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BASIC RESULTS FOR FUZZY IMPULSIVE DIFFERENTIAL EQUATIONS

V. LAKSHMIKANTHAM AND FARZANA A. MCRAE

(communicated by D. Bainov)

Abstract. The basic theory of fuzzy impulsive differential equations is initiated by combining
suitably the theories of impulsive differential equations and fuzzy differential equations.

1. Introduction

In mathematical modeling of real world problems, we encounter two inconve-
niences. The first one is caused by the complexity of the situation that is being modeled.
The second inconvenience consists of indeterminacy resulting by our inability to differ-
entiate events exactly. The main property of indeterminacy is vagueness of its sematics.
Since the classical mathematics could not cope with such vagueness, a new mathemati-
cal apparatus which enables us to describe vagueness is very useful. Such an apparatus
is known as the fuzzy set theory. The theory of fuzzy sets, fuzzy valued functions and
necessary calculus of fuzzy function has been investigated [1, 2, 3, 4, 12]. Recently, the
framework for the study of fuzzy differential equations has also been developed and the
basic properties of solutions of fuzzy differential equations is available [5, 6, 7, 8, 10,
11].

In this paper, we shall attempt to initiate the theory of fuzzy impulsive differential
equations by combining the theories of impulsive differential equations [9] and fuzzy
differential equations. Since the fuzziness and impulsiveness occurs in several real
world problems, the proposed union would be of immense value. For example, the
interest rate models in bond pricing, where the interest rates are unpredictable and
vague could be modeled by means of fuzzy impulsive differential equations.

2. Preliminaries

Let Pk(Rn) denote the family of all nonempty compact, convex subsets of Rn . If
α, β ∈ R and A, B ∈ Pk(Rn) , then

α(A + B) = αA + αB, α(βA) = (αβ)A, 1A = A
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and if α, β � 0 , then (α + β)A = αA + βA . Let I = [t0, t0 + a] , t0 � 0 and a > 0
and denote by En = [u: Rn → [0, 1] such that u satisfies (i) to (iv) mentioned below]:

(i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1 ;
(ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 � λ � 1 ,

u(λx + (1 − λ )y) � min[u(x), u(y)];

(iii) u is upper semicontinuous;
(iv) [u]0 = [x ∈ Rn: u(x) > 0] is compact.
For 0 < α � 1 , we denote [u]α = [x ∈ Rn: u(x) � α] . Then from (i) to (iv) ,

it follows that the α -level sets [u]α ∈ Pk(Rn) for 0 � α � 1 . For later purposes, we
define ô ∈ En as ô(x) = 1 if x = 0 and ô(x) = 0 if x �= 0 .

Let dH(A, B) be the Hausdorff distance between the sets A, B ∈ Pk(Rn) . Then we
define

d[u, v] = sup
0�α�1

dH[[u]α , [v]α ],

which defines a metric in En and (En, d) is a complete metric space. We list the
following properties of d[u, v] :

d[u + w, v + w] = d[u, v] and d[u, v] = d[v, u],

d[λu, λv] =| λ | d[u, v],

d[u, v] � d[u, w] + d[w, v],

for all u, v, w ∈ En and λ ∈ R .
For x, y ∈ En if there exists a z ∈ En such that x = y + z , then z is called

the H -difference of x and y and is denoted by x − y . A mapping F: I → En is
differentiable at t ∈ I if there exists a F′(t) ∈ En such that the limits

lim
h→0+

F(t + h) − F(t)
h

and lim
h→0+

F(t) − F(t − h)
h

exist and are equal to F′(t) . Here the limits are taken in the metric space (En, d) .
Moreover, if F: I → En is continuous, then it is integrable and∫ b

a
F =

∫ c

a
F +

∫ b

c
F.

Also, the following properties of the integral are valid. If F, G : I → En are integrable,
λ ∈ R , then the following hold:∫

(F + G) =
∫

F +
∫

G;

∫
λF = λ

∫
F, λ ∈ R;

d[F, G] is integrable;

d

[∫
F,

∫
G

]
�

∫
d[F, G].
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Finally, let F: I → En be continuous. Then the integral G(t) =
∫ t

t0
F is differen-

tiable and G′(t) = F(t) . Furthermore,

F(t) − F(t0) =
∫ t

a
F′(t).

(See [2-6] for details.)
Consider the fuzzy differential system

u′ = f (t, u), u(t0) = u0, (2.1)

where f ∈ C[I × En, En] and I = [t0, t0 + a] , t0 � 0 , a > 0 . Before proceeding
any further, we note that a mapping u: I → En is a solution of the initial value problem
(2.1) if and only if it is continuous and satisfies the integral equation

u(t) = u0 +
∫ t

t0

f (s, u(s))ds for t ∈ I.

An application of contraction mapping principle yields the following existence and
uniqueness result [5].

THEOREM 2.1. Assume that f ∈ C[I × En, En] and satisfies

d[f (t, u), f (t, v)] � Ld[u, v], L > 0,

for (t, u), (t, v) ∈ I × En . Then the initial value problem (2.1) has a unique solution
u(t) = u(t, t0, u0) on I .

We also need the following known [9] impulsive differential inequalities result.
For this purpose, we let PC denote the class of piecewise continuous functions from
R+ to R with discontinuities of the first kind only at t = tk, k = 1, 2, . . . . We can now
state the needed results.

THEOREM 2.2. Assume that
(A0) the sequence {tk} satisfies 0 � t0 < t1 < t2 < . . . < tk < . . . with tk → ∞

as k → ∞ ;
(A1) m ∈ PC ’ [R+, R] and m(t) is left-continuous at tk, k = 1, 2, . . . ;
(A2) ∀k = 1, 2, . . . and t � t0 ,⎡

⎣D+m(t) � g(t, m(t), t �= tk,
m(t+k ) � ψk(m(tk)),

m(t0) � w0,
(2.2)

where g: R2
+ → R is continuous in (tk−1, tk] × R+ and for each w ∈ R+ ,

lim
(t,z)→(t+k ,w)

g(t, z) = g(t+k , w) exists and ψk: R+ → R is nondecreasing;

(A3) r(t) = r(t, t0, w0) is the maximal solution of⎡
⎣ w′ = g(t, w), t �= tk,

w(t+k ) = ψk(w(tk)),
w(t0) = w0 � 0,

(2.3)
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existing on [t0,∞) . Then

m(t) � r(t), t � t0. (2.4)

We recall that the maximal solution r(t) of (2.3) means the following

r(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0(t, t0, w0), t ∈ [t0, t1],
r1(t, t1, r0(t+1 )), t ∈ (t1, t2],

...
rk(t, tk, rk−1(t+k )), t ∈ (tk, tk+1],

...

...

(2.5)

where each ri(t, ti, ri−1(t+i )) is the maximal solution of (2.3) on the interval (ti, ti+1]
for each i = 1, 2, . . . , and ri−1(t+i ) = ψi(ri−1(ti, ti−1, ri−2(t+i−1))) .

3. Fuzzy impulsive differential equations

Let us consider the initial value problem for fuzzy impulsive differential equation⎡
⎣ u′ = f (t, u), t �= tk,

u(t+k ) = u(tk) + Ik(u(tk)),
u(t0) = u0

(3.1)

where (A0) of Theorem 2.2 holds and f : R+×En → En , f is continuous in (tk−1, tk]×
En and for each u ∈ En , lim f (t, v) = f (t+k , u) exists as (t, v) → (t+k , u) . Also
Ik: En → En and u0 ∈ En . If the assumptions of Theorem 2.1 hold on each set
[tk−1, tk] × En , then clearly there exists a unique solution ui(t) = u(t, ti, ui−1(t+i )) on
each interval [ti−1, ti] . As a result, employing the impulsive condition in (3.1) at each
t = ti , we can define the solution u(t) of (3.1) on the interval [t0,∞) as we did in
(2.5).

We shall next extend a typical result in Lyapunov-like theory. Let V: R+ × En →
R+ . Then V is said to belong to the class V0 if

(i) V(t, u) is continuous in (tk−1, tk] × En and for each u ∈ En , k = 1, 2, . . . ,
lim

(t,v)→(t+k ,u)
V(t, v) = V(t+k , u) exists;

(ii) V(t, u) satisfies | V(t, u) − V(t, v) |� Ld[u, v], L > 0 for (t, u), (t, v) ∈
(tk−1, tk] × En ;

For (t, u) ∈ (tk−1, tk] × En , we define

D+V(t, u) = lim sup
h→0+

1
h
[V(t + h, u + hf (t, u)) − V(t, u)]. (3.2)

We can then prove the following comparison result.
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THEOREM 3.1. Let V: R+ × En → R+ and V ∈ V0 . Suppose further that

D+V(t, u) � g(t, V(t, u)), t �= tk, (3.3)

V(t, u + Ik(u)) � ψk(V(t, u)), t = tk, 3.4

where g: R2
+ → R is continuous in (tk−1, tk]×R+ and for each w ∈ R+ , lim

(t,z)→(t+k ,w)
g(t, z)

= g(t+k , w) exists and ψk: R+ → R+ is nondecreasing. Let r(t) = r(t, t0, w0) be the
maximal solution of the scalar impulsive differential equation (2.3) existing on [t0,∞) .
Then V(t+0 , u0) � w0 implies

V(t, u(t)) � r(t), t � t0, (3.5)

where u(t) = u(t, t0, u0) is any solution of fuzzy impulsive differential equation (3.1)
existing on [t0,∞) .

Proof. Let u(t) = u(t, t0, w0) be any solution of (3.1) existing on [t0,∞) . Define
m(t) = V(t, u(t)) so that m(t+0 ) = V(t+0 , u0) and suppose that m(t+0 ) � w0 . Now for
small h > 0 and t ∈ (tk−1, tk] , k = 1, 2, . . . ,

m(t + h) − m(t) = V(t + h, u(t + h)) − V(t, u(t))

= V(t + h, u(t + h)) − V(t + h, u(t) + hf (t, u(t)))

+V(t + h, u(t) + hf (t, u(t))) − V(t, u(t)),

� Ld[u(t + h, u(t) + hf (t, u(t))]

+V(t + h, u(t) + hf (t, u(t))) − V(t, u(t)),

using the Lipschitz condition assumed in (ii) of the definition of V0 . Thus

D+m(t) = lim sup
h→0+

1
h
[m(t + h) − m(t)] � D+V(t, u(t))

+L lim sup
h→0+

1
h
[d[u(t + h), u(t) + hf (t, u(t))]].

Let u(t + h) = u(t) + z(t) , where z(t) is the H -difference for small h > 0 which is
assumed to exist. Hence employing the properties of d[u, v] , we see that

d[u(t + h), u(t) + hf (t, u(t))] = d[u(t) + z(t), u(t) + hf (t, u(t))]

= d[z(t), hf (t, u(t))]

= d[u(t + h) − u(t), hf (t, u(t))].

Consequently,

1
h
d[u(t + h), u(t) + hf (t, u(t))] = d[

u(t + h) − u(t)
h

, f (t, u(t))]

and therefore,

lim sup
h→0+

1
h
d[u(t + h), u(t) + hf (t, u(t))]
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= lim sup
h→0+

1
h
d[

u(t + h) − u(t)
h

, f (t, u(t))]

= d[u′(t), f (t, u(t))] = 0,

since u(t) is the solution of (3.1). We therefore have the scalar differential inequality

D+m(t) � g(t, m(t)), t �= tk.

From (3.4), we get for t = tk ,

m(t+k ) = V(t+k , u(t+k )) = V(t+k , u(tk) + Ik(u(tk)))

� ψk(V(tk, u(tk)) = ψk(m(tk)).

Hence by Theorem 2.2, we arrive at

m(t) � r(t), t � t0,

proving (3.5).

Some special cases of g(t, w) and ψk(w) which are instructive are given below.

COROLLARY 3.1. In Theorem 3.1 , suppose that
(1) g(t, w) ≡ 0 , ψk(w) = w for all k , then V(t, u(t)) is nondecreasing in t and

V(t, u(t)) � V(t+0 , u0) , t � t0 ;
(2) g(t, w) ≡ 0 , ψk(w) = dkw , dk � 0 for all k , then

V(t, u(t)) � V(t+0 , u0)
∏

t0<tk<t

dk, t � t0;

(3) g(t, w) = −αw , α > 0 and ψk(w) = dkw , dk � 0 for all k , then

V(t, u(t)) � [V(t+0 , u0)
∏

t0<tk<t

dk]e−α(t−t0), t � t0.

(4) g(t, w) = λ ′(t)w , ψk(w) = dkw , dk � 0 for all k , λ ∈ C1[R+, R+] , then

V(t, u(t)) � [V(t+0 , u0)
∏

t0<tk<t

dk]exp(λ (t) − λ (t0)), t � t0.

We shall prove a typical result on stability criteria.

THEOREM 3.2. Assume that
(i) V: R+ × S(ρ) → R+ , V ∈ V0 and D+V(t, u) � g(t, V(t, u)) , t �= tk , where

S(ρ) = [u ∈ En: d[u, ô] < ρ] , g: R2
+ → R , g(t, 0) ≡ 0 and g satisfies

assumptions given in Theorem 3.1;
(ii) there exists a ρ0 > 0 such that u ∈ S(ρ0) implies u + Ik(u) ∈ S(ρ) for all

k and
V(t, u + Ik(u)) � ψk(V(t, u)), t = tk, u ∈ S(ρ0),

where ψk: R+ → R+ is nondecreasing;
(iii) b(d[u, ô]) � V(t, u) � a(d[u, ô]) , (t, u) ∈ R+ × S(ρ) , where a, b ∈ K =

[σ ∈ C[R+, R+]:σ(0) = 0 and σ(w) is increasing in w] .
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Then the stability properties of the trivial solution of (2.3) implies the correspond-
ing stability properties of the trivial solution of (3.1) .

Proof. We shall give the proof of stability only since the proofs of other stability
concepts can be proved based on this and the standard proofs. See [8, 9]. Let 0 < ε <
min(ρ, ρ0) , t0 ∈ R+ be given. Suppose that the trivial solution of (2.3) is stable. Then
given b(ε) > 0 and t0 ∈ R+ , there exists a δ1 = δ1(t0, ε) > 0 such that

0 � w0 < δ1 implies w(t, t0, w0) < b(ε), t � t0,

where w(t, t0, w0) is any solution of (2.3). Let w0 = a(d[u0, ô]) and choose a δ =
δ(t0, ε) > 0 such that

a(δ) < δ1.

We claim that with this δ , we have

d[u0, ô] < δ implies d[u(t), ô] < ε, t � t0,

for any solution u(t) = u(t, t0, u0) of (3.1). If this is not true, there would exist
a solution u(t) = u(t, t0, u0) of (3.1) with d[u0, ô] < δ and a t∗ > t0 satisfying
tk < t∗ � tk+1 , for some k

ε � d[u(t∗), ô] and d[u(t), ô] < ε, t0 � t � tk.

Since 0 < ε < ρ0 , condition (ii) shows that

d[u(t+k ), ô] = d[u(tk) + Ik(u(tk)), ô] < ρ and d[u(tk), ô] < ε.

Hence we can find a t0 such that tk < t0 � t∗ satisfying

ε � d[u(t0), ô] < ρ.

Now setting m(t) = V(t, u(t)) for t0 � t � t0 and using (i) and (ii) we get by
Theorem 3.1, the estimate

V(t, u(t)) � r(t, t0, a(d[u0, ô])), t0 � t � t0,

where r(t, t0, w0) is the maximal solution of (2.3). We are then led to the contradiction,
because of (iii) ,

b(ε) � b(d[u(t0), ô]) � V(t0, u(t0)) � r(t0, t0, a(d[u0, ô]))

< r(t0, t0, a(δ)) < r(t0, t0, δ1) < b(ε),
which proves the claim. The proof is complete.

A simple example of V(t, u) is d[u, ô] so that

D+V(t, u) = lim sup
h→0+

1
h
[d[u + hf (t, u), ô] − d[u, ô]].

Consider the special case (4 ) given in Corollary 3.1, namely g(t, w) = λ ′(t)w ,
ψk(w) = dkw , dk � 0 for all k and λ ∈ C1[R+, R+] with λ ′(t) � 0 . If λ (t)
satisfies

λ (tk+1) + ln dk � λ (tk) for all k, (3.6)



246 V. LAKSHMIKANTHAM AND FARZANA A. MCRAE

then the trivial solution of (2.3) is stable. This follows because the solution of (2.3) in
this case is

w(t, t0, w0) = w0

∏
t0<tk<t

dk exp[λ (t) − λ (t0)], t � t0.

Since λ (t) is nondecreasing in t , it follows that, using (3.6),

0 � w(t, t0, w0) � w0 exp[λ (t1) − λ (t0)], t � t0,

provided 0 < t0 < t1 . Hence choosing δ = ε
2 exp [λ (t0) − λ (t1)] stability follows.

For details on impulsive differential equations, see [9].
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