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ON THE STABILITY OF FUNCTIONAL EQUATIONS

WITH SQUARE–SYMMETRIC OPERATION

GWANG HUI KIM

(communicated by Z. Páles)

Abstract. In this paper, we obtain the modified Hyers-Ulam-Rassias stability for the family of
functional equations f (x ◦ y) = H(f (x), f (y)) (x, y ∈ S) , where H is a homogeneous function
and ◦ is a square-symmetric operation on the set S . As a consequence we obtain the Hyers-Ulam
stability of its functional equation.

1. Introduction

In 1940, S. M. Ulam [12] raised the following problem: Under what condition does
there exist an additive mapping near an approximately additive mapping?

In 1941, this problem was solved by D. H. Hyers [3]. Thereafter we usually say
that the equation E1(h) = E2(h) has the Hyers- Ulam stability if for an approximate
solution f of this equation, i.e. for a function f with |E1(f )−E2(f )| � δ there exists
a function g such that E1(g) = E2(g) and |f (x) − g(x)| � ε . In 1978, the Hyers-
Ulam stability for approximate linear mapping was generalized by Th. M. Rassias [8].
Thereafter P. Gǎvruta [2] generalized the stability of Rassias for the case of the bounded
function as follows: If for an approximate solution f of the equation E1(h) = E2(h) ,
i.e. for a function f such that |E1(f ) − E2(f )| � φ holds with a given function φ
there exists a function g such that E1(g) = E2(g) and |g(x) − f (x)| � Φ(x) for some
fixed function Φ . It is called the modified Hyers-Ulam-Rassias stability(or stability in
the spirit of P. Gǎvruta). Namely the result of Rassias is the case of a special type of
φ in this stability. One is referred to [1], [4], [5], [6], [7], [8], [9], [10], [11] for further
generalizations and new open problems.

The aim of the present paper is to investigate the modified Hyers-Ulam-Rassias
stability for the following family of functional equations:

f (x ◦ y) = H(f (x), f (y)) (x, y ∈ S), (1.1)

where S is a nonempty set, ◦ : S × S → S is a binary operation and H : G × G → G
is a G -homogeneous function of two variables, that is, H satisfies

H(uv, uw) = uH(v, w) (u, v, w ∈ G), (1.2)
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and G is a multiplicative subsemigroup of the real or complex field. A particular case
of (1.1) is the Cauchy functional equation

f (x + y) = f (x) + f (y), (x, y ∈ S)

where S is a semigroup with the operation + and f : S → C .
If the operation ◦ satisfies the following identity:

(x ◦ y) ◦ (x ◦ y) = (x ◦ x) ◦ (y ◦ y) (x, y ∈ S),

the operation ◦ will be called square symmetric.
In the proof of this paper we use the ideas and methods that are analogous to

the ones used in [7], and the following lemmata are the results of Zsolt Páles, Peter
Volkmann and Duncan Luce [7]. Let S be a nonempty set and ◦ : S × S → S be an
arbitrary operation.

LEMMA 1. [7, corollary 1]. Let G be a multiplicative subsemigroup of C , let
H : G × G → G satisfy (1.2), and let φ : S → G be an arbitrary bijective function.
Then the binary operation ◦ : S × S → S defined by

x ◦ y := φ−1

(
H(φ(x), φ(y)

)
(x, y ∈ S)

is square symmetric.

LEMMA 2. [7, lemma 1]. Let ◦ be a square-symmetric operation on S . Define,
for x ∈ S , the sequence x[2n] (n = 0, 1, 2, · · · ) by

x[1] = x[20] := x, x[2n+1] := x[2n] ◦ x[2n], n ∈ N.

Then, for each n ∈ N , the mapping x �→ x[2n] is an endomorphism of (S, ◦) , that is

(x ◦ y)[2n] = x[2n] ◦ y[2n] for x, y ∈ S.

2. The modified Hyers-Ulam-Rassias stability of (1.1)

In this section we shall investigate the modified Hyers-Ulam-Rassias stability for
the functional equation (1.1).

In each theorem of this paper, ϕ and Φi(i = 1, 2, 3, 4) are mappings from S × S
into G , and each mapping Φi will be used in each theorem, respectively.

By using an idea in P. Gǎvruta [2] we can obtain the following results:

THEOREM 1. Let S be a nonempty set and ◦ be a square-symmetric operation on
S . Let G be a closed multiplicative subsemigroup of C with 1 ∈ G and H : G×G → G

be a continuous G -homogeneous function such that |H(1, 1)| �= 0 and
1

H(1, 1)
∈ G.

Assume that a function g : S → G satisfies the inequality

|g(x ◦ y) − H(g(x), g(y))| � ϕ(x, y) (x, y ∈ S). (2.1)
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Then there exists a unique function f : S → G such that f is a solution of (1.1)
and

|f (x) − g(x)| � Φ1(x, x) (x ∈ S), (2.2)

where Φ1(x, y) =
∑∞

n=1
ϕ(x[2n−1],y[2n−1])

|H(1,1)|n < ∞ for all x, y ∈ S .

Proof. Substituting x = y into (2.1) and using the G -homogeneity of H , we get

|g(x ◦ x) − g(x)H(1, 1)| � ϕ(x, x) (x ∈ S). (2.3)

Let x ∈ S be fixed, and replace x by x[2n−1] in (2.3).
Then we obtain∣∣∣∣ g(x[2n])

H(1, 1)n
− g(x[2n−1])

H(1, 1)n−1

∣∣∣∣ � ϕ(x[2n−1], x[2n−1])
|H(1, 1)|n (2.4)

for all x ∈ S and n ∈ N . Let g0 := g and define, for n ∈ N , the function gn by

gn(x) :=
g(x[2n])
H(1, 1)n

(x ∈ S).

Then gn : S → G (since
1

H(1, 1)
∈ G ) and, due to (2.4), we have

|gn(x) − gm(x)| �
n∑

j=m+1

|gj(x) − gj−1(x)|

�
n∑

j=m+1

ϕ(x[2j−1], x[2j−1])
|H(1, 1)|j

for n > m > 0 . Taking the limit m → ∞ in the last inequality, the sequence gn(x) is
a Cauchy sequence for all fixed x ∈ S from the definition of Φ1 . Since the set G is
closed, we can define a mapping f : S → G by

f (x) := lim
n→∞ gn(x) (x ∈ S).

It follows from (2.4) that

|gn(x) − g0(x)| �
n∑

j=1

ϕ(x[2j−1], x[2j−1])
|H(1, 1)|j

�
∞∑
j=1

ϕ(x[2j−1], x[2j−1])
|H(1, 1)|j .

Taking the limit n → ∞ , we obtain (2.2).
To see that f satisfies (1.1), let x, y ∈ S and replace x, y by x[2n] , y[2n] in (2.1).

Using Lemma 2, we get

|g((x ◦ y)[2n]) − H(g(x[2n]), g(y[2n]))| � ϕ(x[2n], y[2n]).
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Hence, by the G -homogeneity of H ,

|gn(x ◦ y) − H(gn(x), gn(y))| � ϕ(x[2n], y[2n])
|H(1, 1)|n

for all x, y ∈ S and n ∈ N . Taking the limit n → ∞ , by the continuity of H and the
definition of Φ1 it follows that

|f (x ◦ y) − H(f (x), f (y))| = 0 (x, y ∈ S).

Thus (1.1) holds.
Assume that f ∗ : S → G is another function which satisfies (1.1) and (2.2). It

follows from (2.2) that

|f ∗(x) − f (x)| =
1

|H(1, 1)|n |f
∗(x[2n]) − f (x[2n])|

� 1
|H(1, 1)|n (|f ∗(x[2n]) − g(x[2n])| + |g(x[2n]) − f (x[2n])|)

� 2
|H(1, 1)|nΦ1(x[2n], x[2n])

for all x ∈ S and n ∈ N . By letting n → ∞ in the preceeding inequality, we
immediately see the uniqueness of f from the definition of Φ1 , and the theorem is
proved. �

COROLLARY 1. [7, theorem 2]. Let S be a nonempty set and ◦ be a square-
symmetric operation on S . Let G be a closed multiplicative subsemigroup of C with
1 ∈ G and H : G × G → G be a continuous G -homogeneous function such that

|H(1, 1)| > 1 and
1

H(1, 1)
∈ G. Assume that, for some ε � 0 , a function g : S → G

satisfies the inequality

|g(x ◦ y) − H(g(x), g(y))| � ε (x, y ∈ S). (2.5)

Then there exists a unique function f : S → G such that f is a solution of (1.1) and

|g(x) − f (x)| � ε
|H(1, 1)| − 1

(x ∈ S).

Proof. Apply Theorem 1 with ϕ(x, y) = ε . �

We say that the operation ◦ has the divisibility property if, for each x ∈ S , there
exists a unique element y ∈ S such that y ◦ y = x . In this case the equation y[2n] = x
has a unique solution y for each fixed x ∈ S and n ∈ N . Denote this unique element
y by x[2−n] . Clearly, the mapping x → x[2−n] is also an endomorphism of (S, ◦) .

THEOREM 2. Let S be a nonempty set and ◦ be a square-symmetric operation
with the divisibility property on S . Let G be a closed multiplicative subsemigroup of C

with 1 ∈ G and H : G × G → G be a continuous G -homogeneous function. Assume
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that a function g : S → G satisfies the inequality (2.1). Then there exists a function
f : S → G such that f is a solution of (1.1) and

|f (x) − g(x)| � Φ2(x, x) (x ∈ S), (2.6)

where Φ2(x, y) =
∑∞

n=1 ϕ(x[2−n], y[2−n])|H(1, 1)|n−1 < ∞ for all x, y ∈ S .

Proof. The proof of this theorem is analogous to that of Theorem 1.
Replacing x and y by x[2−n] in (2.1) and using the G -homogeneity of H , we

get

|g(x[21−n]) − g(x[2−n])H(1, 1)| � ϕ(x[2−n], x[2−n]) (x ∈ S, n ∈ N).

Thus

|g(x[21−n])H(1, 1)n−1 − g(x[2−n])H(1, 1)n|
� ϕ(x[2−n], x[2−n])|H(1, 1)|n−1 (2.7)

for x ∈ S , n ∈ N . Let g0 := g and define, for n ∈ N , the function gn by

gn(x) := g(x[2−n])H(1, 1)n (x ∈ S).

Then gn : S → G and, by (2.7), as in the proof of Theorem 1, we can deduce that the
sequence gn(x) is a Cauchy sequence for all fixed x ∈ S from the definition of Φ2 .
Define f as the pointwise limit function of the sequence gn . It follows from (2.7) that

|gn(x) − g0(x)| �
n∑

j=1

ϕ(x[2−j], x[2−j])|H(1, 1)|j−1

�
∞∑
j=1

ϕ(x[2−j], x[2−j])|H(1, 1)|j−1.

Taking the limit n → ∞ , we obtain (2.6).
To see that f satisfies (1.1), let x, y ∈ S , replace x, y by x[2−n] , y[2−n] in (2.1).

Then we get

|g((x ◦ y)[2−n]) − H(g(x[2−n]), g(y[2−n]))| � ϕ(x[2−n], y[2−n]).

Hence, by the G -homogeneity of H and an endomorphism of the above mapping
x → x[2−n] ,

|gn(x ◦ y) − H(gn(x), gn(y))| � ϕ(x[2−n], x[2−n])|H(1, 1)|n

for all x, y ∈ S , n ∈ N . Taking the limit n → ∞ , by using the continuity of H and
the definition of Φ2 , it follows that

|f (x ◦ y) − H(f (x), f (y))| = 0 (x, y ∈ S).

Therefore (1.1) holds and the uniquness can be proved in a similar manner of Theorem
1, Hence the theorem is proved. �
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COROLLARY 2. [7, theorem 3]. Let S be a nonempty set and ◦ be a square-
symmetric operation with the divisibility property on S . In addition, let G be a closed
multiplicative subsemigroup of C with 1 ∈ G and H : G × G → G be a continuous
G -homogeneous function such that |H(1, 1)| < 1 . Assume that, for some ε � 0 , a
function g : S → G satisfies the inequality (2.5). Then there exists a unique function
f : S → G such that f is a solution of (1.1) and

|f (x) − g(x)| � ε
1 − |H(1, 1)| (x ∈ S).

Proof. Apply Theorem 2 with ϕ(x, y) = ε . �
COROLLARY 3. Let G be a closed multiplicative subsemigroup of C with 1 ∈ G

and H : G×G → G be a continuous G -homogeneous function such that |H(1, 1)| �= 0

and
1

H(1, 1)
∈ G. Assume that a function g : G → G satisfies the inequality

|g(H(x, y)) − H(g(x), g(y))| � ϕ(x, y) (x, y ∈ G).

Then there exists a unique function f : G → G such that f is a solution of

f (H(x, y)) = H(f (x), f (y)) (x, y ∈ G). (2.8)

and

|g(x) − f (x)| �
{ Φ1(x, x)
Φ2(x, x)

(x ∈ G).

Proof. In order to apply Theorem 1, let S := G and x ◦ y := H(x, y) . By Lemma
1, ◦ is a square-symmetric operation. In the case |H(1, 1)| �= 0 , the statement of
Theorem 1 is also equivalent to that of this corollary.

For application of the Theorem 2, it suffices to show that ◦ satisfies the divisibility
assumption. Let x ∈ G . Then the equation y ◦ y = x is equivalent to yH(1, 1) = x .
Since the element 1

H(1,1) is in G , we have

y =
x

H(1, 1)
∈ G.

Thus, in this case, Theorem 2 can be applied. �
COROLLARY 4. [7, Corollary 2]. Let G be a closed multiplicative subsemigroup

of C with 1 ∈ G and H : G × G → G be a continuous G -homogeneous function

such that |H(1, 1)| �= 0, 1 and
1

H(1, 1)
∈ G. Assume that, for some ε � 0 , a function

g : G → G satisfies the inequality

|g(H(x, y)) − H(g(x), g(y))| � ε (x, y ∈ G).

Then there exists a function f : G → G such that f is a solution of the equation (2.8)
and

|f (x) − g(x)| � ε
|1 − |H(1, 1)|| (x ∈ G).
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Proof. Apply Corollary 3 with ϕ(x, y) = ε . By separating |H(1, 1)| > 1 and
|H(1, 1)| < 1 for Φ1(x, y) and Φ2(x, y) , the proof is completed. �

In the next results we obtain that the below equation (2.9) is stable in Gǎvruta’s
sense if |a+b| �= 0 . In the case when X = C or X = R these results are also corollaries
of Theorems 1 and 2 if one takes the homogeneous function H(x, y) = ax + by .

THEOREM 3. Let X be a Banach space over K , where K denotes the field of real
or complex numbers. Let S be a nonempty set and ◦ be a square-symmetric operation
on S . Let a, b ∈ K , such that |a + b| �= 0 . Assume that a function g : S → X satisfies
the inequality

|g(x ◦ y) − ag(x) − bg(y)| � ϕ(x, y) (x, y ∈ S). (2.9)

Then there exists a unique function f : S → X such that f is a solution of

f (x ◦ y) = af (x) + bf (y) (x, y ∈ S) (2.10)

and

|f (x) − g(x)| � Φ3(x, x) (x ∈ S), (2.11)

where Φ3(x, y) =
∑∞

n=1
ϕ(x[2n−1],y[2n−1])

|a+b|n < ∞ for all x, y ∈ S .

Proof. The proof of this theorem is analogous to that of Theorem 1. Substituting
x = y into (2.9),

|g(x ◦ x) − (a + b)g(x)| � ϕ(x, x) (x ∈ S). (2.12)

Let x ∈ S be fixed, and replace x by x[2n−1] in (2.12). Then, for x ∈ S and n ∈ N ,

∣∣∣∣ g(x[2n])
(a + b)n

− g(x[2n−1])
(a + b)n−1

∣∣∣∣ � ϕ(x[2n−1], x[2n−1])
|a + b|n . (2.13)

Let g0 := g and define, for n ∈ N , the function gn by

gn(x) :=
g(x[2n])
(a + b)n

(x ∈ S).

Then, for the inequality (2.13), by arguing in the same way as in the proof of
Theorem 1, we can see that the sequence gn(x) is a Cauchy sequence for all fixed x ∈ S
from the definition of Φ3 . Defining f : S → X by

f (x) := lim
n→∞ gn(x) (x ∈ S),

and making analogous steps, we can see that f satisfies (2.10) and the estimate
(2.11). �
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COROLLARY 5. [7, theorem 4]. Let X be a Banach space over K , where K

denotes the field of real or complex numbers. Let S be a nonempty set and ◦ be a
square-symmetric operation on S . Let a, b ∈ K , such that |a + b| > 1 . Assume that,
for some ε � 0 , a function g : S → X satisfies the inequality

|g(x ◦ y) − ag(x) − bg(y)| � ε (x, y ∈ S). (2.14)

Then there exists a unique function f : S → X such that f is a solution of (2.10) and

|f (x) − g(x)| � ε
|a + b| − 1

(x ∈ S).

THEOREM 4. Let X be a Banach space over K , S be a nonempty set and ◦ be a
square-symmetric operation on S with the divisibility property. Assume that a function
g : S → X satisfies the inequality (2.9).

Then there exists a function f : S → X such that f is a solution of (2.10) and

|g(x) − f (x)| � Φ4(x, x) (x ∈ S),

where Φ4(x, y) =
∑∞

n=1 ϕ(x[2−n], y[2−n])|a + b|n−1 < ∞ for all x, y ∈ S .

Proof. The proof of this theorem is analogous to that of Theorem 2. Define x[2−n]
exactly as it was defined therein. Replacing x and y by x[2−n] in (2.9), we get

|g(x[21−n]) − (a + b)g(x[2−n])| � ϕ(x[2−n], x[2−n]) (x ∈ S, n ∈ N).

Thus, for x ∈ S and n ∈ N ,

|(a + b)n−1g(x[21−n]) − (a + b)ng(x[2−n])|
� ϕ(x[2−n], x[2−n])|a + b|n−1. (2.15)

Let g0 := g and define, for n ∈ N , the function gn by

gn(x) := (a + b)ng(x[2−n]) (x ∈ S).

Now, for the inequality (2.15), using the definition of Φ4 , an analogous argument
such as Theorem 2 shows that f satisfies the desired conditions of this theorem. �

COROLLARY 6. [7, theorem 5]. Let X be a Banach space over K , where K

denotes the field of real or complex numbers. Let S be a nonempty set and ◦ be a
square-symmetric operation on S with the divisibility property. Let a, b ∈ K , such
that |a + b| < 1 . Assume that, for some ε � 0 , a function g : S → X satisfies the
inequality (2.14).

Then there exists a function f : S → X such that f is a solution of (2.10) and

|f (x) − g(x)| � ε
1 − |a + b| (x ∈ S).

Proof. Apply Theorem 4 with ϕ(x, y) = ε . �
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REMARK. The assumption (stability in the spirit ofGǎvruta) that each infinite series
Φi (i = 1, 2, 3, 4) converges can be weakly changed. In Theorem 1, the Gǎvruta’s
assumption can replace lim sup n

√
ϕ(x[2n], x[2n]) � γ < ∞ and |H(1, 1)| > γ . This

is because the term of series Φ1 can be represented by the forms

Pn
n =

(
lim sup n

√
ϕ(x[2n−1], x[2n−1])
|H(1, 1)|

)n

,

where Pn is less than 1. Thus the series Φ1 converges by using the Cauchy-criterion
(or Test of infity series). Of course this idea could be extended to all the well-known
results of this form. The results of Theorem 2,3 and 4 also can be applied to similiar
corollaries without the assumption that each infinite series Φi converges. Corollary 1
could be considerd as an example of the particular case: lim sup n

√
ϕ(x[2n], x[2n]) = ε .

In view of the above remark, we can obtain the similar results of the following:

COROLLARY 7. Let S be a nonempty set and ◦ be a square-symmetric opera-
tion on S . Let G be a closed multiplicative subsemigroup of C with 1 ∈ G and

H : G × G → G be a continuous G -homogeneous function such that
1

H(1, 1)
∈

G. Assume that a function g : S → G satisfies the stability inequality (2.1) and
lim sup n

√
ϕ(x[2n], x[2n]) � γ < ∞ (x, y ∈ S) .

Then the series Φ1 converges if |H(1, 1)| > γ . There exists a unique function
f : S → G such that f is a solution of (1.1) and

|f (x) − g(x)| � Φ1(x, x) (x ∈ S).
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