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EXISTENCE OF SOLUTIONS FOR 2nth ORDER NONLINEAR

GENERALIZED STURM–LIOUVILLE BOUNDARY VALUE PROBLEMS

JEFFREY EHME, PAUL W. ELOE AND JOHNNY HENDERSON

(communicated by R. P. Agarwal)

Abstract. Higher order upper and lower solutions are used to establish the existence of solutions
to y(2n) = f (t, y, y′′, . . . , y(2n−2)), satisfying nonlinear boundary conditions, either of the form
gi(y(2i−2)(0), y(2i−1)(0)) = 0, hi(y(2i−2)(1), y(2i−1)(1)) = 0, 1 � i � n, or of the form
ki(y(2i−2)(0), y(2i−2)(1)) = 0, �i(y(2i−2)(0), y(2i−2)(1)) = 0, 1 � i � n.

1. Introduction

Investigations of relationships between the existence of functions satisfying dif-
ferential inequalities and the existence of a solution of a boundary value problem for
an ordinary differential equation have quite a history. Historical work along those lines
can be found in the papers by Ako [4, 5, 6], Gaines [13], Jackson [17], Mawhin [20],
and Nagumo [22]. The methods remain yet fruitful and appear in more recent works by
authors such as Eloe and Henderson [12] and Thompson [25, 26].

In this paper, higher order upper and lower solutions methods are used to establish
the existence of solutions of the even order ordinary differential equation,

y(2n) = f (t, y, y′′, . . . , y(2n−2)), 0 � t � 1, (1)

satisfying the nonlinear boundary conditions, either of the form

gi(y(2i−2)(0), y(2i−1)(0)) = 0, 1 � i � n,
hi(y(2i−2)(1), y(2i−1)(1)) = 0, 1 � i � n,

(2)

or of the form
ki(y(2i−2)(0), y(2i−2)(1)) = 0, 1 � i � n,
�i(y(2i−2)(0), y(2i−2)(1)) = 0, 1 � i � n,

(3)

where f (t, x1, . . . , xn) : [0, 1] × R
n → R is continuous, and gi, hi, ki, �i : R × R → R

are continuous, 1 � i � n.
We note that the boundary conditions 2 generalize the classical Sturm-Liouville

linear conditions, and each of 2 or 3 generalize Lidstone linear conditions. Borrowing
from terminology introduced by Thompson [25, 26], we will refer to conditions 2 or
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3 as fully nonlinear boundary conditions. It will be necessary to make various growth
assumptions concerning the boundary conditions. However, it is surprising that it is not
necessary to make assumptions concerning the smoothness of the boundary conditions.

Some attention has been devoted to higher order upper and lower solutions methods
yielding solutions of higher order boundary value problems. The papers by Klaasen [19]
and Kelley [18] would be considered classics in that sense, and Schmitt [24] used upper
and lower solutions methods to obtain comparison theorems for higher order conjugate
boundary value problems. More recently, Šeda [23], Eloe and Grimm [11] and Hong and
Hu [16] made use of monotone methods in conjunction with upper and lower solutions
to obtain solutions of higher order boundary value problems.

We also remark that even order differential equations such as 1 have very much
been in the recent literature, but usually when f depends at most on t and y , but not on
higher order derivatives, and when the boundary conditions involve linear gi and hi or
linear ki and �i ; see, for example, [1, 2, 3, 9, 10, 14, 15]. When n = 1, much is known
about the applications from which equation 1 arises, and when n = 2, applications
of fourth order differential equations arise in modeling axially loaded beams fastend
together [7] or in modeling the effects of soil settlement on elastically bedded building
girders [8]. For n > 2, Meirovitch [21] used higher even order boundaryvalue problems
(involving a differential stiffness operator of order 2n along with boundary operators
of maximum order 2n−1 ), in studying the open-loop control of a distributed structure.

The existence of solutions of 1, 2 and 1, 3 will be dealt with in separate sections.
In Section 3, boundedness conditions are imposed on gi and hi , whereas in Section
4, monotonicity conditions are imposed on ki and �i. In both cases, it is assumed
that appropriate upper and lower solutions exist from which solutions of the respective
boundary value problems are obtained.

2. Two background representation lemmas

In this section, we present a couple of integral representation lemmas. The first
will be useful to represent solutions of 1, 2, and the second will be indispensable in
passing sign information from higher order derivatives to lower order derivatives. While
their proofs are standard, we include them for completeness.

LEMMA 2.1. Suppose x(t) is a solution to the integral equation

x(t) =
n∑

i=1

(gi(x(2i−2)(0), x(2i−1)(0)) + x(2i−2)(0))pi(t)

+
n∑

i=1

(hi(x(2i−2)(1), x(2i−1)(1)) + x(2i−2)(1))qi(t)

+
∫ 1

0
G(t, s)f (s, x(s), x′′(s), . . . , x(2n−2)(s))ds

where G(t, s) is the Green’s function for x(2n) = 0, x(2i−2)(0) = x(2i−2)(1) = 0,

1 � i � n. Here the functions pi and qi satisfy p(2j−2)
i (0) = δij, p(2j−2)

i (1) = 0,
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q(2j−2)
i (0) = 0, q(2j−2)

i (1) = δij, 1 � i, j � n, with pi and qi solutions to x(2n) = 0.
Then x is a solution to 1,2.

Proof. Suppose x is a solution to the integral equation above. Then using the
boundary conditions that the Green’s function and the pi and qi satisfy at t = 0 ,
we obtain x(2j−2)(0) = (gj(x(2j−2)(0), x(2j−1)(0)) + x(2j−2)(0))p(2j−2)

j (0). However,

p(2j−2)
j (0) = 1 implies gj(x(2j−2)(0), x(2j−1)(0)) = 0. A similar argument at t = 1

shows hi(x(2i−2)(1), x(2i−1)(1)) = 0. This shows x satisfies the boundary conditions 2.
The right hand side of the integral equation is 2n times differentiable. Differentiating
the integral equation 2n times yields x satisfies 1.

LEMMA2.2. If x(t) ∈ C(2)[0, 1], then x(t) = x(0)(1−t)+x(1)t+
∫ 1

0 H(t, s)x′′(s)ds
where H(t, s) is the Green’s function for x′′ = 0, x(0) = x(1) = 0.

Proof. Let u(t) = x(0)(1−t)+x(1)t+
∫ 1

0 H(t, s)x′′(s)ds. Then u(0) = x(0), u(1) =
x(1), and u′′(t) = x′′(t). Since the only solution of x′′ = 0, x(0) = 0, x(1) = 0, is the
trivial solution, it follows that u(t) = x(t) for all t.

3. An existence theorem

In this section, we define what we mean by an upper solution and a lower solution
of 1, 2. We also impose certain boundedness conditions on the x -variable for which
gi(x, y) = 0 and hi(x, y) = 0 . We then use upper and lower solutions methods in
conjunction with Lemmas 2.1 and 2.2 to obtain a solution of 1, 2.

We make the following assumption concerning the boundary conditions.

Assumption (A): For each i , the set of x -values such that gi(x, y) = 0, hi(x, y) = 0
are bounded. More specifically, we assume that, for 1 � i � n, there exist real
numbers ai < bi and ci < di, such that gi(x, y) = 0 implies ai � x � bi and
hi(x, y) = 0 implies ci � x � di. We also assume the boundary conditions are
such that gi(x, y) + x and hi(x, y) + x are bounded functions.

An upper solution to 1, 2 is a function q ∈ C(2n)[0, 1] satisfying

q(2n)(t) � f (t, q(t), , q′′(t), . . . , q(2n−2)(t)), t ∈ [0, 1],

q(2n−2)(0) � bn, q(2n−2)(1) � dn,

q(2n−4)(0) � an−1, q(2n−4)(1) � cn−1,

q(2n−6)(0) � bn−2, q(2n−6)(1) � dn−2,

...
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Similarly, a lower solution to 1, 2 is a function p ∈ C(2n)[0, 1] satisfying

p(2n)(t) � f (t, p(t), p′′(t), . . . , p(2n−2)(t)), t ∈ [0, 1],

p(2n−2)(0) � an, p(2n−2)(1) � cn,

p(2n−4)(0) � bn−1, p(2n−4)(1) � dn−1,

p(2n−6)(0) � an−2, p(2n−6)(1) � cn−2,

...

We remark that the upper and lower solutions thus defined have the advantage that they
do not involve the nonlinear boundary conditions directly.

We now present the main result of the section which establishes the existence of a
solution of 1, 2 which lies between a pair of upper and lower solutions.

THEOREM 3.1. Assume

1. f (t, x1, x2, . . . , xn) : [0, 1]× R
n → R is continuous;

2. f (t, x1, x2, . . . , xn) is increasing in the xn−1, xn−3, xn−5, . . . variables;
3. f (t, x1, x2, . . . , xn) is decreasing in the xn−2, xn−4, xn−6, . . . variables;
4. The boundary conditions satisfy assumption (A).

If, in addition, there exist an upper solution q and a lower solution p for
1, 2 such that (−1)i+1q(2n−2i)(t) � (−1)i+1p(2n−2i)(t) for all t ∈ [0, 1] and i =
1, 2, . . . , n, then there exists a solution x(t) to 1, 2. Moreover, (−1)i+1p(2n−2i)(t) �
(−1)i+1x(2n−2i)(t) � (−1)i+1q(2n−2i)(t), for t ∈ [0, 1] and i = 1, 2, . . . , n.

Proof. For 1 � j � n, define α2n−2j(y(2n−2j)(t)) ={
max{p(2n−2j)(t), min{y(2n−2j)(t), q(2n−2j)(t)}} if j is odd,

max{q(2n−2j)(t), min{y(2n−2j)(t), p(2n−2j)(t)}} if j is even,

where y is a function defined on [0, 1]. If y(2n−2j) is continuous, then α2n−2j is continu-
ous. Moreover, (−1)i+1p(2n−2i)(t) � (−1)i+1α2n−2i(y(2n−2i)(t)) � (−1)i+1q(2n−2i)(t),
for i = 1, 2, . . . , n. Define F : [0, 1]× R

n → R by F(t, y, y′′, . . . , y(2n−2)) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (t,α0(y(t)), . . . ,α2n−4(y(2n−4)(t)), q(2n−2)(t)) +
y(2n−2)(t) − q(2n−2)(t)

1 + (y(2n−2)(t))2
,

if y(2n−2)(t) � q(2n−2)(t),

f (t,α0(y(t)), . . . ,α2n−4(y(2n−4)(t)), y(2n−2)(t)),
if p(2n−2)(t) � y(2n−2)(t) � q(2n−2)(t),

f (t,α0(y(t)), . . . ,α2n−4(y(2n−4)(t)), p(2n−2)(t)) − p(2n−2)(t) − y(2n−2)(t)
1 + (y(2n−2)(t))2

,

if y(2n−2)(t) � p(2n−2)(t).

Then F is continuous and bounded for any continuous y ∈ C(2n−2) . Moreover,
F(t, x1, . . . , xn) has the same increasing/decreasing properties as does f . Define



EXISTENCE OF SOLUTIONS FOR 2 nth ORDER NONLINEAR GENERALIZED STURM-LIOUVILLE . . . 251

T : C(2n−2)[0, 1] → C(2n−2)[0, 1] by

Ty(t) =
n∑

i=1

(gi(y(2i−2)(0), y(2i−1)(0)) + y(2i−2)(0))pi(t)

+
n∑

i=1

(hi(y(2i−2)(1), y(2i−1)(1)) + y(2i−2)(1))qi(t)

+
∫ 1

0
G(t, s)F(s, y(s), y′′(s), . . . , y(2n−2)(s))ds.

For each 0 � k � 2n − 2, consider

|(Ty)(k)(t)| �
n∑

i=1

|gi(y(2i−2)(0), y(2i−1)(0)) + y(2i−2)(0)| · |p(k)
i (t)|

+
n∑

i=1

|hi(y(2i−2)(1), y(2i−1)(1)) + y(2i−2)(1)| · |q(k)
i (t)|

+
∫ 1

0
|∂

kG
∂tk

(t, s)| · |F(s, y(s), y′′(s), . . . , y(2n−2)(s))|ds.

Byassumption,
∑n

i=1 |gi(y(2i−2)(0), y(2i−1)(0))+y(2i−2)(0)| and
∑n

i=1 |hi(y(2i−2)(1) ,

y(2i−1)(1))+ y(2i−2)(1)| are bounded. As
∂kG
∂tk

and F are also bounded, it follows that

the |(Ty)(k)(t)| are uniformly bounded for all y ∈ C(2n−2). By Schauder’s Theorem,
there exists a function x satisfying Tx(t) = x(t). To complete the proof using Lemma
2.1, it must be demonstrated that f (t, x(t), . . . , x(2n−2) (t)) = F(t, x(t), . . . , x(2n−2) (t)).

Suppose there exists t0 such that x(2n−2)(t0) > q(2n−2)(t0). Without loss of
generality, assume x(2n−2)(t) − q(2n−2)(t) is maximized at t0. If t0 = 0, then bn �
x(2n−2)(t0) > q(2n−2)(t0) > bn. A similar contradiction occurs at t0 = 1. Assume
t0 ∈ (0, 1). Then x(2n)(t0) � q(2n)(t0) and hence

0 � x(2n)(t0) − q(2n)(t0) � F(t0, x(t0), . . . , x(2n−2)(t0)) − f (t0, q(t0), . . . , q(2n−2)(t0))

= f (t0,α0(x(t0)), . . . ,α2n−4(x(2n−4)(t0)), q(2n−2)(t0)) +
x(2n−2)(t0) − q(2n−2)(t0)

1 + (x(2n−2)(t0))2

− f (t0, q(t0), . . . , q(2n−2)(t0)).

Using the increasing/decreasing properties we obtain the above expression is greater
than or equal to

f (t0, q(t0), . . . , q(2n−2)(t0))+
x(2n−2)(t0)−q(2n−2)(t0)

1+x(2n−2)(t0)2
−f (t0, q(t0), . . . , q(2n−2)(t0))>0.

This contradiction implies x(2n−2)(t) � q(2n−2)(t) for all t ∈ [0, 1]. A similar argument
shows p(2n−2)(t) � x(2n−2)(t) for all t ∈ [0, 1].
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Lemma 2.2 implies

x(2n−4)(t) − q(2n−4)(t) =
(
x(2n−4)(0) − q(2n−4)(0)

)
(1 − t) +

(
x(2n−4)(1) − q(2n−4)(1)

)
t

+
∫ 1

0
H(t, s)

(
x(2n−2)(s) − q(2n−2)(s)

)
ds.

The assumptions on the boundary conditions and the definition of the upper solution im-
plies the first two terms are positive. It is well known that theGreen’s function H(t, s) �
0. Moreover, the previous paragraph demonstrated that x(2n−2)(s) − q(2n−2)(s) � 0.
The combined effect is x(2n−4)(t) − q(2n−4)(t) � 0 for all t ∈ [0, 1]. Similar analysis
demonstrates p(2n−4)(t) − x(2n−4)(t) � 0 for all t ∈ [0, 1].

Repeated application of the above argument yields

(−1)i+1p(2n−2i)(t) � (−1)i+1x(2n−2i)(t) � (−1)i+1q(2n−2i)(t),
for t ∈ [0, 1] and i = 1, 2, . . . , n,

which in turn implies f (t, x(t), . . . , x(2n−2) (t)) = F(t, x(t), . . . , x(2n−2) (t)). Thus x is
a solution to 1, 2.

4. Second existence theorem

In this section we will apply the techniques developed in the previous section to
prove a second existence theorem with regard to the boundary value problem 1, 3. For
this boundary value problem, there is a representation of solutions analogous to the one
in Lemma2.1. We will not state that representation. In the previous section, we assumed
a boundedness condition on our boundary conditions. In this section, that condition
is removed. Instead we make the following monotonicity assumption concerning our
boundary conditions.

Assumption (B): Assume each ki(x, y), �i(x, y) is an increasing function of each of its
variables.

It will be convenient towrite our boundary conditions in an alternate algebraic form.
Set k̂i(x, y) = ki(x, y) + x and �̂i(x, y) = �i(x, y) + y. Then k̂i and �̂i are increasing
and 3 has the form k̂i(y(2i−2)(0), y(2i−2)(1)) = y(2i−2)(0), �̂i(y(2i−2)(0), y(2i−2)(1)) =
y(2i−2)(1).

An upper solution to 1, 3 is a function q ∈ C(2n)[0, 1] satisfying

q(2n) � f (t, q, q′′, . . . , q(2n−2))

k̂i(q(2i−2)(0), q(2i−2)(1)) � q(2i−2)(0),

�̂i(q(2i−2)(0), q(2i−2)(1)) � q(2i−2)(1), i = n − 2k,

k̂i(q(2i−2)(0), q(2i−2)(1)) � q(2i−2)(0),

�̂i(q(2i−2)(0), q(2i−2)(1)) � q(2i−2)(1), i = n − 2k − 1,

where k � 1.
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A lower solution to 1, 3 is a function p ∈ C(2n)[0, 1] satisfying

p(2n) � f (t, p, p′′, . . . , p(2n−2))

k̂i(p(2i−2)(0), p(2i−2)(1)) � p(2i−2)(0),

�̂i(p(2i−2)(0), p(2i−2)(1)) � p(2i−2)(1), i = n − 2k

k̂i(p(2i−2)(0), p(2i−2)(1)) � p(2i−2)(0),

�̂i(p(2i−2)(0), p(2i−2)(1)) � p(2i−2)(1), i = n − 2k − 1,

where k � 1.
We now present the main result of this section which establishes the existence of

a solution to 1, 3 that again lies between an upper solution and a lower solution.

THEOREM 4.1. Assume
1. f (t, x1, x2, . . . , xn) : [0, 1]× R

n → R is continuous;
2. f (t, x1, x2, . . . , xn) is increasing in the xn−2k+1 variables, k � 1 ;
3. f (t, x1, x2, . . . , xn) is decreasing in the xn−2k variables, k � 1 ;
4. The boundary conditions satisfy assumption (B).

If, in addition, there exist an upper solution q and a lower solution p for
1, 3 such that (−1)i+1q(2n−2i)(t) � (−1)i+1p(2n−2i)(t) for all t ∈ [0, 1] and i =
1, 2, . . . , n, then there exists a solution x(t) to 1, 3. Moreover, (−1)i+1p(2n−2i)(t) �
(−1)i+1x(2n−2i)(t) � (−1)i+1q(2n−2i)(t), for t ∈ [0, 1] and i = 1, 2, . . . , n.

Proof. For 1 � j � n, let α2n−2j and F be defined as in Theorem 3.1. Define

k̃i(y(2i−2)(0), y(2i−2)(1)) = k̂i(α2i−2(y(2i−2)(0)),α2i−2(y(2i−2)(1))),

�̃i(y(2i−2)(0), y(2i−2)(1)) = �̂i(α2i−2(y(2i−2)(0)),α2i−2(y(2i−2)(1))).

Then each k̃i and �̃i is bounded and increasing in both of its variables. Define
T : C(2n−2)[0, 1] → C(2n−2)[0, 1] by

Ty(t) =
n∑

i=1

k̃i(y(2i−2)(0), y(2i−2)(1))pi(t)

+
n∑

i=1

�̃i(y(2i−2)(0), y(2i−2)(1))qi(t)

+
∫ 1

0
G(t, s)F(s, y(s), y′′(s), . . . , y(2n−2)(s))ds.

Using the same type of reasoning as in Theorem 3.1, we obtain T has a fixed
point x(t) via Schauder’s Theorem. The definition of T ensures x(2i−2)(0) =
k̃i(x(2i−2)(0), x(2i−2)(1)) and x(2i−2)(1) = �̃i(x(2i−2)(0), x(2i−2)(1)). It remains to demon-
strate

k̃i(x(2i−2)(0), x(2i−2)(1)) = k̂i(x(2i−2)(0), x(2i−2)(1)),

�̃i(x(2i−2)(0), x(2i−2)(1)) = �̂i(x(2i−2)(0), x(2i−2)(1)), and

f (t, x(t), . . . , x(2n−2) (t)) = F(t, x(t), . . . , x(2n−2) (t)).
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Suppose there exists t0 such that x(2n−2)(t0) > q(2n−2)(t0). Without loss of
generality, assume x(2n−2)(t) − q(2n−2)(t) is maximized at t0. If t0 = 0, then
the fact that k̃n is increasing and q(t) is an upper solution imply x(2n−2)(0) =
k̃n(x(2n−2)(0), x(2n−2)(1)) � k̃n(q(2n−2)(0), q(2n−2)(1)) = k̂n(q(2n−2)(0), q(2n−2)(1)) �
q(2n−2)(0). Thus t0 �= 0. A similar argument involving �̂n shows t0 �= 1. Thus
t0 ∈ (0, 1). Applying the same argument involving F as in Theorem 3.1, we ob-
tain x(2n−2)(t) � q(2n−2)(t), t ∈ [0, 1] . In a like manner, it can be established that
p(2n−2)(t) � x(2n−2)(t) � q(2n−2)(t).

Now suppose there exists t0 such that x(2n−4)(t0) < q(2n−4)(t0). If t0 = 0, then

x(2n−4)(0) = k̃n−1(x(2n−4)(0), x(2n−4)(1))

� k̃n−1(q(2n−4)(0), q(2n−4)(1))

= k̂n−1(q(2n−4)(0), q(2n−4)(1))

� q(2n−4)(0).

A similar contradiction occurs if t0 = 1. Hence x(2n−4)(0) − q(2n−4) (0) � 0 and
x(2n−4)(1) − q(2n−4) (1) � 0. The representation Lemma 2.2 yields

x(2n−4)(t)−q(2n−4) (t) =
(
x(2n−4)(0)−q(2n−4) (0)

)
(1 − t)+

(
x(2n−4)(1)−q(2n−4) (1)

)
t

+
∫ 1

0
H(t, s)(x(2n−2)(s) − q(2n−2) (s))ds � 0, t ∈ [0, 1] .

Similarly, x(2n−4)(t)−p(2n−4) (t) � 0, t ∈ [0, 1] . Continuing in this manner we obtain

(−1)i+1p(2n−2i)(t) � (−1)i+1x(t)(2n−2i) � (−1)i+1q(2n−2i)(t),

for t ∈ [0, 1] and i = 1, 2, . . . , n, and hence x (t) is a solution to 1, 3.
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