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ON A RESULT CONCERNING A PROPERTY

OF CLOSED MANIFOLDS

DORIN ANDRICA

Abstract. The main result is given in Theorem 2 and it shows that the inequality γ ( ˜M) �
kγ (M)−4(k−1) contained in Theorem 1 holds with equality for any closed smooth surface M2

(orientable or not), where π : ˜M → M is a k -covering of M and γ (M) is the Morse-Smale
characteristic of M .
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Anal. Numerique Téorie Approx., Tome 21, No.1, (1992) 9–13.

[2] ANDRICA, D., The Morse-Smale characteristic of a simply-connected compact manifold, Revue Anal.
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