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ESTIMATIONS IN HÖLDER’S TYPE INEQUALITIES

SAICHI IZUMINO AND MASARU TOMINAGA

(communicated by S. Saitoh)

Abstract. Using a technique due to Ozeki, we give an upper bound of(∑
ap
k

)1/p (∑
bq
k

)1/q − λ
∑

akbk

for λ > 0 , for p > 1 , q > 1 satisfying 1/p + 1/q = 1 , and for n - tuples a = (a1, . . . , an)
and b = (b1, . . . , bn) of positive numbers under certain conditions. This yields a complement
of Hölder’s inequality. The estimation with a parameter λ enables us to unify the discussions
on difference and ratio inequalities derived from Hölder’s inequality.

1. Introduction

The Hölder’s inequality is one of the most important inequalities in analysis: If
a = (a1, . . . , an) and b = (b1, . . . , bn) are n - tuples of nonnegative numbers, then for
any p > 1 , q > 1 satisfying 1/p + 1/q = 1 ,(∑

ap
k

)1/p (∑
bq

k

)1/q
�
∑

akbk.

Recently, using Ozeki’s method, the first author [5] obtained an upper bound of

Sp(a, b) :=
(∑

ap
k

)1/p (∑
bq

k

)1/q
−
(∑

akbk

)
(1.1)

under the conditions

m1 � ak � M1, m2 � bk � M2 (k = 1, 2, . . . , n),
0 < m1 < M1 and 0 < m2 < M2, (1.2)

and moreover in [6] the estimation was shown to be the best possible.
Consider Sp(a, b) as a function defined on the product [m1, M1]n × [m2, M2]n .

Then
(i) Sp(a, b) is a separately convex function with respect to a and b , so that

its maximum is attained at an extreme point, that is, a vertex of the corresponding
2n -dimensional cube [8].
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(ii) Let c = (c1, . . . , cn) and c = (c1, . . . , cn) be the rearrangements of c =
(c1, . . . , cn) in decreasing order and in increasing order, respectively. Then

∑
akbk

(=
∑

akbk) �
∑

akbk [4, p. 261], so that

Sp(a, b) (= Sp(a, b)) � Sp(a, b).

Hence the maximum of Sp(a, b) is attained at a point such that a and b are monotone
in mutually opposite orders.

We note that the use of Ozeki’s method is to apply Ozeki’s properties (i) and (ii).
In [10], (cf. [7], [9, p. 121]) Ozeki himself presented a complementary Cauchy’s

inequality: ∑
a2

k

∑
b2

k −
(∑

akbk

)2
� n2

3
(M1M2 − m1m2)2

based on the fact that the left-hand side possesses the properties (i) and (ii).
In this paper we discuss the estimation of the following difference

Sp,λ (a, b) :=
(∑

ap
k

)1/p (∑
bq

k

)1/q
− λ

∑
akbk (1.3)

with a parameter λ > 0 , and obtain an upper bound nM1M2F(λ ) (F(λ ) is defined in
Lemma3.1) of Sp,λ (a, b) , which yields a complement ofHölder’s inequality. The upper
bound nM1M2F(λ ) is shown the best possible, in some reasonable sense, by applying
Sion’s minimax theorem ([1], [12]). As applications, we derive some inequalities which
are given by p = q = 2 or m2/M2 → 1 . Furthermore, taking λ satisfying F(λ ) = 0 ,
we obtain a ratio inequality (reverse Hölder’s inequality) which is equivalent to the one
given by S. A. Gheorghiu [3].

2. Preliminaries

In this section we state some useful facts, and define some constants for our
discussion.

LEMMA 2.1. Let u, w,μ and ν be positive numbers. Then

u1/pw1/q �
(

1
pμ

)1/p( 1
qν

)1/q

(μu + νw) (2.1)

and the equality holds for
pμu = qνw. (2.2)

Proof. The Young’s inequality says that

u1/pw1/q � u
p

+
w
q

. (2.3)

Hence we have

u1/pw1/q =
(

1
pμ

)1/p( 1
qν

)1/q

(pμu)1/p(qνw)1/q �
(

1
pμ

)1/p( 1
qν

)1/q

(μu + νw).
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Since the equality in (2.3) holds for u = w , the equality in (2.1) holds for pμu =
qνw . �

LEMMA 2.2. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n -tuples of real
numbers satisfying (1.2). Then for any λ > 0, the maximum of Sp,λ (a, b) is attained
at a point (a(s), b(t)) ∈ [m1, M1]n × [m2, M2]n such that

a(s) = (

s︷ ︸︸ ︷
M1, . . . , M1 ,

n−s︷ ︸︸ ︷
m1, . . . , m1 ) and b(t) = (

t︷ ︸︸ ︷
m2, . . . , m2 ,

n−t︷ ︸︸ ︷
M2, . . . , M2 ), (2.4)

where s and t are integers satisfying 0 � s � n and 0 � t � n .

Proof. Let

‖ a ‖r=
(∑

ar
k

)1/r
and 〈 a, b〉 =

∑
akbk.

Then
Sp,λ (a, b) =‖ a ‖p‖ b ‖q −λ 〈 a, b〉

is a separately convex function with respect to a and b, and

Sp,λ (a, b) (= Sp,λ (a, b)) � Sp,λ (a, b).

Hence Sp,λ (a, b) has Ozeki’s properties (i) and (ii) as well as Sp(a, b) , so that its
maximum is attained at an extreme point. Note that e = (e1, . . . , en) is an extreme
point of [m, M]n if and only if ek = m or M for each k . Since we may confine
ourselves to the case that a is of decreasing order and b is of increasing order, we can
obtain the maximum of Sp,λ (a, b) for a and b of the form in (2.4). �

Now we define several constants. Let 0 < α < 1, 0 < β < 1 , and let

Kα =
1 − αp

1 − α
, Kβ =

1 − βq

1 − β
and K =

(
Kα

p

)1/p(Kβ

q

)1/q

. (2.5)

Furthermore, put

K̃α =
Kα

αp/q
, K̃β =

Kβ

βq/p
and K̃ =

K
α1/qβ1/p

(
=
(

K̃α

p

)1/p( K̃β

q

)1/q
)

. (2.6)

Then since 1/p + 1/q = 1 , we see that K is a weighted geometric mean of Kα
p and

Kβ
q , and that K̃ is that of K̃α

p and
K̃β
q . By the mean-value theorem there exist real

numbers θα and θβ such that

α < θα < 1, β < θβ < 1, Kα = pθp−1
α and Kβ = qθq−1

β . (2.7)

Hence we have

αp−1 <
Kα

p
< 1, βq−1 <

Kβ

q
< 1 and α1/qβ1/p < θ1/q

α θ1/p
β = K < 1. (2.8)
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Furthermore, since p/q = p − 1 and q/p = q − 1 , we have

1 <
K̃α

p
< α1−p, 1 <

K̃β

q
< β1−q and 1 < K̃ < α−1/qβ−1/p. (2.9)

LEMMA 2.3. Let 0 < α < 1 , 0 < β < 1 and λ > 0 . Then

(1) The equation (of τ > 0)

(1 − α)(λ − Kτ1/q) = (1 − β)(λ − Kτ−1/p) (2.10)

has a unique positive solution, which we denote by τ = τ∗ . Define a constant cλ by

cλ = (1 − α)(λ − Kτ1/q
∗ )

(
= (1 − β)(λ − Kτ−1/p

∗ )
)

. (2.11)

Then K � λ if and only if cλ � 0 .
(2) The equation

(1 − α)(Kτ1/q − βλ ) = (1 − β)(Kτ−1/p − αλ ) (2.12)

is equivalent to (2.10), that is, it has the same solution τ = τ∗ as a unique one. Define
the constant c̃λ by

c̃λ = (1 − α)(Kτ1/q
∗ − βλ )

(
= (1 − β)(Kτ−1/p

∗ − αλ )
)

. (2.13)

Then λ � K̃ if and only if c̃λ � 0 .

Proof. Put

L(τ) = (1 − α)(λ − Kτ1/q) − (1 − β)(λ − Kτ−1/p). (2.14)

Then L(τ) is strictly decreasing on (0,∞) , and lim
τ→+0

L(τ) = +∞, lim
τ→∞L(τ) = −∞ .

Hence the equation L(τ) = 0 , or equivalently, (2.10) has a unique positive solution

τ∗ . Next note that the signs of (1−α)(λ −Kτ1/q
∗ ) and (1− β)(λ −Kτ∗−1/p) are the

same, or the both are zero. Hence, if cλ � 0 , then from 1−α > 0 and 1− β > 0 we
see that λ − Kτ1/q

∗ � 0 and λ − Kτ−1/p
∗ � 0 , that is, (K/λ )p � τ∗ � (λ/K)q. This

implies K � λ . On the other hand, if cλ < 0 , then by the same method, we obtain
K > λ . To see (2), we note that the equation (2.12) is obtained by subtracting the both
sides of (2.10) respectively from (1 − α)(1 − β)λ . The remaining fact is obtained
similarly as in (1). �

We need the following theorem ([1], [12]) later to guarantee the best possibility of
our estimation of (1.3) (cf. (3.1)) in some sense.

THEOREM S . (Sion’s minimax theorem) Let f be a real-valued function defined
on the product X ×Y of X and Y , each of which is a subset in a respective topological
vector space. Assume that
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(1) X is compact convex and Y is convex.

(2) For all τ in Y , f (·, τ) is quasiconcave on X , i.e., for λ ∈ R (= (−∞,∞)) ,

{z; z ∈ X, f (z, τ) � λ}

is convex or empty in X .

(3) For all z in X, f (z, ·) is quasiconvex on Y , i.e., for λ ∈ R ,

{τ; τ ∈ Y, f (z, τ) � λ}

is convex or empty in Y .

(4) For all τ in Y, f (·, τ) is upper semicontinuous on X and for all z in X, f (z, ·) is
lower semicontinuous on Y .
Then

inf
τ∈Y

sup
z∈X

f (z, τ) = sup
z∈X

inf
τ∈Y

f (z, τ).

3. Main results

Our problem is calculating an upper bound of Sp,λ (a, b) under the assumption
(1.2). By Lemma 2.2 the problem is reduced to that of computing the maximum of
Sp,λ (a, b) among points (a(s), b(t)) ∈ [m1, M1]n × [m2, M2]n given in (2.4). In this
section we really compute an upper bound of Sp,λ (a(s), b(t)) , which is not always the
maximum, but the best possible in a reasonable sense (see Remark 3.3).

LEMMA 3.1. Let a(s) and b(t) be n -tuples given in Lemma 2.2 (2.4). Put
α = m1/M1 , β = m2/M2 , τα = qKα

pKβ
α−p and τβ = qKα

pKβ
βq . Then for any λ > 0

S = Sp,λ (a(s), b(t)) � nM1M2F(λ ), (3.1)

where F(λ ) = F(λ ;α, β , p) is the constant defined as follows.

Case I : 0 � t � s � n

F(λ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − λ if 0 < λ < min{Kα
p ,

Kβ
q }

{ 1
Kα

+ 1
Kβ

(K
λ )q − 1}λ if Kα

p (= min{Kα
p ,

Kβ
q }) � λ < K

{ 1
Kα

(K
λ )p + 1

Kβ
− 1}λ if

Kβ
q (= min{Kα

p ,
Kβ
q }) � λ < K

β(1 − λ ) if K � λ , τ∗ < τβ
( 1

Kα
+ 1

Kβ
− 1)λ − cλ ( 1

1−αp + 1
1−βq − 1) if K � λ , τβ � τ∗ � τα

α(1 − λ ) if K � λ , τα < τ∗.
(3.2)
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Case II : 0 � s � t � n

F(λ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β(1 − λ ) if 0 < λ � K̃, τ∗ < τβ
( 1

Kα
+ 1

Kβ
− 1)λ − cλ ( 1

1−αp + 1
1−βq − 1) if 0 < λ � K̃, τβ � τ∗ � τα

α(1 − λ ) if 0 < λ � K̃, τα < τ∗
{ αp

Kα
+ 1

Kβ
(K
λ )q − α}βλ if K̃ < λ � K̃α

p (= max{ K̃α
p ,

K̃β
q })

{ 1
Kα

(K
λ )p + βq

Kβ
− β}αλ if K̃ < λ � K̃β

q (= max{ K̃α
p ,

K̃β
q })

αβ(1 − λ ) if max{ K̃α
p ,

K̃β
q } < λ .

(3.3)

Proof. Without loss of generality we may assume M1 = M2 = 1 , so that m1 = α
and m2 = β .

Case I: Let 0 � t � s � n , and let

a(s) = (

t︷ ︸︸ ︷
1, . . . , 1 ,

s−t︷ ︸︸ ︷
1, . . . , 1 ,

n−s︷ ︸︸ ︷
α, . . . ,α ), b(t) = (

t︷ ︸︸ ︷
β , . . . , β ,

s−t︷ ︸︸ ︷
1, . . . , 1 ,

n−s︷ ︸︸ ︷
1, . . . , 1 ).

Then

S = {s + (n − s)αp}1/p {tβq + (n − t)}1/q − {tβ + (s − t) + (n − s)α} λ .

Putting x = n − s and y = t , we have

S = S[x, y] (3.4)

= (n − x + xαp)1/p(βqy + n − y)1/q − (βy + n − x − y + αx)λ
= {n − (1 − αp)x}1/p{n − (1 − βq)y}1/q + {(1 − α)x + (1 − β)y − n}λ

for integers x, y , x � 0 , y � 0 and x + y � n .
We set

Δ := {(x, y); x � 0, y � 0, x + y � n} .

Then we wish to determine the maximum of S over the integer points of Δ , a subset
of Δ . However, it will be very involved. Therefore we shall consider S over the whole
points of Δ instead. That is, we shall determine

max S := max {S[x, y]; (x, y) ∈ Δ} .

To this end, we want to introduce a subsidiary function (defined later) of S[x, y] .
First replace u , w , μ and ν in Lemma 2.1 by

n − (1 − αp)x, n − (1 − βq)y,
μ1

Kα
and

ν1

Kβ
for μ1 > 0, ν1 > 0,

respectively. Then from (2.1), we have

{n − (1 − αp) x}1/p {n − (1 − βq) y}1/q (3.5)

�
(

Kα

pμ1

)1/p ( Kβ

qν1

)1/q [ μ1

Kα
{n − (1 − αp) x} +

ν1

Kβ
{n − (1 − βq) y}

]

= K

[
n

Kα

(
μ1

ν1

)1/q

+
n

Kβ

(
μ1

ν1

)−1/p

− (1−α)
(
μ1

ν1

)1/q

x − (1−β)
(
μ1

ν1

)−1/p

y

]
.
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Hence, if we put τ = μ1

ν1
, then it follows from (3.4) and (3.5) that

S � nK

(
τ1/q

Kα
+

τ−1/p

Kβ

)
−nλ+(1−α)(λ−Kτ1/q)x+(1−β)(λ−Kτ−1/p)y, (3.6)

for integers x, y, (x, y) ∈ Δ .
Now we denote by Tλ (x, y; τ) the right-hand side of (3.6) as a subsidiary function for
S[x, y] , and put

φ(τ) = max
(x,y)∈Δ

Tλ (x, y; τ) for τ > 0.

Then we shall calculate the minimum φ of φ(τ) , that is,

φ = min
τ>0

φ(τ) = min
τ>0

max
(x,y)∈Δ

Tλ (x, y; τ) (3.7)

as an upper bound F(λ ) of S = S[x, y] , in place of max S[x, y] itself. Since Tλ ,τ(x, y) =
Tλ (x, y; τ) is an affine function on the triangle Δ, it attains its maximum φ(τ) at one
of the vertices (n, 0), (0, n) and (0, 0) of Δ, i.e.,

φ(τ) = max
(x,y)∈Δ

Tλ ,τ(x, y) = max{Tλ ,τ(n, 0), Tλ ,τ(0, n), Tλ ,τ(0, 0)}. (3.8)

For convenience sake we define several functions. Let

Gλ (τ) =
Tλ ,τ(n, 0)

n
= K

(
τ1/q

Kα
+

τ−1/p

Kβ

)
− λ + (1 − α)(λ − Kτ1/q)

(3.9)

= K

(
αpτ1/q

Kα
+

τ−1/p

Kβ

)
− αλ ,

Hλ (τ) =
Tλ ,τ(0, n)

n
= K

(
τ1/q

Kα
+

τ−1/p

Kβ

)
− λ + (1 − β)(λ − Kτ−1/p)

(3.10)

= K

(
τ1/q

Kα
+

βqτ−1/p

Kβ

)
− βλ ,

Iλ (τ) =
Tλ ,τ(0, 0)

n
= K

(
τ1/q

Kα
+

τ−1/p

Kβ

)
− λ , (3.11)

and let

gλ (τ) = Gλ (τ) − Iλ (τ) = (1 − α)(λ − Kτ1/q),

hλ (τ) = Hλ (τ) − Iλ (τ) = (1 − β)(λ − Kτ−1/p).

Then we have easily the following facts.

(i) G′
λ (τ) = 0 has a unique solution τ = τα = qKα

pKβ
α−p , moreover Gλ (τ) is decreasing

for (0 <)τ � τα , increasing for τα < τ and hence min
τ>0

Gλ (τ) = Gλ (τα) = α(1−λ ) .

(ii) H′
λ (τ) = 0 has a unique solution τ = τβ = qKα

pKβ
βq , moreover Hλ (τ) is decreasing
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for (0 <)τ � τβ , increasing for τβ < τ and hence min
τ>0

Hλ (τ) = Hλ (τβ ) = β(1− λ ) .

(iii) I′λ (τ) = 0 has a unique solution τ = τI = qKα
pKβ

, moreover Iλ (τ) is decreasing for

(0 <)τ � τI , increasing for τI < τ and hence min
τ>0

Iλ (τ) = Iλ (τI) = 1 − λ .

(iv) gλ (τ) is strictly decreasing and lim
τ→+0

gλ (τ) = (1 − α)λ , lim
τ→∞ gλ (τ) = −∞ , and

hence the equation gλ (τ) = 0 has a unique solution τg = ( λK )q .

(v) hλ (τ) is strictly increasing and lim
τ→+0

hλ (τ) = −∞, lim
τ→∞ hλ (τ) = (1 − β)λ , and

hence the equation hλ (τ) = 0 has a unique solution τh = (K
λ )p .

Note that (3.8) can be rewritten as follows:

φ(τ) = n max{Gλ (τ), Hλ (τ), Iλ (τ)}.

We denote by φ0 the minimum φ/n of the function φ(τ)/n . Recall that the equation
Gλ (τ) = Hλ (τ) , i.e., gλ (τ) = hλ (τ) has a unique solution τ∗ from Lemma 2.3(1),
and that the constant cλ is defined (in (2.11)) as

cλ = (1 − α)(λ − Kτ1/q
∗ )

(
= (1 − β)(λ − Kτ−1/p

∗ )
)

.

Now in order to compute φ0 , we divide Case I again into two cases according to cλ � 0
and cλ < 0 .

[I-1] Let cλ � 0 . Then K � λ as an equivalent condition from Lemma 2.3(1).
In this case, at least one of gλ (τ) and hλ (τ) is nonnegative (for any τ > 0 ), for if not,
then λ − Kτ1/q < 0 and λ − Kτ−1/p < 0 , which implies that

( λ
K

)q � τ �
(

K
λ
)p

,
or λ < K , a contradiction. Hence, either Gλ (τ) or Hλ (τ) is not smaller than Iλ (τ).
Furthemore, since L(τ) = gλ (τ) − hλ (τ) = Gλ (τ) − Hλ (τ) � 0 or < 0 according to
0 < τ � τ∗ or τ∗ < τ (from the proof of Lemma 2.3 (1)), we have

φ(τ) = n max{Gλ (τ), Hλ (τ)} =
{

nGλ (τ) if 0 < τ � τ∗
nHλ (τ) if τ∗ < τ .

(3.12)

Note that τβ = qKα
pKβ

βq � qKα
pKβ

α−p = τα . Now by a simple computation or by tracing

the graphs of Gλ (τ) and Hλ (τ) , we can obtain the minimum φ0 of φ(τ)/n as follows:

φ0 =

⎧⎨
⎩

Gλ (τα) if τα < τ∗
Gλ (τ∗) (= Hλ (τ∗)) if τβ � τ∗ � τα
Hλ (τβ ) if τ∗ < τβ .

(3.13)

We now want to express φ0 in terms of λ ,α, β , Kα , Kβ and τ∗ (or cλ ). If τβ � τ∗ �
τα , then by the definition of cλ , we have

Kτ1/q
∗ = λ − cλ

1 − α
and Kτ−1/p

∗ = λ − cλ
1 − β

,
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so that, from (3.9) (or (3.10)), we have

φ0 = Gλ (τ∗) (= Hλ (τ∗))

= K

(
τ1/q
∗
Kα

+
τ−1/p
∗
Kβ

)
− λ + (1 − α)(λ − Kτ1/q

∗ )

=
(

1
Kα

+
1
Kβ

− 1

)
λ − cλ

(
1

1 − αp
+

1
1 − βq

− 1

)
.

If τα < τ∗ , then φ0 = Gλ (τα) = α(1−λ ) from (i). If τ∗ < τβ , then φ0 = Hλ (τβ ) =
β(1 − λ ) from (ii). Hence, puttig F(λ ) = φ0 in each subcase, we have the later half
(the case K � λ ) of (3.2).

[I-2] Let cλ < 0 . Then (0 <)λ < K as an equivalent condition from Lemma
2.3(1). Recall that from (iv) and (v) gλ (τ) = Gλ (τ)−Iλ (τ) and hλ (τ) = Hλ (τ)−Iλ (τ)
are strictly decreasing and strictry increasing, respectively, and τg = ( λK )q and τh =
(K
λ )q are unique solutions of gλ (τ) = 0 and hλ (τ) = 0 , respectively. Hence from
λ < K we can see that τg < τh , and furthermore that

φ(τ) =

⎧⎨
⎩

nGλ (τ) if 0 < τ � τg

nIλ (τ) if τg < τ < τh

nHλ (τ) if τh � τ .
(3.14)

By an elementary computation or by tracing the graphs of Gλ (τ) , Hλ (τ) and Iλ (τ) ,
we can obtain the minimum φ0 of φ(τ)/n as follows:

φ0 =

⎧⎨
⎩

Iλ (τg) if τI � τg

Iλ (τI) if τg < τI < τh

Iλ (τh) if τh � τI .
(3.15)

Now we want to express φ0 in terms of Kα , Kβ , K and λ . First let τI � τg(< τh).
Then we have

τI

τg
=

qKα/pKβ

(λ/K)q
=
(

Kα

pλ

)q

� 1.

Hence, as an equivalent condition to τI � τg(< τh) , we have Kα
p � λ , or more

precisely
Kα

p

(
= min

{
Kα

p
,
Kβ

q

})
� λ < K,

because K lies between Kα
p and

Kβ
q as a weighted geometric mean of them (cf. (2.5)).

In this case, from (3.11) we have

φ0 = Iλ (τg) = K

(
τ1/q
g

Kα
+

τ−1/p
g

Kβ

)
− λ =

{
1

Kα
+

1
Kβ

(
K
λ

)q

− 1

}
λ .

Secondly let (τg <)τh � τI . Then similarly as before, we have
Kβ
q � λ , or more

precisely
Kβ

q

(
= min

{
Kα

p
,
Kβ

q

})
� λ < K
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as an equivalent condition to τh � τI . In this case, from (3.11) we have

φ0 = Iλ (τh) = K

(
τ1/q
h

Kα
+

τ−1/p
h

Kβ

)
− λ =

{
1

Kα

(
K
λ

)p

+
1
Kβ

− 1

}
λ .

Finally let τg < τI < τh, Then by the above argument, we observe that

(0 <)λ < min

{
Kα

p
,
Kβ

q

}
(� K)

as an equivalent condition to τg < τI < τh. In this case, from (iii) we have

φ0 = Iλ (τI) = 1 − λ .

Now, putting F(λ ) = φ0 in each subcase, we obtain the first half (0 < λ � K ) of
(3.2).

Case II: Let 0 � s � t � n , and let

a(s) = (

s︷ ︸︸ ︷
1, . . . , 1 ,

t−s︷ ︸︸ ︷
α, . . . ,α ,

n−t︷ ︸︸ ︷
α, . . . ,α ), b(t) = (

s︷ ︸︸ ︷
β , . . . , β ,

t−s︷ ︸︸ ︷
β , . . . , β ,

n−t︷ ︸︸ ︷
1, . . . , 1 ).

Then

S = {s + (n − s)αp}1/p {(n − t) + tβq}1/q − {sβ + (t − s)αβ + (n − t)α} λ .

Putting x = s and y = n − t , we have

S = S̃[x, y] = {nαp + (1 − αp)x}1/p{nβq + (1 − βq)y}1/q (3.16)
−{β(1 − α)x + α(1 − β)y + nαβ}λ

for integers x, y , x � 0 , y � 0 and x + y � n .
As in Case I, by using (2.1) of Lemma 2.1, we have

{nαp + (1 − αp)x}1/p {nβq + (1 − βq)y}1/q (3.17)

� K
{

αpτ1/q

Kα
n + βqτ−1/p

Kβ
n + (1 − α)xτ1/q + (1 − β)yτ−1/p

}
.

Hence it follows from (3.16) and (3.17) that

S � nK
(
αpτ1/q

Kα
+ βqτ−1/p

Kβ

)
− nαβλ (3.18)

+(1 − α)(Kτ1/q − βλ )x + (1 − β)(Kτ−1/p − αλ )y

for integers x, y , (x, y) ∈ Δ .

Similarly as in Case I, we denote by T̃λ (x, y; τ) the right-hand side of (3.18) as a
subsidiary function for S̃[x, y] and put

φ̃(τ) = max
(x,y)∈Δ

T̃λ (x, y; τ) for τ > 0.
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Then we shall calculate the minimum φ̃ of φ̃(τ) , that is,

φ̃ = min
τ>0

φ̃(τ) = min
τ>0

max
(x,y)∈Δ

T̃λ (x, y; τ)

instead of max S̃[x, y] , as an upper bound F(λ ) of S . Since T̃λ ,τ(x, y) = T̃λ (x, y, τ) is
an affine function on Δ , it attains its maximum φ̃(τ) at one of the vertices (n, 0), (0, n)
and (0, 0) of Δ as in Case I, i.e.,

φ̃(τ) = max
(x,y)∈Δ

T̃λ ,τ(x, y) = max{T̃λ ,τ(n, 0), T̃λ ,τ(0, n), T̃λ ,τ(0, 0)}. (3.19)

Here we define the following functions as Case I. Let

G̃λ (τ) = T̃λ ,τ(n, 0)/n,

H̃λ (τ) = T̃λ ,τ(0, n)/n,

Ĩλ (τ) = T̃λ ,τ(0, 0)/n = K

(
αpτ1/q

Kα
+

βqτ−1/p

Kβ

)
− αβλ , (3.20)

and let

g̃λ (τ) = G̃λ (τ) − Ĩλ (τ) = (1 − α)(Kτ1/q − βλ ),

h̃λ (τ) = H̃λ (τ) − Ĩλ (τ) = (1 − β)(Kτ−1/p − αλ ).

Then we easily see the following facts.

(vi) g̃λ (τ) is strictly increasing and lim
τ→+0

g̃λ (τ) = −(1 − α)βλ , lim
τ→∞ g̃λ (τ) = ∞ ,

and hence the equation g̃λ (τ) = 0 has a unique solution τg̃ = ( βλK )q ,

(vii) h̃λ (τ) is strictly decreasing and lim
τ→+0

h̃λ (τ) = ∞ , lim
τ→∞ h̃λ (τ) = −α(1 − β)λ ,

and hence the equation h̃λ (τ) = 0 has a unique solution τh̃ = ( K
αλ )p .

(viii) Ĩ′λ (τ) = 0 has a unique solution τ = τĨ = qβqKα
pαpKβ

, moreover Iλ (τ) is decreasing

for (0 <)τ � τĨ , increasing for τĨ < τ and hence min
τ>0

Ĩλ (τ) = Ĩλ (τĨ) = αβ(1 − λ ) .

Note that (3.19) can be rewritten as follows:

φ̃(τ) = n max
{
G̃λ (τ), H̃λ (τ), Ĩλ (τ)

}
.

We denote by φ̃0 the minimum φ̃/n of the function φ̃(τ)/n . Recall that the equation
G̃λ (τ) = H̃λ (τ) , i.e., g̃λ (τ) = h̃λ (τ) has a unique solution τ∗ from Lemma 2.3(2),
and that the constant c̃λ is defined (cf. (2.13)) as

c̃λ = (1 − α)(Kτ∗1/q − βλ )
(
= (1 − β)(Kτ∗−1/p − αλ )

)
.

Now in order to compute φ̃0 , we divide Case II again into two cases according to c̃λ � 0
and c̃λ < 0 .

[II-1] Let c̃λ � 0 . Then (0 <)λ � K̃ as an equivalent condition from Lemma
2.3(2). In this case we can see that at least one of g̃λ (τ) and h̃λ (τ) is nonnegative (for
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any τ > 0 ), i.e., either G̃λ (τ) or H̃λ (τ) is not smaller than Ĩλ (τ) . Furthermore, we
can see that G̃λ (τ) = T̃λ ,τ(n, 0)/n = Hλ (τ) and H̃λ (τ) = T̃λ ,τ(0, n)/n = Gλ (τ) , so
that

φ̃(τ) = n max
{
G̃λ (τ), H̃λ (τ)

}
= n max {Gλ (τ), Hλ (τ)} (= φ(τ)). (3.21)

Hence we can reduce the further discussion to one in Case [I-1]. Consequently, we
obtain the same value φ as the minimum φ̃ of φ̃(τ) = max

{
T̃λ ,τ(x, y); (x, y) ∈ Δ

}
.

[II-2] Let c̃λ < 0 . Then K̃ < λ as an equivalent condition from Lemma 2.3(2).
In this case, by (vi) and (vii), we can see that τh̃ = ( K

αλ )p < ( βλK )q = τg̃ , and that

φ̃(τ) =

⎧⎨
⎩

nGλ (τ) (= nH̃λ (τ)) if 0 < τ � τh̃
nĨλ (τ) if τh̃ < τ < τg̃

nHλ (τ) (= nG̃λ (τ)) if τg̃ � τ .
(3.22)

By an elementary calculation, or by tracing the graphs of G̃λ (τ) , H̃λ (τ) and Ĩλ (τ) ,
we can see that the minimum φ̃0 of φ̃(τ)/n is given as follows:

φ̃0 =

⎧⎨
⎩

Ĩλ (τg̃) if τg̃ � τĨ

Ĩλ (τĨ) if τh̃ < τĨ < τg̃

Ĩλ (τh̃) if τĨ � τh̃ .
(3.23)

Now we want to express φ̃0 in terms of Kα , Kβ , K , α , β and λ . First let
(τh̃ <)τg̃ � τĨ . Then we have

τg̃

τĨ
=

(βλ/K)q

qβqKα/pαpKβ
=

αppqλ q

Kq
α

� 1.

Hence as an equivalent condition to τg̃ � τĨ , we have λ � K̃α
p (= Kα

pαp/q ) , or more

precisely

K̃ < λ � K̃α

p

(
= max

{
K̃α

p
,
K̃β

q

})
,

because K̃ lies between K̃α
p and

K̃β
q as a weighted geometric mean of them (cf. (2.6)).

In this case, from (3.20) we have

φ̃0 = Ĩλ (τg̃) = K

(
αpτ1/q

g̃
Kα

+
βqτ−1/p

g̃
Kβ

)
− αβλ (3.24)

=
{

αp

Kα
+ 1

Kβ

(
K
λ
)q − α

}
βλ .

Next let τĨ � τh̃(< τg̃). Then similarly as before, we have λ � K̃β
q (=

Kβ
qβq/p ) , or more

precisely

K̃ < λ � K̃β

q

(
= max

{
K̃α

p
,
K̃β

q

})
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as an equivalent condition to τĨ � τh̃. In this case, from (3.20) we have

φ̃0 = Ĩλ (τh̃) = K

(
αpτ1/q

h̃
Kα

+
βqτ−1/p

h̃
Kβ

)
− αβλ (3.25)

=
{

1
Kα

(
K
λ
)p + βq

Kβ
− β

}
αλ .

Finally let τh̃ < τĨ < τg̃. Then by the above argument, we observe that

λ > max

{
K̃α

p
,
K̃β

q

}
(� K̃)

as an equivalent condition to τh̃ < τĨ < τg̃ . In this case, from (viii) we have

φ̃0 = Ĩλ (τĨ) = αβ(1 − λ ). (3.26)

Putting F(λ ) = φ̃0 in each subcase of Case II, we obtain (3.3). This completes the
proof. �

NowapplyingTheoremS,weprove the following factwhich shows that nM1M2F(λ ) ,
the right side of (3.1) in Lemma 3.1 is the best bound in a reasonable sense.

LEMMA 3.2. With the same notations as in Lemma 3.1 (with the assumption
M1 = M2 = 1 added ) ,

nF(λ ) =
{

max(x,y)∈Δ S[x, y] (Case I)
max(x,y)∈Δ S̃[x, y] (Case II). (3.27)

Proof. We begin with Case I. By (3.7)

F(λ ) = min
τ>0

max
(x,y)∈Δ

Tλ (x, y; τ).

From (3.6) we have
S[x, y] � Tλ (x, y; τ)

and from (2.2) we can see that the equality holds for

τ = τx,y =
μ1

ν1
=

qKα{n − (1 − βq)y}
pKβ{n − (1 − αp)x} (> 0), (3.28)

and so
S[x, y] = Tλ (x, y; τx,y) = min

τ>0
Tλ (x, y; τ).

Hence what we have to show is

min
τ>0

max
(x,y)∈Δ

Tλ (x, y; τ) = max
(x,y)∈Δ

min
τ>0

Tλ (x, y; τ). (3.29)

Let z = (x, y) ∈ Δ and write Tλ (z, τ) = Tλ (x, y; τ) . Then the function Tλ (z, τ)
defined on Δ × R

+ (R
+ = (0,∞) ) satisfies all assumptions of Theorem S. In fact,

first we see that the assumptions (1) and (4) hold, because Δ is a compact convex set
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in the plane and Tλ (·, ·) is continuous on Δ × R
+ . Next we see that the assumptions

(2) and (3) hold: For any τ ∈ R
+ , Tλ (·, τ) is an affine function, hence quasiconcave

function on Δ . Furthermore, Tλ (z, τ) can be rewritten as follows:

Tλ (z, τ) = Aτ1/q + Bτ−1/p + C,

A =
K
Kα

{n − (1 − αp)y} (> 0),

B =
K
Kβ

{n − (1 − βq)x} (> 0),

C = (1 − α)λy + (1 − β)λx − nλ (> 0).

Hence we can check that Tλ (z, ·) is a quasiconvex function on R
+ . Consequently, we

obtain the desired identity (3.29).
For Case II, by the similar argument as in Case I we can also obtain the corre-

sponding identity in (3.27). This completes the proof. �

REMARK 3.3. Say, in Case I, let τ0 and (x0, y0) be points such that φ(τ0) =
minτ>0 φ(τ) and S[x0, y0] = max(x,y)∈Δ S[x, y] respectively. (Say, τ0 = τ∗ if λ �
K, τβ � τ∗ � τα by (3.13). ) Then the minimax relation (3.29) ensures (with the
assumption M1 = M2 = 1 ) that

Tλ (x, y; τ0) � Tλ (x0, y0; τ0) = S[x0, y0] = φ(τ0)
= nF(λ ) � Tλ (x0, y0; τ) for (x, y) ∈ Δ, τ > 0.

The point ((x0, y0), τ0) is called a saddle point of Tλ (x, y; τ) with respect to Δ × R+

[13, p. 72].
From the above lemma nF(λ ) is the best upper bound of S[x, y] ( for Case I ) on

the whole set Δ . However, the domain of S[x, y] is the integer points of Δ in itself.
Hence if (x0, y0) is precisely an integer point in Δ then nF(λ ) is really the best bound
of S[x, y] . This justifies that we call nF(λ ) the best bound in a reasonable sense.

In order to obtain a refined form of Lemma 3.1 we prepare

LEMMA 3.4. Under the same notations as in Lemma 3.1, if K � λ � K̃ , then
τβ � τ∗ � τα .

Proof. Let L(λ , τ) = L(τ) (cf. (2.14)), that is,

L(λ , τ) = (1 − α)(λ − Kτ1/q) − (1 − β)(λ − Kτ−1/p).

Then first, putting λ = K , we have

L(K, 1) = 0, (3.30)

and moreover
τβ < 1 < τα . (3.31)
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Indeed, we have by (2.7)

τβ =
qKα

pKβ
βq =

Kα/p
Kβ/q

βq = θp−1
α θβ

(
β
θβ

)q

< 1,

and similarly 1 < τα . Since L(K, τ) is a strictly decreasing function in τ , we see,
from the facts (3.30) and (3.31), that

L(K, τβ ) > 0 and L(K, τα ) < 0. (3.32)

Next, putting λ = K̃ , we have

L(K̃,
β
α

) = 0,

and moreover

τβ <
β
α

< τα .

Hence similarly as (3.32) we have

L(K̃, τβ ) > 0 and L(K̃, τα) < 0. (3.33)

Now note that any λ ∈ [K, K̃] is written as λ = μK + (1 − μ)K̃ for some μ ∈ [0, 1] ,
and that L(λ , τ) is an affine function with respect to λ . Hence we have

L(λ , τ) = L(μK + (1 − μ)K̃, τ) = μL(K, τ) + (1 − μ)L(K̃, τ),

so that by (3.32) and (3.33) we have

L(λ , τβ ) = μL(K, τβ ) + (1 − μ)L(K̃, τβ ) > 0.

Similarly we have L(λ , τα) < 0 . Hence there exists a unique τ0 ∈ [τβ , τα ] such that

L(λ , τ0) = 0,

and this solution τ0 is nothing but τ∗ . �

Now we show our main result as a refined form of Lemma 3.1.

THEOREM 3.5. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n -tuples of positive
numbers satisfying (1.2). Then with the same notations as in Lemma 3.1,

Sp,λ (a, b) =
(∑

ap
k

)1/p (∑
bq

k

)1/q
− λ

∑
akbk � nM1M2F0(λ ), (3.34)
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where F0(λ ) = F0(λ ;α, β , p) is defined by

F0(λ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − λ if 0 < λ < min{Kα
p ,

Kβ
q }

{ 1
Kα

(K
λ )p + 1

Kβ
− 1}λ if

Kβ
q (= min{Kα

p ,
Kβ
q }) � λ < K

{ 1
Kα

+ 1
Kβ

(K
λ )q − 1}λ if Kα

p (= min{Kα
p ,

Kβ
q }) � λ < K

( 1
Kα

+ 1
Kβ

−1)λ − cλ ( 1
1−αp + 1

1−βq−1) if K � λ � K̃

{ αp

Kα
+ 1

Kβ
(K
λ )q − α}βλ if K̃ < λ � K̃α

p (= max{ K̃α
p ,

K̃β
q })

{ 1
Kα

(K
λ )p + βq

Kβ
− β}αλ if K̃ < λ � K̃β

q (= max{ K̃α
p ,

K̃β
q })

αβ(1 − λ ) if max{ K̃α
p ,

K̃β
q } < λ .

(3.35)
Furthermore, the constant nM1M2F0(λ ) is the best bound of Sp,λ (a, b) in a reasonable
sense as stated in Remark 3.3.

Proof. First let K � λ � K̃ . Then we have τβ � τ∗ � τα from Lemma 3.4, and
φ(τ) = φ̃(τ) = n max{Gλ (τ), Hλ (τ)} from (3.12) and (3.21). Hence by the argument
in the proof of Lemma 3.1 the upper bound F0(λ )(= F(λ )) of Sp,λ (a, b) is given by

φ0 = φ̃0 = G(τ∗) (= H(τ∗)).

Next let 0 < λ < K . Then from (3.14) and (3.21) (since λ < K̃ )

φ(τ) =

⎧⎨
⎩

nGλ (τ) if 0 < τ � τg

nIλ (τ) if τg < τ < τh

nHλ (τ) if τh � τ ,
and φ̃(τ) =

{
nGλ (τ) if 0 < τ � τ∗
nHλ (τ) if τ∗ < τ .

Note that the function L(τ) (defined by (2.14)) is strictly decreasing and L(τh) <
L(τ∗) = 0 < L(τg) , so that we have τg < τ∗ < τh . Now, comparing φ(τ) and φ̃(τ) ,
we can see that φ(τ) � φ̃(τ) . So by a simple computation (or by tracing the graph of
φ(τ) ), we can obtain its minimum φ0 = F0(λ ) as follows (identical to (3.15)):

φ0 =

⎧⎨
⎩

Iλ (τg) if τI � τg

Iλ (τI) if τg < τI < τh

Iλ (τh) if τh � τI .
(3.36)

Finally let K̃ < λ . Then from (3.22) and (3.12) (since K < λ )

φ̃(τ) =

⎧⎨
⎩

nGλ (τ) if 0 < τ � τh̃
nĨλ (τ) if τh̃ < τ < τg̃

nHλ (τ) if τg̃ � τ
and φ(τ) =

{
nGλ (τ) if 0 < τ � τ∗
nHλ (τ) if τ∗ < τ .

Here note τh̃ < τ∗ < τg̃ . Then, comparing φ̃(τ) and φ(τ) , we can see that φ̃(τ) �
φ(τ) . So, similarly as in the previous case we can obtain φ̃0 = F0(λ ) as follows
(identical to (3.23)):

φ̃0 =

⎧⎨
⎩

Ĩλ (τg̃) if τg̃ � τĨ

Ĩλ (τĨ) if τh̃ < τĨ < τg̃

Ĩλ (τh̃) if τĨ � τh̃ .
(3.37)

Expressing φ0 or φ̃0 in each case in terms of α , β , Kα , Kβ and λ , we obtain (3.35).
This completes the proof. �
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THEOREM 3.6. Let F0(λ ) be the constant defined in Theorem 3.5. Then F0(λ )
is a strictly decreasing continuous function on [K, K̃] , and the equation F0(λ ) = 0 has
a unique solution (denoted by λ = λ0) in the interval.

Proof. First if 0 < λ < K(< 1) , then by (3.36) F0(λ ) coincides with one of
Iλ (τg) , Iλ (τh) and Iλ (τI) , and they are all positive because (by (iii))

min{Iλ (τg), Iλ (τh), Iλ (τI)} = Iλ (τI) = 1 − λ > 0,

so that F0(λ ) > 0 . Next if (1 <)K̃ < λ , then by (3.37) F0(λ ) coincides with one of
Ĩλ (τg̃) , Ĩλ (τh̃) and Ĩλ (τĨ) , and they are all negative. In fact, from (2.7) and (3.24)

Ĩλ (τg̃) =
{
αp

Kα
+

1
Kβ

(
K
λ

)q

− α
}
βλ �

{
αp

Kα
+

1
Kβ

(
K

K̃

)q

− α
}
βλ

=

{
1
p

(
α
θα

)p−1

+
1
q

(
β
θβ

)q−1

− 1

}
αβλ < 0.

Similarly, from (2.7) and (3.25)

Ĩλ (τh̃) =
{

1
Kα

(
K
λ

)p

+
βq

Kβ
− β

}
αλ < 0.

Furthermore, from (3.26) Ĩλ (τĨ) = αβ(1 − λ ) < 0 . Hence F0(λ ) < 0 . Now it
suffices to see that F0(λ ) is strictly decreasing or F′

0(λ ) < 0 for λ ∈ (K, K̃) . By
(3.9) or (3.10) the function F0(λ ) is expressed on [K, K̃] as follows:

F0(λ ) = φ0 = Gλ (τ∗) (= Hλ (τ∗))

= K

(
αpτ1/q

∗
Kα

+
τ−1/p
∗
Kβ

)
− αλ .

Here τ∗ is the unique solution of the equation (2.10) depending on λ ∈ [K, K̃] . Write
τ∗ = τ(λ ) and F0(λ ) = F∗(τ(λ )) = F∗(λ , τ) . Then we have by (2.10)

(1 − α)
(

1 − K
q
τ

1
q−1 dτ

dλ

)
= (1 − β)

(
1 +

K
p
τ−

1
p−1 dτ

dλ

)
,

so that
dτ
dλ

=
τ

1
p +1(β − α)

K( 1−α
q τ + 1−β

p )
.

Hence we have

d
dλ

F0(λ ) =
∂F∗(λ , τ)

∂τ
dτ
dλ

+
∂F∗(λ , τ)

∂λ

= K

{
αp

Kα

1
q
τ

1
q−1 +

1
Kβ

(
−1

p

)
τ−

1
p−1
}

dτ
dλ

− α

= −
α(1−αp−1β)

qKα
τ + β(1−αβq−1)

pKβ

1−α
q τ + 1−β

p

< 0.
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This completes the proof. �

REMARK 3.7. (1) By a more precise calculation we can see that F0(λ ) is a
strictly decreasing continuous function on (0,∞) .
(2) For the unique solution λ = λ0 of the equation F0(λ ) = 0 , the corresponding
solution τ = τ∗ = τ(λ0) of (2.10) is in [τβ , τα ] from Lemma 3.4 .

4. Applications to difference inequalities

Recently the following theorem was given in [5].

THEOREM I . Under the same assumption as in Theorem 3.5

A0 :=
(∑

ap
k

)1/p (∑
bq

k

)1/q
−
∑

akbk � nM1M2F0, (4.1)

where F0 = 1
Kα

+ 1
Kβ

− 1 − c1

(
1

1−αp + 1
1−βq − 1

)
, and c1 is given by λ = 1 in

(2.11).
In particular, the following inequalities hold.

(i) If β → 1 , then(∑
ap

k

n

)1/p

−
∑

ak

n
� M1

[
1
q

{
1 − αp

p(1 − α)

}q−1

− α − αp

1 − αp

]
. (4.2)

(ii) If p = q = 2 , then(∑
a2

k

)1/2 (∑
b2

k

)1/2
−
∑

akbk � nM1M2
(1 − αβ)2

2(1 + α)(1 + β)
. (4.3)

(iii) If p = q = 2 and β → 1 , then(∑
a2

k

n

)1/2

−
∑

ak

n
� (M1 − m1)2

4(M1 + m1)
. (4.4)

Furthermore, it was shown in [6] that the constant nM1M2F0 in (4.1) is best
possible in a reasonable sense as stated in Remark 3.3. If we put λ = 1 in Theorem
3.5, then since K < 1 < K̃ we obtain (4.1) (with F0 = F0(1) ) at once.

Now as an extension of (4.2), concerning the difference of the p -th power mean
and the positive scalar multiple of the usual arithmetic mean of an n-tuple, we have the
following theorem:

THEOREM 4.1. Let a = (a1, . . . , an) be an n -tuple satisfying the same assumption
as in Theorem 3.5. Then for any λ > 0

A1(λ ) :=
(∑

ap
k

n

)1/p

− λ
∑

ak

n
� M1F1(λ ), (4.5)
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where F1(λ ) is defined by

F1(λ ) =

⎧⎪⎪⎨
⎪⎪⎩

1 − λ if 0 < λ < Kα
p

1
q

{
1−αp

p(1−α)λ

}q−1
− α−αp

1−αp λ if Kα
p � λ � Kα

αp−1p

α(1 − λ ) if Kα
αp−1p

< λ .

(4.6)

Proof. We shall obtain all facts, putting M2 = 1 and m2 = b1 = b2 = · · · = bn =
β → 1 in Theorem 3.5. (Instead we could give a direct proof, starting from (3.4) with
β = 1 .) From the inequality (3.34) or the one devided by n in the both sides, we can
obtain (4.5), letting β → 1 and writing F1(λ ) = limβ→1 F0(λ ,α, β , p). To see that
F1(λ ) is given by (4.6), first note that Kβ/q, K̃β/q → 1 (cf. (2.8), (2.9)), so that we
have

min

{
Kα

p
,
Kβ

q

}
→ Kα

p
and max

{
K̃α

p
,
K̃β

q

}
→ K̃α

p
.

Furthermore,

K →
(

Kα

p

)1/p

and K̃ →
(

Kα

αp−1p

)1/p

.

Hence we see that the seven cases with respect to λ in (3.35) are reduced to the
following five cases:

(i) 0 < λ < Kα
p , (ii) Kα

p � λ <
(

Kα
p

)1/p
, (iii)

(
Kα
p

)1/p
� λ <

(
Kα

αp−1p

)1/p
,

(iv)
(

Kα
αp−1p

)1/p
� λ < Kα

αp−1p
and (v) Kα

αp−1p
� λ .

For each of the cases (i) and (v) we obtain the desired F1(λ ) immediately. For the
remaining cases (ii), (iii) and (iv) we obtain a common

F1(λ ) =
1
q

{
1 − αp

p(1 − α)λ

}q−1

− α − αp

1 − αp
λ .

In fact, write ψ the right-hand side of the above identity for brevity, then for both (ii)
and (iv) we can obtain the same ψ as the limit of the corresponding F0(λ ,α, β , p) in

(3.35). For (iii), since the equation (2.10) becomes (1 − α)(λ −
(

Kα
p

)1/p
τ1/q) = 0 ,

so that

τ∗ →
{

λ
(Kα/p)1/p

}q

=
λ q

(Kα/p)q−1 . (4.7)

by continuity of the solution and cλ → 0 . Hence we have

cλ
1 − βq

=
(1 − β)(λ − Kτ−1/p

∗ )
1 − βq

→ 1
q

{
λ −

(
Kα

pλ

)q−1
}

.

Now it follows that(
1

Kα
+

1
Kβ

− 1

)
λ − cλ

(
1

1 − αp
+

1
1 − βq

− 1

)

→
(

1
Kα

+
1
q
− 1

)
λ − 1

q

{
λ −

(
Kα

pλ

)q−1
}

= ψ .
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This completes the proof. �

REMARK 4.2. The constant M1F1(λ ) defined in Theorem 4.1 is the best bound
of the difference A1(λ ) in a reasonable sense as stated in Remark 3.3, that is, for the

case Kα
p � λ � Kα

αp−1p
, if x0 =

1−
(

Kα
pλ

)p

1−αp n is an integer then A1(λ ) = A1(λ , a) attains

M1F1(λ ) at

a = (

n−x0︷ ︸︸ ︷
M1, . . . , M1 ,

x0︷ ︸︸ ︷
m1, . . . , m1 ).

Here the integer x = x0 is obtained from the relation ( cf. (3.28), (4.7) )

qKα{n − (1 − βq)y}
pKβ{n − (1 − αp)x} → λ q

(Kα/p)q−1
,

that is, from
nKα

p{n − (1 − αp)x} =
λ q

(Kα/p)q−1
.

For the other cases 0 < λ < Kα
p and Kα

αp−1p
< λ , A1(λ ) attains M1F1(λ ) at

a = (M1, . . . , M1) and (m1, . . . , m1) , respectively.

Next for p = q = 2 , Theorem 3.5 implies the following theorem:

THEOREM 4.3. Let a = (a1, . . . , an) and b = (b1, . . . , bn) be n -tuples sat-

isfying (1.2). Put α = min{ m1
M1

, m2
M2
}, β = max{ m1

M1
, m2

M2
}, γ = (1+α)1/2(1+β)1/2

2 and
γ̃ = γ

α1/2β1/2 . Write c′λ the constant of (2.11) with respect to p = q = 2 . Then for any

λ > 0

A2(λ ) :=
(∑

a2
k

)1/2 (∑
b2

k

)1/2
− λ

∑
akbk � nM1M2F2(λ ), (4.8)

where F2(λ ) is a constant defined by

F2(λ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − λ if 0 < λ < 1+α
2(

1+α
4λ 2 − α

1+α
)
λ if 1+α

2 � λ < γ
(1−αβ)λ

(1+α)(1+β) − c′λ
{

1−α2β2

(1−α2)(1−β2)

}
if γ � λ � γ̃(

1+α
4λ 2 − α

1+α
)
βλ if γ̃ < λ � 1+α

2α
αβ(1 − λ ) if 1+α

2α < λ .

(4.9)

In particular, if λ = 1 then we have the inequality (4.3) in Theorem I .

Proof. Let p = q = 2 in Theorem 3.5 (3.34). Then the condition α < β implies
Kα
p = 1+α

2 < 1+β
2 =

Kβ
q , so that we have min

{
Kα
p ,

Kβ
q

}
= 1+α

2 . Similarly, we have

max
{

K̃α
p ,

K̃β
q

}
= 1+α

2α . Moreover, K = γ and K̃ = γ̃ . Now using these facts, we
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can obtain (4.8) and (4.9) by an elementary calculation. In particular, if λ = 1 then
γ � 1 � γ̃ , so that(∑

a2
k

)1/2 (∑
b2

k

)1/2
−
∑

akbk � nM1M2
1 − αβ

(1 + α)(1 + β)
−c′1

{
1 − α2β2

(1 − α2)(1 − β2)

}
.

Since the equation (2.10) becomes

(1 − α)(1 − γ τ1/2) = (1 − β)(1 − γ τ−1/2),

we have the solution τ = τ∗ = (1 + β)/(1 + α). Hence we have

c′1 = (1 − α)(1 − γ τ1/2
∗ ) =

1
2
(1 − α)(1 − β),

from which we obtain the inequality (4.3) in Theorem I. �

In the above theorem, if λ = 1 , then a saddle point (Remark 3.3) of Tλ (x, y; τ)
(and also T̃λ (x, y; τ) ) is given as follows (see. [5, Theorem 3.1]):

((x0, y0), τ0) =
((

1 + 2β + αβ
2(1 + α)(1 + β)

n,
1 + 2α + αβ

2(1 + α)(1 + β)
n

)
,
1 + β
1 + α

)
.

Putting p = 2 in Theorem 4.1, or letting β → 1 in Theorem 4.3, we have

COROLLARY 4.4. Under the same assumption as in Theorem 4.1,

A3(λ ) :=
(∑

a2
k

n

)1/2

− λ
∑

ak

n
� M1F3(λ ), (4.10)

where F3(λ ) is a constant defined by

F3(λ ) =

⎧⎨
⎩

1 − λ if 0 < λ < 1+α
2

1+α
4λ − α

1+α λ if 1+α
2 � λ � 1+α

2α
α(1 − λ ) if 1+α

2α < λ .

In particular, if λ = 1 then we obtain the inequality (4.4) in Theorem I.

5. Applications to ratio inequalities

In this section we shall show some ratio inequalities which are induced by putting
F0(λ ) = 0 . It was shown in Theorem 3.6 and Remark 3.7 that the equation F0(λ ) = 0
has a unique solution λ = λ0 ∈ [K, K̃] , and that the corresponding τ = τ∗ = τ(λ0)
lies in [τβ , τα ] . First of all, we shall give the explicit expressions of the constants λ0

and τ(λ0) in terms of p , q , α and β . In preparation, we cite the following result due
to Gheorghiu [3] (or reverse Hölder’s inequality [9, p.685]):
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THEOREM G . Under the same assumption as in Theorem 3.5,(∑
ap

k

)1/p (∑
bq

k

)1/q
� λ�

∑
akbk, (5.1)

where

λ� =
1 − αpβq

p1/pq1/q(β − αβq)1/p(α − αpβ)1/q
.

Put

τ� =
(1 − β)(1 − αp)(β − αβq)
(1 − α)(1 − βq)(α − αpβ)

.

Then concerning λ� and τ� , we have the following lemma:

LEMMA 5.1. Under the same assumption as before, the following properties hold :
(i) K � λ� � K̃ .
(ii) τ = τ� is the (unique ) solution of (2.10 ) for λ = λ� , and τβ � τ� � τα .
(iii) F0(λ�) = 0 , that is, λ = λ� is the (unique ) solution of the equation F0(λ ) = 0 .

Hence we see that λ� and λ0 are identical from Theorem 3.6, and that τ� = τ(λ0)
from Lemma 2.3. Consequently we would have proved Theorem G.

Proof of Lemma 5.1. For (i), first to see λ� � K̃ , putting γ1 ≡ βq−1 , we have
from convexity of the function f (t) = tp (t > 0) ,

1 − αpβq

1 − αβq−1
=

1 − (αγ1)p

1 − αγ1
� 1 − αp

1 − α
,

because 0 < αγ1 < α < 1 . Similarly, we have

1 − αpβq

1 − αp−1β
� 1 − βq

1 − β
.

Hence

λ� =
1

α1/qβ1/p

{
1 − αpβq

p(1 − αβq−1)

}1/p{ 1 − αpβq

q(1 − αp−1β)

}1/q

� 1
α1/qβ1/p

{
1 − αp

p(1 − α)

}1/p{ 1 − βq

q(1 − β)

}1/q

= K̃.

To see K � λ� , putting γ2 = 1
βq−1 , we have similarly as before,

1 − αpβq

β − αβq
=

1
βq − αp

1
βq−1 − α

=
γ p
2 − αp

γ2 − α
� 1 − αp

1 − α
,

because γ2 > 1 > α > 0 . We also have

1 − αpβq

α − αpβ
� 1 − βq

1 − β
.
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Hence

λ� =
{

1 − αpβq

p(β − αβq)

}1/p { 1 − αpβq

q(α − αpβ)

}1/q

�
{

1 − αp

p(1 − α)

}1/p{ 1 − βq

q(1 − β)

}1/q

= K.

For (ii), computing the both sides of (2.10) for λ = λ� and τ = τ� directly, we
obtain

(1 − α)(λ� − Kτ1/q
� ) = c� = (1 − β)(λ� − Kτ−1/p

� ),

where

c� =
(1 − α)(1 − β) − (α − αp)(β − βq)
p1/pq1/q(β − αβq)1/p(α − αpβ)1/q

.

Another property τβ � τ� � τα is now clear from Lemma 3.4.
For (iii), by Theorem 3.5 and (i), we can show

F0(λ�) =
(

1
Kα

+
1

Kβ
− 1

)
λ� − c�

(
1

1 − αp
+

1
1 − βq

− 1

)
= 0, (5.2)

which implies the assertion (iii) from Theorem 3.6. �

Now we define B0(a, b, p) by

B0(a, b, p) =

(∑
ap

k

)1/p (∑
bq

k

)1/q∑
akbk

.

Then fom Lemma 5.1 and Theorem 3.5 we have the following fact with respect to
Gheorghiu’s inequality (5.1).

THEOREM 5.2. Under the same assumption as in Theorem 3.5, λ0(= λ�) is the
best bound of the ratio B0(a, b, p) in a reasonable sense as stated in Remark 3.3. More
precisely if there exists an integer point (x, y) in Δ such that

qKα{n − (1 − βq)y}
pKβ{n − (1 − αp)x} = τ� and x + y = n,

then B0(a, b, p) attains λ� .

In fact (say, for Case I), we have by Remark 3.3

Tλ�
(x, y; τ�) = nK

(
τ1/q
�

Kα
+

τ−1/p
�

Kβ

)
− nλ�

+ (1 − α)(λ� − Kτ1/q
� )x + (1 − β)(λ� − Kτ−1/p

� )y

=
(1 − α)(1 − β) − (α − αp)(β − βq)
p1/pq1/q(β − αβq)1/p(α − αpβ)1/q

(x + y − n) (� 0),

so that the maximum of Tλ�
(x, y; τ�) is obtained whenever x + y = n .



186 SAICHI IZUMINO AND MASARU TOMINAGA

Now for the ratio of the p -th power mean by the usual arithmetric mean of an
n -tuple, we have the following corollary:

COROLLARY 5.3. Under the same assumption as in Theorem 4.1,

B1(a) :=

(∑
ap

k

)1/p
n1/q∑

ak
� 1 − αp

p1/pq1/q(1 − α)1/p(α − αp)1/q
(= λ1). (5.3)

Proof. In Theorem 5.2 or Theorem G, we have only to put M2 = 1 and m2 = β ,
and let β → 1 . �

Here we note that the constant λ1 coincides with the p -th root of the constant
given by Ky Fan [2].

Next, putting p = q = 2 in Theorem 5.2 or Theorem G, we obtain the following
Pólya-Szegö inequality ([11], [9, p. 684]):

COROLLARY 5.4. Under the same assumption as in Theorem 3.5,

B2(a, b) :=

(∑
a2

k

)1/2 (∑
b2

k

)1/2∑
akbk

� 1 + αβ
2α1/2β1/2

. (5.4)

In particular, we obtain the following result due to Kantorovich from the above
corollary, or from Corollary 5.3 for p = 2 .

COROLLARY 5.5. Under the same assumption as in Corollary 5.3,

B3(a) :=

(
n
∑

a2
k

)1/2∑
ak

� 1 + α
2α1/2

. (5.5)
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