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ON KY FAN’S INEQUALITY

TIOAN GAVREA AND TIBERIU TRIF

(communicated by J. Pecari¢)

Abstract. In this paper we prove several Ky Fan type inequalities involving certain Stolarsky-
Tobey means.

1. Introduction and notation

Let n > 2 be a given integer, let
An_q :{(Al,...,kn_l) ‘AIZO, i=1,....n—1, Ay +--+ A1 < l}

be the Euclidean simplex, and let u be a probability measure on A,_;. For each
ie{l,...,n},the ith weight w; associated to u is defined by

W,.:/ Adu(h) if 1<i<n—1,
Ap—1

Wn:/ (1—%1—“-—%,,_1)61[.1(%),
Ap—y

where A = (A4,...,A,—1) € A,—1. Obviously, w; > 0 forall i € {1,...,n}, and
wi+---+w, = 1. Moreover,if u = (n—1)! (i.e. du(A) = m—1)1dA;---dA,—1),
then w; = 1/n forall ie {1,...,n}.

Given X = (x1,...,x,) € ]0,00[", the weighted harmonic, geometric, and arith-
metic mean, respectively, of xp,...,x, are defined by
1 oL -
H(X;w) = p— G(X;w):Hx}V’, A(X;w):Zw,-xi.
>ict - i=1 i=1

For u = (n — 1)! the usual unweighted harmonic, geometric, and arithmetic mean,
respectively, of xj,...,x, are obtained:

n 1/n Zﬂ '
H(X) = n - G(X) = (Hxl) ; AX) = i;l xl.
Z?:] - i=1
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Next, recall that the logarithmic mean of the positive real numbers x; and x, is
defined by

X1 — X2 .
L = f
(x17x2) logxl — IOg)Cz 1 X1 # X2,

L(xhxl) = X1,

while the identric mean of x; and x; is defined by

1 /x> 1/(x2—x1) '
I(x1,x2) = - (é) it x; # xg,
I(xl,xl) = X1.

These two means were generalized for n variables, too. Thus, starting from the integral

representation
-1
1
dt
L(x1,x2) = - )

mm><4mﬁﬂ_m)
A. O. Pittenger [8] introduced the weighted logarithmic mean of xy, . .., x, . Itis defined
by

: -1
L(X;u) = ——du(A ,
(X 1) </Anl7t'x u( ))
where
A ‘X = Aflxl + -+ Anflxnfl + (1 - A,] -t Anfl)xn

forall A = (A1,...,A,—1) € A,—1. On the other hand, starting from the integral
representation

1
I(x1,x2) = exp (/ log(rx; + (1 — t)xz)dt> ,
0
in [10] it was pointed out that

MKM—W(A muxmmo

can be considered as the weighted identric mean of x;,...,x,. For u = (n — 1)!
we get the unweighted and symmetric logarithmic and identric mean, respectively, of

XlyeooyXp:
1 —1
LX) = ((n—l)!/A md)tl-~-d/ln_1> ,

n—1

1(X) = exp ((n - 1)!/A

For properties and explicit forms of these means, the reader is referred to [7] and [8].

IOg(A . X)dll s dkn_1> .

n—1
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However, it should be noted that all the above weighted means are special cases of
the so-called Stolarsky-Tobey means, and they verify the following chain of inequalities
(see [7]):

HX;w) < GX;w) < L(X;u) <IX;u) <AX;w). (1.1)

A remarkable counterpart of the arithmetic-geometric mean inequality G(X) <
A(X) was obtained by Ky Fan: if 0 < x; < 1/2 forall i€ {1,...,n},then

GX) _ _AX)

G(1-X) ~ A1-X)’ (12)

where 1 — X := (1 — xq,...,1 — x,). This inequality evoked the interest of many
mathematicians, and numerous proofs, generalizations, or sharpenings were published
(see, for instance, [1]-[6], [9]). The following weighted refinement of (1.2) has been
recently obtained in [10]:

G(X;w) o I(X;u) o A(X;w)
G1—-X:w) I1—-X;u)  A(l—-X;w)

(1.3)

On the other hand, W.-L. Wang and P.-F. Wang [13] established the following counterpart
of (1.2):
HX)  _ G(X)
H(1-X) = G1-X)
Another proof of (1.4) can be found in [4].

(1.4)

2. Main results

It is the main purpose of this paper to prove a weighted version of (1.4) as well
as a counterpart of the right inequality in (1.3). They are contained in the following
theorem.

THEOREM 1. If X = (x1,...,x,) €]0,1/2]" then

H(X;w) G(X;w) 2.1)
H(1-X;w) ~ G(1-X;w) ’
and
L(X; 1(X;
Xiw) o _IXw) (22)
Ll-X;u) I1-X;u)
The inequalities (2.1) and (2.2) are strict unless x; = - -+ = X,.
In the proof we shall use
LEMMA 2. Let J C R be a nonempty interval, let X = (xy,...,x,) € J", and
let f € C'(J) be a strictly monotone convex function. Then the following inequalities
hold:
" wowixf ! (x
}:wfu0<f<z%%——7Ll>, (2.3)
i—1 Z,-zl wif ' (x;)
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Lo X0 X)du(h)
/Anlf(l-X)du(le( I T ) (2.4)

Moreover, if f is strictly convex, then the mequalmes (2.3) and (2.4) are strict unless
X| ==Xy,

Proof. Let x be a point in J which will be chosen later. The convexity of f
ensures that

Fe)+f ()(x—x) <f(x) forallie{l,...,n}.
Multiplying both sides by w; and then summing the obtained inequalities yields

n

S owd () + 2> wif () = > wixf ' (xi) < f(%).

i=1 i=1 i=1
Set .,
> iy wixif ' (xi)
D wif ! (xi)
This implies (2.3) because x € J in virtue of the strictly monotonicity of f .

Let X be another point in J which will be chosen later, too. The convexity of f
ensures that

f:

fFA-X)+f A-X)(x—A-X)<f(®  forallA €A, .

Integrating over A,_; with respectto u yields

n—1

/A £ X)du(h) + 5 / £/ X)du(2) - / (A X" (- X)du(A) < f 3.
Set

I (- X)du(2)

n— l
fAHf (/1 - X)du(4)
This implies (2.4) because X € J in virtue of the strictly monotonicity of f. O

X=

Proof of Theorem 1. The inequalities (2.1) and (2.2) follow at once from (2.3)
and (2.4), respectively, if we choose J =]0,1/2] and f : J — R to be the function
f(x) =log(1 — x) — logx. Indeed, it is immediately seen that f is strictly decreasing
and strictly convex. [J

Having in mind the chain (1.1), it is naturally to ask whether the inequalities (1.3),
(2.1), and (2.2) can be completed by

G(X;w) < L(X;u)
G1—-X;w) ~ L(1—X;u)

? (2.5)

Unfortunately, the inequality (2.5) cannot be true for an arbitrary measure u , even
in the special case n = 2. To prove this, let x; # x, be positive real numbers lying
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in ]0,1/2]. For each € € ]0,1/2[, let F¢ : [0,1] — R be the absolutely continuous
function defined by

ifo<r<e
%8
Fe(t) := 3 ife<t<l—c¢
r-1vae ifl-e<r<l,
2¢

and let u, be the Lebesgue-Stieltjes measure on [0, 1] generated by Fe (i. e. du(r) =

Fl(t)dt). Since
1 £ 1 1 1
d t:/—dr+/ —dt =1,
/0 He(r) 0 2€ I_¢ 2€

it follows that . is a probability measure on [0, 1]. The weights of u. are

1 1
1
Wi = / e (1) = / FL(1)di = 5
0 0 2

N =

al‘ldW2:1—W1:

On the other hand, we have

1 ! 1 ! F!
P [,
L(x1,x2; Ue) o tx1+(1—1)x o 1+ (1—1)x
1 o xi(ex; + (1 — €)x)

25()61 — )Cz) g )C2(5X2 + (1 — 5))61)

)

and, analogously,

1 L ) m) (11— )

L(l—xl,l—xz;ug) 28()62—)61) (1—)62) (8(1—)62)4—(1—5)(1—)61)).

Now, a simple computation shows that

lim L(.X17.X2;‘LL5) — H(Xl,.Xz) < G(x17-x2)
e—0+ L(1 —x1,1 —xo51e)  H(l—x;,1—x) Gl —x,1 —x)°

So, for sufficiently small €, we have

G(x1,x2) L(x1,x25 Ue)
Gl —x;, 1 —x)) = L1 —xp, 1 — x5 1de)

Another interesting result concerning the inequality (2.5) is related to the so-called
Dirichlet measures. For each o > 0, let g be the Dirichlet measure on [0, 1] defined
by
tocfl(l _ t)ocfl

B(a, o) dt.

dpa(t) =
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Clearly, U, is a probability measure on [0, 1]. Its weights are

1 1
= L [ eq ey Bletla) L
= [ ) = gy [0 0= R =

and w, =1 —w; =

Y-

Further, let g, :

:10,1] — R be the function defined by

B 1 1 B \/)_c 1 ta_l(l _ t)a_l
%) = \/)_C/O md““m " B(a,q) /O d.

tx+1—1¢

LEMMA 3. The following assertions are true:

1° If a€]0,1/2[, then g is strictly decreasing.
2° g1p(x) =1 forall x €]0,1].

3° If a €]1/2,00[, then gq is strictly increasing.
Proof. Foreach x € 0, 1] we have

f/ dua =Vx E (1 — x)* (2.6)
where
k+a,a)
*d :(7 k=0,1,2,.... 2.7
Wi = / IJ-og (Oﬂ, OC) ) s by 4y ( )
From (2.7), it follows that
k+ o
= - > . .
Mic+1 a 2OCHk forallk >0 (2 8)

By virtue of (2.6) and (2.8), it is easily seen that

!

8a(x) = mz[(2k+1)ﬂk—2(k+1)ﬂk+1](1—x)k

N k+2a

for all x € ]0, 1]. This equality ensures the validity of the assertions 1° and 3°.
On the other hand, for each x € ]0, 1] we have

g \f/ ! dt
1/2 V(1 —1) terlft

Substituting ¢ = sin? 0 yields

VA do N /2
————— = — . —arct tan 6 =104
g1l / xsin2 @ +cos20  w  \Jx arctan(xtan 0) 0
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THEOREM 4. Let x1,x; €]0,1/2], and let Ly (x1,x3) := L(x1,%2; U ). Then the
following assertions are true:
Lo(x1,%2) G(x1,x2)
1° 1 0,1/2[, th < .
fa€l0.1/2 then T A S G — a1 =)
20 Ll/z(xl,)Cz) _ G(xl,x2)
Lip(1—x,1-x) Gl —x,1—x)°

Lo (x1,x2) G(x1,x2)
3°If a€|l/2,00], th = .
f a€]1/2,000 then T Ay 2 Gl 1 =)
Moreover, the inequalities in the assertions 1° and 3° are strict unless x; = x;.

1 1—
Proof. 1° Suppose that 0 < x; < x; < =. Then X1 < X
2 X2 1-— X1

17)(2
1—)(31

. According to

the assertion 1° in Lemma 3, we have g4 (ﬂ> > ga < ) . But this inequality
X2

Lo(x1,%2) G(x1,x2)
Lo(1 —x;,1=x) Gl —x,1 —x)°

The assertions 2° and 3° follow in the same way from the corresponding assertions
inLemma3. O

is equivalent to

Returning to the inequality (2.5), it still remains open the question whether the
unweighted inequality
GX) _ LX)
G1-X) " L1-X)
is valid ? A partial answer, in the special case n = 2, is given in Proposition 5. It would
be interesting to investigate whether this proposition can be generalized for n variables
(the authors do not know the answer).

PROPOSITION 5. If x1,x; €]0,1/2], then

G(x1,x2) < L(x1,x2)
G(1—x;,1—x3) L1 —x;,1 —x3)’

with equality if and only if x| = x.
Proof. Obviously, it suffices to prove that if x; # x,, then

VX1X2 < log(l — x2) — log(1 — x1)
(1 7)(1)(1 7)(2) 10gx1 - IOg.Xz

. (2.9)

Suppose, for instance, that 0 < x, < x; < 1/2. Then (2.9) is equivalent to

X1

(logx; — logxz) +log(1 — x1) — log(1 — x;) < 0. (2.10)
1-— X1 1-— X2

Set u = y/x1/(1 —x1) and v = y/x3/(1 — x2). Then we have 0 < v < u < 1, and

(2.10) can be written as

u? v? ) 5
uy (log T —log I +v2> —log(1 + u) + log(1 +v°) < 0. (2.11)
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Let v € ]0, 1] be fixed, and let f : [v, 1] — R be the function defined by

2 2
Fw)=uv (10g T o T) —log(1 + u?) + log(1 ++2).
We have s 5 ( )
2v—u
’ _ 1 u -1 vV
S V<°g1+u2 1) T T
and

" _ Z(V*u)(l 7u2)
(e

Since f”(u) < 0 for all u € |v, 1], it follows that f’ is strictly decreasing on [v, 1].
Consequently, f'(u) < 0 forall u € ]v, 1], because f'(v) = 0. Therefore f is strictly
decreasing on [v, 1], hence f (1) < 0 forall u € |v, 1], because f (v) = 0. This proves
the validity of (2.11). O
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