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EQUIVALENCE OF THE HÖLDER–ROGERS

AND MINKOWSKI INEQUALITIES

LECH MALIGRANDA

(communicated by L.-E. Persson)

Abstract. It is well-known that the Hölder-Rogers inequality implies the Minkowski inequality.
Infantozzi [6] observed implicitely and Royden [15] proved explicitely that the reverse implication
is also true. In this note we discuss and give a new proof of this perhaps surprising fact.

The proofs as well as the extensions, inverses and applications of the well-known
Hölder-Rogers and Minkowski inequalities can be found in many books about real
functions, analysis, functional analysis, Lp -spaces or inequalities (cf. [1], [2], [3], [4],
[5], [7], [10], [11], [12], [15]). In this note we discuss and give a new proof of the perhaps
surprising fact that these two fundamental inequalities are equivalent.

The classical Hölder-Rogers inequality states: Let 1 � p < ∞ and 1
p + 1

q = 1 .
If x ∈ Lp(μ) and y ∈ Lq(μ) , then xy ∈ L1(μ) and

‖xy‖1 � ‖x‖p‖y‖q. (1)

The classical Minkowski inequality states: Let 1 � p < ∞ . If x, y ∈ Lp(μ) , then
x + y ∈ Lp(μ) and

‖x + y‖p � ‖x‖p + ‖y‖p. (2)

Most of mathematicians will say that (1) is just the Hölder inequality but both
Rogers and Hölder had an equivalent form of (1). Rogers proved it in 1888 and Hölder
one year later refering to Rogers (see [8] for the complete history; cf. also [5], p. 25, [4],
p. 202, [3], p. 117). F. Riesz [13] was the first who obtained and used inequalities (1)
and (2) precisely in such a form, and in the context of Lp -spaces, therefore sometimes
these inequalities are called Hölder-Riesz and Minkowski-Riesz inequalities (cf. for
example [2], pp. 193–194 or [3], p. 119 ). I will put the alphabetical order in the name
Hölder-Rogers inequality rather than the proper one Rogers-Hölder inequality just not
disturbing to much with the priority.

For p = 1 Hölder-Rogers and Minkowski inequalities follow immediately from
the properties of the integral and the essential supremum. Therefore we can assume that
1 < p < ∞ .
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The most natural deduction of the Minkowski inequality from the Hölder-Rogers
inequality is due to F. Riesz [14, pp. 45–46 for sums; for inegrals Riesz showed it in
1928]. We have

‖x + y‖p
p =

∫
Ω
|x(s) + y(s)|pdμ(s)

�
∫
Ω
|x(s) + y(s)|p−1(|x(s)| + |y(s)|)dμ(s)

=
∫
Ω
|x(s) + y(s)|p−1|x(s)|dμ(s) +

∫
Ω
|x(s) + y(s)|p−1|y(s)|dμ(s).

Applying the Hölder-Rogers inequality (1) to each integral, and observing that
(p − 1)q = p , we obtain

‖x + y‖p
p � ‖x‖p

(∫
Ω
|x(s) + y(s)|(p−1)qdμ(s)

)1/q

+ ‖y‖p

(∫
Ω
|x(s) + y(s)|(p−1)qdμ(s)

)1/q

= (‖x‖p + ‖y‖p)(‖x + y‖p
p)

1/q,

and so
(‖x + y‖p

p)
1−1/q � ‖x‖p + ‖y‖p,

which, by the fact that p(1 − 1/q) = 1 , gives the Minkowski inequality (2).

There are known equivalences of AM-GM inequality and Lyapunov inequality
to the Hölder-Rogers inequality (cf. [10, pp. 457–462]) but it is interesting that the
Minkowski inequality is also equivalent to the Hölder-Rogers inequality. This obser-
vation follows implicitely from the announcement by Infantozzi [6, pp. 121-122] (cf.
also [12, p. 200]) but there were no proofs of his several equivalences. The proof
that Hölder-Rogers inequality can be obtained from the Minkowski inequality has been
given, for example, by Royden [15, pp. 121–122]. He was using the Bernoulli inequality
and the formula for the derivative of a power function.

Let 1 < p < ∞ . The Bernoulli inequality (1 + u)p � 1 + pu with u = tb/a
gives

(a + tb)p � ap + ptap−1b

for all a , b , t � 0 , which implies that

pt|x(s)||y(s)| � (|y(s)|1/(p−1) + t|x(s)|)p − |y(s)|p/(p−1),

for s ∈ Ω . Integrating over Ω we obtain

pt
∫
Ω
|x(s)||y(s)|dμ(s) � ‖|y|1/(p−1) + t|x|‖p

p − ‖|y|1/(p−1)‖p
p,

which, by the Minkowski inequality, can be estimated by

� (‖|y|1/(p−1)‖p + t‖x‖p)p − ‖|y|1/(p−1)‖p
p.
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Hence, by the definition of the derivative,

p
∫
Ω
|x(s)||y(s)|dμ(s) � lim inf

t→0+

[(
‖|y|1/(p−1)‖p + t‖x‖p

)p
− ‖|y|1/(p−1)‖p

p

]
/t

= p‖|y|1/(p−1)‖p−1
p ‖x‖p = p‖x‖p‖y‖q,

and the Hölder-Rogers inequality (1) is proved.

We will now give another proof of the above implication (which implies that the
Hölder-Rogers inequality is equivalent to the Minkowski inequality). The following
lemma will be the main step in this proof. This lemma is also in a sense known since it
is saying that the power means goes to the geometric mean when the exponent goes to
zero (cf. [5, p. 15] or [1, p. 133]).

LEMMA. For 0 < θ < 1 and any a, b � 0 , we have

lim
p→∞[θa1/p + (1 − θ)b1/p]p = aθb1−θ . (3)

For the sake of completeness we include an elementary proof which only depends
on the definition of the derivative.

Proof. If either a = 0 or b = 0 , then equality (3) obviously holds. Therefore
we can assume that a, b > 0 . Let, for a fixed θ ∈ (0, 1) and a, b > 0 , the function f
be defined by

f (x) = ln[θax + (1 − θ)bx].

Then, using only the definition of the derivative, we have when p → ∞
[θa1/p + (1 − θ)b1/p]p = exp{p[θa1/p + (1 − θ)b1/p]}

= exp
f (1/p) − f (0)

1/p
→ exp f ′(0)

= exp[θ ln a + (1 − θ) ln b] = aθb1−θ .

REMARK 1. The above proof shows also that for any ak > 0 (k = 1, 2, . . . , n) we
have

lim
p→∞(θ1a

1/p
1 + θ2a

1/p
2 + . . . + θna

1/p
n )p = aθ1

1 aθ2
2 . . . aθn

n , (4)

where θk > 0 and
∑n

k=1 θk = 1 .

Another proof that the Minkowski inequality (2) implies the Hölder-Rogers
inequality (1).

Let x ∈ Lp(μ) and y ∈ Lq(μ) . Denote u(s) = |x(s)|p and v(s) = |y(s)|q . Then
u1/p ∈ Lp(μ) and v1/p ∈ Lp(μ) . For any 0 < θ < 1 we have from the Minkowski
inequality and the homogeneity of the Lp -norm

‖θu1/p + (1 − θ)v1/p‖p � ‖θu1/p‖p + ‖(1 − θ)v1/p‖p

= θ‖u1/p‖p + (1 − θ)‖v1/p‖p,
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which gives
∫
Ω
[θu(s)1/p + (1 − θ)v(s)1/p]pdμ(s)

�
[
θ
(∫

Ω
u(s)dμ(s)

)1/p
+ (1 − θ)

(∫
Ω

v(s)dμ(s)
)1/p]p

.

Taking p → ∞ we get, according to our Lemma and the Lebesgue theorem
∫
Ω

u(s)θv(s)1−θdμ(s) �
(∫

Ω
u(s)dμ(s)

)θ(∫
Ω

v(s)dμ(s)
)1−θ

,

or ∫
Ω
|x(s)|pθ |y(s)|q(1−θ)dμ(s) �

(∫
Ω
|x(s)|pdμ(s)

)θ(∫
Ω
|y(s)|qdμ(s)

)1−θ
,

Putting now θ = 1/p in the last inequality we obtain the Hölder-Rogers inequality
(1).

REMARK 2. Our proof of equivalence is still working for a general Banach function
spaces X(μ) instead of the L1(μ) -space. Let 1 < p < ∞ . The generalized version of
the Hölder-Rogers inequality reads: If |x|p ∈ X(μ) and |y|q ∈ X(μ), 1

p + 1
q = 1 , then

xy ∈ X(μ) and

‖xy‖X � ‖|x|p‖1/p
X ‖|y|q‖1/q

X . (1X )

The generalized version of the Minkowski inequality reads: if |x|p ∈ X(μ) and
|y|p ∈ X(μ) , then |x + y|p ∈ X(μ) and

‖|x + y|p‖1/p
X � ‖|x|p‖1/p

X + ‖|y|p‖1/p
X . (2X )

These two inequalities are equivalent when the space X(μ) has the so called Fatou
property (cf. [7, p. 30]). The implication (1X) =⇒ (2X) we can get from the above
Riesz method (cf. [9, p. 326]). The reverse implication (2X) =⇒ (1X) can be proved
in a similar way we did under the assumption that space X(μ) has the Fatou property.

REMARK 3. The fundamental inequalities (1) and (2) are reversed for p < 1 ,
p �= 0 . The proofs presented here also shows that the reverse Hölder-Rogers and the
reverse Minkowski inequalities are equivalent for positive functions x and y .
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