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ON THE YAO–IYER INEQUALITY IN BIOEQUIVALENCE STUDIES

IOSIF PINELIS

(communicated by N. Elezović)

Abstract. In this note, we present a simple proof of a probabilistic inequality by Yao-Iyer, which
arises in bioequivalence studies.

Consider the ratio

r(z) :=
P(|X| < z)
P(|Z| < z)

of the distribution functions of random variables |X| and |Z| , where Z ∼ N(0, 1) ,
X ∼ N(μ,σ2) , μ ∈ R , σ > 0 , and (μ,σ2) �= (0, 1) . We present a simple proof of
the Yao-Iyer (1999) [1] inequality

r(z) > min(r(∞), r(0+)) ∀z ∈ (0,∞), (1)

which arises in bioequivalence studies; here r(∞) := limz→∞ r(z) = 1 and r(0+) :=
limz↓0 r(z) = 1

σ ϕ( μσ )/ϕ(0) , ϕ being the standard normal density.
Rewrite (1) as

D(z) := P(|X| < z) − c P(|Z| < z) > 0 ∀z ∈ (0,∞), with (2)
c := min(r(∞), r(0+)) = min(1, ρ(0)), where (3)

ρ(z) :=
1
σ ϕ

( z−μ
σ

)
+ 1

σ ϕ
( z+μ

σ
)

2ϕ(z)
.

Note that
D′(z) = 2(ρ(z) − c)ϕ(z) ∀z ∈ (0,∞). (4)

The proof of (2) is based on the following observation.

LEMMA 1. For all μ ∈ R and σ > 0 , there exists some b ∈ [0,∞] such that ρ
is (strictly) increasing on (0, b) and decreasing on (b,∞) . (In particular, if it turns
out that b = 0 , then ρ is decreasing on the entire interval (0,∞) ; if b = ∞ , then ρ
is increasing on (0,∞) .)
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We shall prove Lemma 1 a little later. At this point, let us use it to prove (2).
Indeed, (3) implies that ρ(0) � c . Hence, by Lemma 1, ∃z∗ ∈ [0,∞] such that

ρ > c on (0, z∗) and ρ < c on (z∗,∞) . Thus, in viewof (4), D is increasing on (0, z∗)
and decreasing on (z∗,∞) . It follows that ∀z ∈ (0,∞) D(z) > min(D(0), D(∞)) �
0 , because D(0) = 0 and D(∞) = 1 − c � 0 .

It remains to prove Lemma 1. In turn, it is based on

LEMMA 2. Let

λ (x) := λμ(x) := ϕ (x − μ) + ϕ (x + μ) .

Then there exists some d ∈ [0,∞] such that λ is increasing on (0, d) and decreasing
on (d,∞) .

Proof. One has

λ ′(x) = ϕ(x + μ)f (x), where f (x) := −(x + μ) − (x − μ)e2μx; (5)

f ′(x) = e2μxg(x), where g(x) := −e−2μx − 1 − 2μx + 2μ2. (6)

Note that g′(x) = 2μ(e−2μx − 1) < 0 ∀x ∈ (0,∞) if μ �= 0 , and g(x) = −2 < 0 ∀x
if μ = 0 . Hence, ∃a ∈ [0,∞] such that g > 0 on (0, a) and g < 0 on (a,∞) ; by
(6), the same holds for f ′ in place of g . Note next that f (0) = 0 . Hence, ∃d ∈ [0,∞]
such that f > 0 on (0, d) and f < 0 on (d,∞) ; by (5), the same holds for λ ′ in
place of f . Therefore, λ is increasing on (0, d) and decreasing on (d,∞) . �

Now we can finish the proof of Lemma 1. Observe that

ρ(z) = eQ(z) + eQ(−z), (7)

for some quadratic polynomial Q(z) = Az2 +Bz+C , where A , B , and C may depend
only on μ and σ . Moreover, the condition (μ,σ2) �= (0, 1) implies A �= 0 or B �= 0 ;
namely, σ2 �= 1 implies A �= 0 , and μ �= 0 implies B �= 0 . Note that ρ is an even
function.

If A � 0 , then ρ is also convex on R , and so, ρ is non-decreasing on (0,∞) ;
moreover, then the condition (μ,σ2) �= (0, 1) implies that ρ is strictly convex on R ,
and so, increasing on (0,∞) . Thus, if A � 0 , then the statement of Lemma 1 is true,
with b = ∞ .

In the remaining case, A < 0 , Lemma 1 follows from Lemma 2. Indeed, in this
case, (7) can be rewritten as ρ(z) = K λν(tz) , where K > 0 , ν , and t > 0 are some
constants, which may depend only on μ and σ .
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