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REVERSED JENSEN TYPE INTEGRAL

INEQUALITIES FOR MONOTONE FUNCTIONS

P. J. BUSHELL AND A. CARBERY

(communicated by J. Pečarić)

Abstract. Reversed Jensen type integral inequalities for monotone functions are deduced from a
more general inequality. Special cases are of interest in the study of Volterra integral operators.

1. Introduction and statement of results

The integral version of the classical Jensen inequality is

g

(
1

σ(I)

∫
f dσ

)
� 1

σ(I)

∫
I
g(f )dσ (1.1)

where I is an interval in R , g is convex in R , σ is a positive measure in I and
f , g(f ) ∈ L1(I,σ).

This paper concerns inequalities similar to (1.1), with g convex and f monotone,
but with the inequality reversed, specifically inequalities of the type∫ x

0
g(f (s))k(s)dσ(s) �

(∫ x

0
k(s)dσ(s)

)
g

(
1
x

∫ x

0
f (s)ds

)
(1.2)

and ∫ x

0
g(f (s))k(x − s)ds �

(∫ x

0
k(s)ds

)
g

(
1
x

∫ x

0
f (s)ds

)
, (1.3)

for 0 < x � b.
There is an extensive literature on inequalities of reverse Hölder and Jensen

type. Recent work is cited in papers by Bergh [3], Heinig and Maligranda [5], Barza,
Pečarić and Persson [1] and Pečarić, Perić and Persson [7].

The special case of (1.3),

α
∫ x

0
(x − s)α−1f (s)αds �

(∫ x

0
f (s)ds

)α

, 0 � x � 1, (1.4)

with f increasing and α � 1, has attracted some attention with proofs by Walter and
Weckesser [8], Egorov [4] and Jagers [6].
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Inequalities (1.2) and (1.3) are consequences of the general inequality (1.6) of
Theorem 1, proved in §2. A second proof of (1.3) is given in §3, allowing an analysis
of the inequality

β
∫ x

0
(x − s)β−1f (s)αds � xβ−α

(∫ x

0
f (s)ds

)α

, 0 < x � 1, (1.5)

for increasing or decreasing f and different choices of α and β .
Throughout the paper increasing and decreasing will mean respectively non-

decreasing and non-increasing.

THEOREM 1.
(i) Let f be increasing and non-negative in [0, b] and let g be convex in [0,∞)

with g(0) = 0 .
(ii) Let k ∈ L1[0, b] be non-negative in [0, b] and let σ be a positive measure in

[0, b] .
Let

F(x) =
∫ x

0
f (s)ds, 0 � x � b.

Then ∫ x

0
g(f (s))k(s)dσ(s) � sup

0<c�1

{
g(F(x)/cx)

∫ x

(1−c)x
k(s)dσ(s)

}
(1.6)

for 0 � x � b .

In the statement of the corollaries

R = {(x, y) : 0 � x � b, y > 0} .

COROLLARY 1. Assuming (i) and (ii) of the Theorem, if

g(y/c)
∫ x

(1−c)x
k(s)dσ(s) � g(y)

∫ x

0
k(s)dσ(s) (1.7)

for (x, y) ∈ R and 0 < c � 1, then inequality (1.2) is valid.

COROLLARY 2.
(i) Let g be convex in [0,∞) with g(0) = 0, let k ∈ L1[0, b] be non-negative

in [0, b] and let

K(x) =
∫ x

0
k(s)ds, 0 � x � b.

(ii) Suppose that
g(y/c)K(cx) � g(y)K(x), (1.8)

for (x, y) ∈ R and 0 � c < 1 .
Then, if f is increasing and non-negative in [0, b] ,∫ x

0
k(x − s)g(f (s))ds � K(x)g

(
1
x
F(x)

)
, 0 < x � b, (1.9)
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and if f is decreasing and non-negative in [0, b] ,∫ x

0
k(s)g(f (s))ds � K(x)g

(
1
x
F(x)

)
, 0 < x � b. (1.10)

Remarks. (i) The restriction g(0) = 0 can be removed by applying the theorem
to the function G(x) = g(x) − g(0) and making the appropriate changes to the stated
results.

(ii) If g is concave, applying the theorem to −g gives (1.2) – (1.10) with the
inequalities reversed.

(iii) Walter and Wecknesser [8] proved that if f is increasing and non-negative in
[0, b], g is convex in [0,∞), k ∈ L1[0, b] and the function

hc(y) = g(cy) − g(y)K(c)

is increasing for y � 0 and 0 � c � b, then∫ x

0
k(x − s)g(f (s))ds � g

(∫ x

0
f (s)ds

)
, 0 � x � b. (1.11)

Taking g(y) = yα , K(x) = xβ and 1 � α � β in (1.11) gives

β
∫ x

0
(x − s)β−1f (s)αds �

(∫ x

0
f (s)ds

)α

, 0 � x � 1,

an apparently weaker inequality than (1.5).

2. Proof of Theorem 1

Take x ∈ (0, b]. We can suppose that F(x) > 0; otherwise the result is trivial.
Suppose at first that f (0) = 0, so that

F(x) =
∫ x

0
(x − t)df (t),

and dμ(t) = {(x − t)/F(x)} df (t) is a probability measure in [0, x]. Then

f (s) =
∫ x

0

F(x)
(x − t)

χ(0,s)(t)dμ(t),

where χI is the characteristic function of the interval I, and by Jensen’s inequality

g(f (s)) �
∫ x

0
g

(
F(x)

(x − t)
χ(0,s)(t)

)
dμ(t).

Thus, since g(0) = 0,

g(f (s)) �
∫ s

0
g

(
F(x)

(x − t)

)
dμ(t), for 0 � s � x,
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and hence ∫ x

0
g(f (s))k(s)dσ(s) �

∫ x

0
dμ(t)

∫ x

t
g

(
F(x)

(x − t)

)
k(s)dσ(s),

after reversing the order of integration. Hence∫ x

0
g(f (s))k(s)dσ(s) � sup

0�t<x

∫ x

t
g

(
F(x)

(x − t)

)
k(s)dσ(s)

and (1.3) follows on taking c = 1 − (t/x).
The restriction f (0) = 0 can be removed by standard density arguments using

dominated convergence of a sequence (f n) of increasing functions with f n(0) = 0 for
n ∈ N and such that f n → f (x) for x ∈ (0, b].

The proofs of the corollaries are straightforward. For Corollary 2, fix x in (0, b]
and observe that f (x − s) is a decreasing function of s in [0, x] if and only if f (s) is
an increasing function of s in [0, x], and hence (1.9) and (1.10) are equivalent. �

3. An alternative proof of Corollary 2

In this section we give an alternative proof of Corollary 2, making use of the
observations that g is differentiable a.e. and g(y)/y is increasing in (0,∞).

Proof. Let δ, y > 0. Taking c = y/(y + δ) in (1.8),

g(y + δ)K(xy/(y + δ)) � g(y)K(x).

Hence

[g(y + δ) − g(y)] K
(

xy
y + δ

)
� g(y)

[
K(x) − K

(
x − x

y + δ
δ
)]

,

and dividing by δ and letting δ tend to zero, we obtain

yg′(y)K(x) � xg(y)k(x), (3.1)

for (x, y) ∈ R and a. e. y > 0.
To prove (1.10), assume that f is decreasing and non-negative in [0, b], that is,

for some b0 in (0, b] ,

f > 0 in [0, b0), f = 0 in [b0, b). (3.2)

and so
h(x) := F(x)/x � f (x) > 0 in I0 = [0, b0), (3.3)

while h(0) = lim
x→0

F(x)/x = f (0).

Let
Δ(x) = xg(h(x))k(x) − h(x)g′(h(x))K(x)
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and

φ(x) = K(x)g(h(x)) −
∫ x

0
k(s)g(f (s))ds,

for 0 � x � b. Then φ(0) = φ ′(0) = 0,

φ ′(x) = k(x)f (x)
{

g(h(x))
h(x)

− g(f (x))
f (x)

}
+

Δ(x)
F(x)

{h(x) − f (x)} , 0 < x < b0,

and
φ ′(x) = k(x)g(A/x) − K(x)g′(A/x)(A/x2), b0 � x � b.

From (3.1) and (3.3), φ ′(x) � 0 a. e. in [0, b] and inequality (1.10) follows immedi-
ately.

To establish (1.9), fix x in (0, b] and replace f (s) in (1.10) by f (x − s). �

4. An application

In this section we consider the inequalities

β
∫ x

0
sβ−1f (s)αds � xβ−α

(∫ x

0
f (s)ds

)α

, 0 � x � b, (4.1)

and

β
∫ x

0
(x − s)β−1f (s)αds � xβ−α

(∫ x

0
f (s)ds

)α

, 0 � x � b. (4.2)

Inequality (4.1) is (1.10) with g(y) = yα and K(x) = xβ , which gives, in the notation
of the previous section,

φ ′(x) = βxβ−1f (x)
{
h(x)α−1 − f (x)α−1

}
+ (β − α)xβ−αF(x)α−1 {h(x) − f (x)} .

Using this expression for φ ′ it is easy to verify the following:

1. Let β � α � 1 : then, if f is decreasing and non-negative (4.1) and (4.2)
are valid, and if f is increasing and non-negative then inequalities (4.1) and (4.2) are
reversed.

2. Let f be decreasing and non-negative and not identically zero. There is equality
in (4.1) when α = β > 1 only if

f (x) =
{ μ, 0 < x � b0,

0, b0 < x � b,

and when β > α > 1 only if

f (x) = μ (0 < x � b)

where μ is a constant.
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3. Let f be increasing and non-negative and not identically zero. There is equality
in (4.2) when α = β > 1 only if

f (x) =
{

0, 0 < x � b0,

μ, b0 < x � b,

and when β > α > 1 only if

f (x) = μ (0 < x � b),

where μ is a constant.
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