calculus, there exist polynomials {f n}∞n=1 and
{gn}∞n=1 such that gn(T)−1 exists for all n and hn(T) := (f n/gn)(T) uniformly con-
verges to h(T) as n → ∞ .

We shall show that w(h(T)) = limn→∞ w(hn(T)) . Since the upper-semicontinuity
of the spectrum σ , the essential spectrum σe and the Weyl spectrum w are well-known,
it suffices to show that w(h(T)) ⊂ lim infn→∞ w(hn(T)) .

First, we consider the case that λ ∈ σe(h(T)) . Since σe(h(T)) ⊆ σe(hn(T)) +
σe(h(T) − hn(T)) is easily shown by the commutativity of h(T) and hn(T) , we have
d(λ ,σe(hn(T))) � ‖h(T)−hn(T)‖ → 0 . Hencewe have λ ∈ lim infn→∞ σe(hn(T)) ⊆
lim infn→∞ w(hn(T)) .

Next, we consider in case that λ ∈ w(h(T)) \ σe(h(T)) . In this case, h(T)− λ is
a Fredholm operator with non-zero index.
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Assume that λ �∈ lim infn→∞ w(hn(T)) . Then, for some ε > 0 , there exists a
subsequence {hnk(T)}∞k=1 such that d(λ , w(hnk(T))) > ε for every k � 1 . Therefore
{hnk(T) − λ} is a sequence of Fredholm operators with the index 0 which converges
to a Fredholm operator h(T) − λ . This contradicts the continuity of the index and we
also have λ ∈ lim infn→∞ w(hn(T)) in this case.

By above argument, we have

w(h(T)) = lim
n→∞w(hn(T))

= lim
n→∞ hn(w(T)) (by Lemma 5)

= h(w(T)) (since hn → h uniformly on σ(T)),

and hence the assertion holds.

THEOREM 6. If T belongs to the classA with KerT|[TH] = {0} and f is an
analytic function on a neighborhood of σ(T) , then Weyl’s theorem holds for f (T) .

Proof. Let λ ∈ σ(f (T)) \ w(f (T)) be an arbitrary point. We shall show that
λ ∈ π00(f (T)) . Since 0 < dimKer(T − λ ) < ∞ by assumption, it suffices to show
that λ ∈ σ(f (T)) is isolated. By Theorem 5 we have λ ∈ σ(f (T)) \ f (w(T)) =
f (σ(T)) \ f (w(T)) , hence {z ∈ σ(T) : f (z) = λ} ⊆ σ(T) \ w(T) = π00(T) because
Weyl’s theorem holds for T . Isolatedness of λ ∈ σ(f (T)) is immediately from this.

Next, we show the converse. Let λ ∈ π00(f (T)) be an arbitrary point. Isolatedness
of λ ∈ σ(f (T)) implies that every point in {z ∈ σ(T) : f (z) = λ} is isolated in σ(T)
and therefore is in π00(T) = σ(T) \ w(T) since T is isoloid. Put {z ∈ σ(T) : f (z) =
λ} = {μi}n

i=1 . Then f (z) − λ = {Πn
i=1(z − μi)}g(z) for some analytic function on

a neighborhood of σ(T) with no zeros. Hence T − μi ∈ F0 for every i and g(T) is
invertible. This implies that f (T) − λ ∈ F0 . Hence λ ∈ σ(f (T)) \ w(f (T)) . This
completes the proof.

DEFINITION 5. We say that an operator T with the polar decomposition T = U|T|
is w -hyponormal if the Aluthge transform T̃ = |T| 1

2 U|T| 1
2 of T satisfies |T̃∗| �

|T| � |T̃| . An operator T is called p -hyponormal if (TT∗)p � (T∗T)p . An invertible
operator T is called log-hyponormal if log(TT∗) � log(T∗T) .

In [1], Aluthge and Wang showed the following theorems.

THEOREM B.
(1) If T is a p -hyponormal operator for p > 0 , then T is w -hyponormal.
(2) If T is a log-hyponormal operator, then T is w -hyponormal.
(3) If T is a w -hyponormal operator, then |T2| � |T|2 and |T∗|2 � |T∗2| hold.

THEOREM C. If T and T∗ are w -hyponormal with KerT ⊆ KerT∗ , then T is
normal.

Finally, we show that Theorem C holds without the kernel condition KerT ⊆
KerT∗ .
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THEOREM 7. If T belongs to the classA and T∗ is w -hyponormal, then T is
normal.

Proof. Since T∗ is w -hyponormal, by (3) of Theorem B, T∗ belongs to the
classA and |T2| � |T|2 . Hence |T2| = |T|2 because T belongs to the classA . Hence,
we have T∗2T2 = |T2|2 = |T|4 = (T∗T)2 and P{T∗T − TT∗}P = 0 , where P is the
orthogonal projection onto [TH] . Let

T =
(

A S
0 0

)
on H = [TH] ⊕ KerT∗

be a 2 × 2 matrix representation of T . Then P{T∗T − TT∗}P = 0 implies that
A∗A = AA∗ + SS∗ . Since T∗ belongs to the classA , we have

AA∗ + SS∗ = PTT∗P �P|T∗2|P = (A2A∗2 + ASS∗A∗)
1
2

=(A{AA∗ + SS∗}A∗)
1
2 = AA∗

(since AA∗ + SS∗ = A∗A).

Hence S = 0 and A is normal. This implies that T is normal.
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