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ON AN INEQUALITY FOR THE ENTROPY

OF A PROBABILITY DISTRIBUTION

CVETAN JARDAS, JOSIP PEČARIĆ, RAJKO ROKI AND NIKOLA SARAPA

(communicated by I. Pinelis)

Abstract. In this paper we prove thatAlzer’s inequality for the entropy of a probability distribution
(see [ 3 ] ) is valid with reverse sign of the inequality.

Introduction

Let (pk > 0, k = 0, 1, 2, . . . ) be a discrete probability distribution (finite or
countable infinite). The Shannon entropy of this distribution is defined by

H = −
∑

k

pk log pk.

The quantity H is a measure of informationof the distribution (pk, k = 0, 1, 2, . . . )
and it plays a key role in information theory. For this reason in many applications of
discrete probability distributions, it is important to find lower and upper bounds for the
entropy H . Some basic properties of entropies of probability distributions can be found
in [5 ] .

J.–P.Allouche, M. Mendes France and G. Tenenbaum [2] have proved the following
result:

THEOREM A. Let (pk, k � 0) be a countable infinite probability distribution such
that

λ = sup
n�0

(p−1
n

∞∑
k=n+1

pk) < ∞.

Then

H � F(λ ),
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where F(x) = (x + 1) log(x + 1) − x log x , x > 0, with equality if pk =
λ k

(λ + 1)k+1

(k � 0) .

H. Alzer [3] tried to give an improvement of the above inequality, i.e. he has
considered the following inequality:

H +
∞∑
n=0

(λ pn − Pn+1)(logPn − logPn+1) � F(λ ), (∗ )

where H , λ and F(λ ) are defined as in Theorem A, and Pn =
∞∑
k=n

pk . However, this

inequality is not true, and a correction of the second term on the left-hand side of (∗ )
was given in [4].

In this paper we can prove that the reverse inequality in (∗ ) is valid. It is an
unexpected result because Alzer had used in his “ proof” of (∗ ) two inequalities which,
in fact, had opposite signs.

Results

We first prove the following result (we suppose that all series in the next theorem
converge), which gives some further extensions of results in [2 ] and [4 ] :

THEOREM 1. Let λ > 0 and an > 0 (n = 0, 1, 2, . . . ) be real numbers and let

An =
∞∑
k=n

ak < ∞ (n = 0, 1, 2, . . . ) . Then, for all p , 0 < p < 1 or p > 2 , we have

p[(λ + 1)p−1 − λ p−1]
∞∑
n=0

(An+1 − λan)ap−1
n +

+[(λ + 1)p − λ p]
∞∑
n=0

ap
n � (

∞∑
n=0

an)p � (1)

� p
∞∑
n=0

(An+1 − λan)(Ap−1
n − Ap−1

n+1 ) + [(λ + 1)p − λ p]
∞∑

n=0

ap
n.

For all p, 1 < p < 2 , the opposite inequalities hold in (1). Equalities hold in (1)

if and only if an = a0

( λ
λ + 1

)n
(n = 0, 1, 2, . . . ) .

Proof. Let c > 0 be a fixed real number and p ∈ (0, 1) or p ∈ (2,∞) . Then the
function

f (x) = (x + c)p − xp,

is strictly convex on (0, +∞) . Therefore, for all x, y > 0 we have

f (y) + (x − y)f ′(y) � f (x) � f (y) + (x − y)f ′(x). (2)
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Setting in (2)
x = An+1, y = λan and c = an,

and using the fact that An+1 + an = An(n = 0, 1, 2, . . . ) it follows

[(λ + 1)p − λ p]ap
n + p(An+1 − λan)[(λ + 1)p−1 − λ p−1]ap−1

n � (3)

� Ap
n − Ap

n+1 � [(λ + 1)p − λ p]ap
n + p(An+1 − λan)(Ap−1

n − Ap−1
n+1 ).

Summing up inequalities in (3) for all n = 0, 1, 2, . . . leads to (1) since

∞∑
n=0

(Ap
n − Ap

n+1) = Ap
0 =

( ∞∑
n=0

an

)p

.

If p ∈ (1, 2) the function f is strictly concave, so we have opposite inequalities
in (2) and in the same way we get opposite inequalities in (1).

Since equalities hold in (2) if and only if x = y , and since all series in (1) converge,
we conclude that equalities hold in (1) if and only if An+1 = λan , for all n � 0 and it

is easy to verify that this is equivalent to an = a0

( λ
λ + 1

)n
for all n � 0 . �

REMARK 1. Let 0 < p < 1 . If we suppose in Theorem 1 that in addition we have

An+1 =
∞∑

k=n+1

ak � λ an, n = 0, 1, 2, . . . , (4)

then the first expression on the left–hand side of the first inequality in (1) is non-negative,
hence

[(λ + 1)p − λ p]
∞∑
n=0

ap
n �

( ∞∑
n=0

an

)p

. (5)

This inequality has been proved in [2 ] .

REMARK 2. It is easy to check that (4) implies An �
( λ
λ + 1

)n
A0 (n ∈ N) and

therefore an �
( λ
λ + 1

)n
A0 (n ∈ N) . Since A0 is finite by (4), we conclude that

∞∑
n=0

ap
n and

∞∑
n=0

Ap
n are convergent series for all p > 0 . Also, if (4) holds, then for all

p > 0 we have
∞∑
n=0

An+1a
p−1
n � λ

∞∑
n=0

ap
n < ∞ .

REMARK 3. It is easy to check that for p = 1 and p = 2 equalities hold in (1).

Now, using inequalities of Theorem 1, similarly as in Remark 1 we obtain a
generalization of (5):
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COROLLARY 1. Let λ > 0 and an > 0 (n = 0, 1, 2, . . . ) be real numbers.
(i) Suppose that (4) holds. If 0 < p < 1 , then (5) holds. If p > 1 , then we have

the opposite inequality in (5).
(ii) Suppose that An+1 � λan (n = 0, 1, 2, . . . ) . If 0 < p < 1 , then we have the

opposite inequality in (5). If p > 1 , then (5) holds.

The following theorem is a consequence of Theorem 1.

THEOREM 2. Let (pn > 0, n � 0) be a probability distribution such that

sup
n�0

(p−1
n Pn+1) � λ < ∞, (6)

where Pn =
∞∑
k=n

pk(n � 0) . Then, the Shannon entropy

H = −
∞∑
n=0

pn log pn,

of (pn, n � 0) exists and we have

H + [log(λ + 1) − logλ ]
∞∑

n=0

(λpn − Pn+1) � F(λ ) � (7)

� H +
∞∑

n=0

(λpn − Pn+1)(log Pn − logPn+1),

where F(x) = (x + 1) log(x + 1) − x log x (x > 0) . Equalities hold in (7) if pn =
λ n

(λ + 1)n+1
(n � 0) .

Proof. We can use Theorem 1 for an = pn and An = Pn(n = 0, 1, 2, . . . ) . Set

a = a(p) = [(λ + 1)p − λ p]
∞∑

n=0

pp
n,

b = b(p) = p[(λ + 1)p−1 − λ p−1]
∞∑
n=0

(Pn+1 − λpn)pp−1
n .

Then, if 1 < p < 2 , it follows from Theorem 1:

a + b �
( ∞∑

n=0

pn

)p

= 1. (8)

The condition (6) implies λpn − Pn+1 � 0 , for all n � 0 , so using Remark 2
we conclude that the series in definition of a and b are uniformly convergent for
p ∈ [1, 2) and that the derivatives of these series are equal to the sums of the derivatives
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of corresponding terms. Therefore, we have lim
p→1+

a(p) = 1 , lim
p→1+

b(p) = 0 . It follows

easily from (8)

1
1 − p

log
∞∑

n=0

pp
n � 1

1 − p
log(1 − b) +

1
p − 1

log[(λ + 1)p − λ p]. (9)

The quantity H(p) = 1
1−p log

∞∑
n=0

pp
n is the Rényi’s entropy of order p (p �= 1) of

the distribution (pn, n � 0) (see [6 ] ).

In limiting case p −→ 1+ , the left–hand side of (9) gives −
∞∑
n=0

pn log pn = H ,

while the right–hand side of (9) becomes

[log(λ + 1) − logλ ]
∞∑

n=0

(Pn+1 − λpn) + F(λ ).

Together, it is the first inequality in (7).
Let us prove the second inequality in (7). Set

c = c(p) = p
∞∑
n=0

(Pn+1 − λpn)(Pp−1
n − Pp−1

n+1 ).

Using Remark 2 we conclude lim
p→1+

c(p) = 0 . If 1 < p < 2 , it follows from

Theorem 1:

a + c �
( ∞∑

n=0

pn

)p

= 1, (10)

and therefore

1
1 − p

log
∞∑

n=0

pp
n � 1

1 − p
log(1 − c) +

1
p − 1

log[(λ + 1)p − λ p]. (11)

As we have already seen, in limiting case p −→ 1+ , the left–hand side of (11)
gives H , while the right–hand side of (11) becomes

∞∑
n=0

(Pn+1 − λpn)(logPn − logPn+1) + F(λ ).

Together, it is the second inequality in (7).

The last statement follows easily from the fact that pn =
λ n

(λ + 1)n+1
(n =

0, 1, 2, . . . ) is equivalent to λpn = Pn+1 (n = 0, 1, 2, . . . ) , so (7) becomes H =
F(λ ) . �

REMARK 4. It is easy to check that the condition (6) implies that the series in
definition of a , b and c in the proof of Theorem 2 are uniformly convergent for
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p ∈ [p0, 1] for each fixed p0 , 0 < p0 < 1 . Thus, we can get inequalities (7) by use of
inequalities (1) for 0 < p < 1 and by taking limits p −→ 1− .

REMARK 5. In fact, the first inequality in (7) was proved by Daróczy in [4 ] , while
the second is (∗ ) but with reverse sign.
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Bijenička 30

Croatia

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


