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ON KY FAN’S INEQUALITY

IOAN GAVREA AND TIBERIU TRIF

(communicated by J. Pečarić)

Abstract. In this paper we prove several Ky Fan type inequalities involving certain Stolarsky-
Tobey means.

1. Introduction and notation

Let n � 2 be a given integer, let

An−1 = { (λ1, . . . , λn−1) | λi � 0, i = 1, . . . , n − 1, λ1 + · · · + λn−1 � 1 }
be the Euclidean simplex, and let μ be a probability measure on An−1 . For each
i ∈ { 1, . . . , n } , the i th weight wi associated to μ is defined by

wi =
∫

An−1

λidμ(λ ) if 1 � i � n − 1,

wn =
∫

An−1

(1 − λ1 − · · · − λn−1)dμ(λ ),

where λ = (λ1, . . . , λn−1) ∈ An−1 . Obviously, wi > 0 for all i ∈ { 1, . . . , n } , and
w1 + · · ·+wn = 1 . Moreover, if μ = (n−1)! (i. e. dμ(λ ) = (n−1)! dλ1 · · · dλn−1 ),
then wi = 1/n for all i ∈ { 1, . . . , n } .

Given X = (x1, . . . , xn) ∈ ]0,∞[n , the weighted harmonic, geometric, and arith-
metic mean, respectively, of x1, . . . , xn are defined by

H(X; w) =
1∑n

i=1
wi

xi

, G(X; w) =
n∏

i=1

xwi
i , A(X; w) =

n∑
i=1

wixi.

For μ = (n − 1)! the usual unweighted harmonic, geometric, and arithmetic mean,
respectively, of x1, . . . , xn are obtained:

H(X) =
n∑n

i=1
1
xi

, G(X) =

(
n∏

i=1

xi

)1/n

, A(X) =
∑n

i=1 xi

n
.
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Next, recall that the logarithmic mean of the positive real numbers x1 and x2 is
defined by

L(x1, x2) =
x1 − x2

log x1 − log x2
if x1 �= x2,

L(x1, x1) = x1,

while the identric mean of x1 and x2 is defined by

I(x1, x2) =
1
e

(
xx2
2

xx1
1

)1/(x2−x1)

if x1 �= x2,

I(x1, x1) = x1.

These two means were generalized for n variables, too. Thus, starting from the integral
representation

L(x1, x2) =

(∫ 1

0

dt
tx1 + (1 − t)x2

)−1

,

A. O. Pittenger [8] introduced the weighted logarithmicmean of x1, . . . , xn . It is defined
by

L(X;μ) =

(∫
An−1

1
λ · Xdμ(λ )

)−1

,

where
λ · X = λ1x1 + · · · + λn−1xn−1 + (1 − λ1 − · · · − λn−1)xn

for all λ = (λ1, . . . , λn−1) ∈ An−1 . On the other hand, starting from the integral
representation

I(x1, x2) = exp

(∫ 1

0
log(tx1 + (1 − t)x2)dt

)
,

in [10] it was pointed out that

I(X;μ) = exp

(∫
An−1

log(λ · X)dμ(λ )

)

can be considered as the weighted identric mean of x1, . . . , xn . For μ = (n − 1)!
we get the unweighted and symmetric logarithmic and identric mean, respectively, of
x1, . . . , xn :

L(X) =

(
(n − 1)!

∫
An−1

1
λ · Xdλ1 · · · dλn−1

)−1

,

I(X) = exp

(
(n − 1)!

∫
An−1

log(λ · X)dλ1 · · · dλn−1

)
.

For properties and explicit forms of these means, the reader is referred to [7] and [8].
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However, it should be noted that all the above weighted means are special cases of
the so-called Stolarsky-Tobeymeans, and they verify the following chain of inequalities
(see [7]):

H(X; w) � G(X; w) � L(X;μ) � I(X;μ) � A(X; w). (1.1)

A remarkable counterpart of the arithmetic-geometric mean inequality G(X) �
A(X) was obtained by Ky Fan: if 0 < xi � 1/2 for all i ∈ { 1, . . . , n } , then

G(X)
G(1 − X)

� A(X)
A(1 − X)

, (1.2)

where 1 − X := (1 − x1, . . . , 1 − xn) . This inequality evoked the interest of many
mathematicians, and numerous proofs, generalizations, or sharpenings were published
(see, for instance, [1]–[6], [9]). The following weighted refinement of (1.2) has been
recently obtained in [10]:

G(X; w)
G(1 − X; w)

� I(X;μ)
I(1 − X;μ)

� A(X; w)
A(1 − X; w)

. (1.3)

On the other hand,W.-L. Wang and P.-F.Wang [13] established the following counterpart
of (1.2):

H(X)
H(1 − X)

� G(X)
G(1 − X)

. (1.4)

Another proof of (1.4) can be found in [4].

2. Main results

It is the main purpose of this paper to prove a weighted version of (1.4) as well
as a counterpart of the right inequality in (1.3). They are contained in the following
theorem.

THEOREM 1. If X = (x1, . . . , xn) ∈ ]0, 1/2]n then

H(X; w)
H(1 − X; w)

� G(X; w)
G(1 − X; w)

(2.1)

and
L(X;μ)

L(1 − X;μ)
� I(X;μ)

I(1 − X;μ)
. (2.2)

The inequalities (2.1) and (2.2) are strict unless x1 = · · · = xn .

In the proof we shall use

LEMMA 2. Let J ⊆ R be a nonempty interval, let X = (x1, . . . , xn) ∈ Jn , and
let f ∈ C1(J) be a strictly monotone convex function. Then the following inequalities
hold:

n∑
i=1

wif (xi) � f

(∑n
i=1 wixif ′(xi)∑n
i=1 wif ′(xi)

)
, (2.3)
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∫
An−1

f (λ · X)dμ(λ ) � f

(∫
An−1

(λ · X)f ′(λ · X)dμ(λ )∫
An−1

f ′(λ · X)dμ(λ )

)
. (2.4)

Moreover, if f is strictly convex, then the inequalities (2.3) and (2.4) are strict unless
x1 = · · · = xn .

Proof. Let x̄ be a point in J which will be chosen later. The convexity of f
ensures that

f (xi) + f ′(xi)(x̄ − xi) � f (x̄) for all i ∈ { 1, . . . , n }.
Multiplying both sides by wi and then summing the obtained inequalities yields

n∑
i=1

wif (xi) + x̄
n∑

i=1

wif
′(xi) −

n∑
i=1

wixif
′(xi) � f (x̄).

Set

x̄ =
∑n

i=1 wixif ′(xi)∑n
i=1 wif ′(xi)

.

This implies (2.3) because x̄ ∈ J in virtue of the strictly monotonicity of f .
Let x̃ be another point in J which will be chosen later, too. The convexity of f

ensures that

f (λ · X) + f ′(λ · X)(x̃ − λ · X) � f (x̃) for all λ ∈ An−1.

Integrating over An−1 with respect to μ yields∫
An−1

f (λ · X)dμ(λ ) + x̃
∫

An−1

f ′(λ · X)dμ(λ )−
∫

An−1

(λ · X)f ′(λ · X)dμ(λ ) � f (x̃).

Set

x̃ =

∫
An−1

(λ · X)f ′(λ · X)dμ(λ )∫
An−1

f ′(λ · X)dμ(λ )
.

This implies (2.4) because x̃ ∈ J in virtue of the strictly monotonicity of f . �

Proof of Theorem 1. The inequalities (2.1) and (2.2) follow at once from (2.3)
and (2.4), respectively, if we choose J = ]0, 1/2] and f : J → R to be the function
f (x) = log(1 − x) − log x . Indeed, it is immediately seen that f is strictly decreasing
and strictly convex. �

Having in mind the chain (1.1), it is naturally to ask whether the inequalities (1.3),
(2.1), and (2.2) can be completed by

G(X; w)
G(1 − X; w)

� L(X;μ)
L(1 − X;μ)

? (2.5)

Unfortunately, the inequality (2.5) cannot be true for an arbitrary measure μ , even
in the special case n = 2 . To prove this, let x1 �= x2 be positive real numbers lying
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in ]0, 1/2] . For each ε ∈ ]0, 1/2[ , let Fε : [0, 1] → R be the absolutely continuous
function defined by

Fε(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t
2ε

if 0 � t � ε
1
2

if ε < t < 1 − ε
t − 1 + 2ε

2ε
if 1 − ε � t � 1,

and let με be the Lebesgue-Stieltjes measure on [0, 1] generated by Fε (i. e. dμε(t) =
F′
ε(t) dt ). Since ∫ 1

0
dμε(t) =

∫ ε

0

1
2ε

dt +
∫ 1

1−ε

1
2ε

dt = 1,

it follows that με is a probability measure on [0, 1] . The weights of με are

w1 =
∫ 1

0
tdμε(t) =

∫ 1

0
tF′

ε(t)dt =
1
2

and w2 = 1 − w1 =
1
2

.

On the other hand, we have

1
L(x1, x2;με)

=
∫ 1

0

1
tx1 + (1 − t)x2

dμε(t) =
∫ 1

0

F′
ε(t)

tx1 + (1 − t)x2
dt

=
1

2ε(x1 − x2)
log

x1(εx1 + (1 − ε)x2)
x2(εx2 + (1 − ε)x1)

,

and, analogously,

1
L(1 − x1, 1 − x2;με)

=
1

2ε(x2 − x1)
log

(1 − x1) (ε(1 − x1) + (1 − ε)(1 − x2))
(1 − x2) (ε(1 − x2) + (1 − ε)(1 − x1))

.

Now, a simple computation shows that

lim
ε→0+

L(x1, x2;με)
L(1 − x1, 1 − x2;με)

=
H(x1, x2)

H(1 − x1, 1 − x2)
<

G(x1, x2)
G(1 − x1, 1 − x2)

.

So, for sufficiently small ε , we have

G(x1, x2)
G(1 − x1, 1 − x2)

>
L(x1, x2;με)

L(1 − x1, 1 − x2;με)
.

Another interesting result concerning the inequality (2.5) is related to the so-called
Dirichlet measures. For each α > 0 , let μα be the Dirichlet measure on [0, 1] defined
by

dμα(t) =
tα−1(1 − t)α−1

B(α,α)
dt.
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Clearly, μα is a probability measure on [0, 1] . Its weights are

w1 =
∫ 1

0
tdμα(t) =

1
B(α,α)

∫ 1

0
tα(1 − t)α−1dt =

B(α + 1,α)
B(α,α)

=
1
2

and w2 = 1 − w1 =
1
2

.

Further, let gα : ]0, 1] → R be the function defined by

gα(x) :=
√

x
∫ 1

0

1
tx + 1 − t

dμα(t) =
√

x
B(α,α)

∫ 1

0

tα−1(1 − t)α−1

tx + 1 − t
dt.

LEMMA 3. The following assertions are true:
1◦ If α ∈ ]0, 1/2[ , then gα is strictly decreasing.
2◦ g1/2(x) = 1 for all x ∈ ]0, 1] .
3◦ If α ∈ ]1/2,∞[ , then gα is strictly increasing.

Proof. For each x ∈ ]0, 1] we have

gα(x) =
√

x
∫ 1

0

1
1 − t(1 − x)

dμα(t) =
√

x
∞∑
k=0

μk(1 − x)k, (2.6)

where

μk =
∫ 1

0
tkdμα(t) =

B(k + α,α)
B(α,α)

, k = 0, 1, 2, . . . . (2.7)

From (2.7), it follows that

μk+1 =
k + α
k + 2α

μk for all k � 0. (2.8)

By virtue of (2.6) and (2.8), it is easily seen that

g′α(x) =
1

2
√

x

∞∑
k=1

[(2k + 1)μk − 2(k + 1)μk+1] (1 − x)k

=
2α − 1
2
√

x

∞∑
k=1

kμk

k + 2α
(1 − x)k

for all x ∈ ]0, 1] . This equality ensures the validity of the assertions 1◦ and 3◦ .
On the other hand, for each x ∈ ]0, 1] we have

g1/2(x) =
√

x
π

∫ 1

0

1√
t(1 − t)

· 1
tx + 1 − t

dt.

Substituting t = sin2 θ yields

g1/2(x) =
2
√

x
π

∫ π/2

0

dθ
x sin2 θ + cos2 θ

=
2
√

x
π

· 1√
x

arc tan(
√

x tan θ)
∣∣∣∣
π/2

0

= 1. �
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THEOREM 4. Let x1, x2 ∈ ]0, 1/2] , and let Lα(x1, x2) := L(x1, x2;μα) . Then the
following assertions are true:

1◦ If α ∈ ]0, 1/2[ , then
Lα(x1, x2)

Lα(1 − x1, 1 − x2)
� G(x1, x2)

G(1 − x1, 1 − x2)
.

2◦
L1/2(x1, x2)

L1/2(1 − x1, 1 − x2)
=

G(x1, x2)
G(1 − x1, 1 − x2)

.

3◦ If α ∈ ]1/2,∞[ , then
Lα(x1, x2)

Lα(1 − x1, 1 − x2)
� G(x1, x2)

G(1 − x1, 1 − x2)
.

Moreover, the inequalities in the assertions 1◦ and 3◦ are strict unless x1 = x2 .

Proof. 1◦ Suppose that 0 < x1 < x2 � 1
2

. Then
x1

x2
<

1 − x2

1 − x1
. According to

the assertion 1◦ in Lemma 3, we have gα

(
x1

x2

)
> gα

(
1 − x2

1 − x1

)
. But this inequality

is equivalent to
Lα(x1, x2)

Lα(1 − x1, 1 − x2)
<

G(x1, x2)
G(1 − x1, 1 − x2)

.

The assertions 2◦ and 3◦ follow in the sameway from the corresponding assertions
in Lemma 3. �

Returning to the inequality (2.5), it still remains open the question whether the
unweighted inequality

G(X)
G(1 − X)

� L(X)
L(1 − X)

is valid ? A partial answer, in the special case n = 2 , is given in Proposition 5. It would
be interesting to investigate whether this proposition can be generalized for n variables
(the authors do not know the answer).

PROPOSITION 5. If x1, x2 ∈ ]0, 1/2] , then

G(x1, x2)
G(1 − x1, 1 − x2)

� L(x1, x2)
L(1 − x1, 1 − x2)

,

with equality if and only if x1 = x2 .

Proof. Obviously, it suffices to prove that if x1 �= x2 , then
√

x1x2√
(1 − x1)(1 − x2)

<
log(1 − x2) − log(1 − x1)

log x1 − log x2
. (2.9)

Suppose, for instance, that 0 < x2 < x1 � 1/2 . Then (2.9) is equivalent to√
x1

1 − x1

√
x2

1 − x2
(log x1 − log x2) + log(1 − x1) − log(1 − x2) < 0. (2.10)

Set u =
√

x1/(1 − x1) and v =
√

x2/(1 − x2) . Then we have 0 < v < u � 1 , and
(2.10) can be written as

uv

(
log

u2

1 + u2
− log

v2

1 + v2

)
− log(1 + u2) + log(1 + v2) < 0. (2.11)
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Let v ∈ ]0, 1[ be fixed, and let f : [v, 1] → R be the function defined by

f (u) = uv

(
log

u2

1 + u2
− log

v2

1 + v2

)
− log(1 + u2) + log(1 + v2).

We have

f ′(u) = v

(
log

u2

1 + u2
− log

v2

1 + v2

)
+

2(v − u)
1 + u2

and

f ′′(u) =
2(v − u)(1 − u2)

u(1 + u2)2 .

Since f ′′(u) < 0 for all u ∈ ]v, 1[ , it follows that f ′ is strictly decreasing on [v, 1] .
Consequently, f ′(u) < 0 for all u ∈ ]v, 1] , because f ′(v) = 0 . Therefore f is strictly
decreasing on [v, 1] , hence f (u) < 0 for all u ∈ ]v, 1] , because f (v) = 0 . This proves
the validity of (2.11). �
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[10] J. SÁNDOR AND T. TRIF, A new refinement of the Ky Fan inequality, Math. Inequal. Appl. 2 (1999),
529–533.

[11] K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.
[12] M. D. TOBEY, Two-parameter homogeneous mean value, Proc. Amer. Math. Soc. 18 (1967), 9–14.
[13] W.-L. WANG AND P.-F. WANG, A class of inequalities for symmetric functions (in Chinese), Acta Math.

Sinica 27 (1984), 485–497.

(Received October 13, 2000) Ioan Gavrea
Universitatea Tehnică
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