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ON THE STABILITY OF FUNCTIONAL EQUATIONS
WITH SQUARE-SYMMETRIC OPERATION

GWANG Hul Kim

(communicated by Z. Pdles)

Abstract. In this paper, we obtain the modified Hyers-Ulam-Rassias stability for the family of
functional equations f (xoy) = H(f (x),f (y)) (x,y € S), where H is a homogeneous function
and o is a square-symmetric operation on the set . Asaconsequence we obtain the Hyers-Ulam
stability of its functional equation.

1. Introduction

In 1940, S. M. Ulam [12] raised the following problem: Under what condition does
there exist an additive mapping near an approximately additive mapping?

In 1941, this problem was solved by D. H. Hyers [3]. Thereafter we usually say
that the equation E;(h) = E»(h) has the Hyers- Ulam stability if for an approximate
solution f of this equation, i.e. for a function f with |E\(f) — E2(f)| < 0 there exists
a function g such that E;(g) = Ex(g) and |f(x) — g(x)| < €. In 1978, the Hyers-
Ulam stability for approximate linear mapping was generalized by Th. M. Rassias [8].
Thereafter P. Givruta [2] generalized the stability of Rassias for the case of the bounded
function as follows: If for an approximate solution f of the equation E(h) = E»(h),
i.e. for a function f such that |E|(f) — E2(f)| < ¢ holds with a given function ¢
there exists a function g such that E;(g) = E»(g) and [g(x) — f (x)| < ®@(x) for some
fixed function ®. It is called the modified Hyers-Ulam-Rassias stability(or stability in
the spirit of P. Gévruta). Namely the result of Rassias is the case of a special type of
¢ in this stability. One is referred to [1], [4], [3], [6], [7], [8], [9], [10], [11] for further
generalizations and new open problems.

The aim of the present paper is to investigate the modified Hyers-Ulam-Rassias
stability for the following family of functional equations:

flxoy)=H(f(x),f(y) (xy€eS), (1.1)

where S is a nonempty set, o : § X S — § is a binary operationand H : G x G — G
is a G-homogeneous function of two variables, that is, H satisfies

H(uv,uw) = uH(v,w) (u,v,w € G), (1.2)
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and G is a multiplicative subsemigroup of the real or complex field. A particular case
of (1.1) is the Cauchy functional equation

fr+y)=f@+f0), (xyes)
where S is a semigroup with the operation + and f : S — C.
If the operation o satisfies the following identity:
(xoy)o(xoy) =(rxoxjo(yoy)  (xy€S),

the operation o will be called square symmetric.

In the proof of this paper we use the ideas and methods that are analogous to
the ones used in [7], and the following lemmata are the results of Zsolt Pdles, Peter
Volkmann and Duncan Luce [7]. Let S be a nonempty set and o : § X § — S be an
arbitrary operation.

LEMMA 1. [7, corollary 1]. Let G be a multiplicative subsemigroup of C, let
H:Gx G — G satisfy (1.2), and let ¢ : S — G be an arbitrary bijective function.
Then the binary operation o : S X S — § defined by

voyi= o™ (How00))  (yes)

is square symmetric.

LEMMA 2. [7, lemma 1]. Let o be a square-symmetric operation on S. Define,
for x € S, the sequence x[2"] (n=0,1,2,---) by

Al =2 =x, A2 =22 02", neN
Then, for each n € N, the mapping x — x[2"] is an endomorphism of (S, 0), that is
(xoy)[2"] =x[2"] 0y[2"]  forx,y €S.

2. The modified Hyers-Ulam-Rassias stability of (1.1)

In this section we shall investigate the modified Hyers-Ulam-Rassias stability for
the functional equation (1.1).

In each theorem of this paper, ¢ and ®;(i = 1,2,3,4) are mappings from S x S
into G, and each mapping ®; will be used in each theorem, respectively.

By using an idea in P. Giivruta [2] we can obtain the following results:

THEOREM 1. Let S be a nonempty set and o be a square-symmetric operation on

S. Let G be a closed multiplicative subsemigroup of C with 1 € G and H: GXG — G
1

be a continuous G -homogeneous function such that |H(1,1)| # 0 and LT €G.

(1,1)

Assume that a function g : S — G satisfies the inequality

lg(xoy) —H(g(x),gW) < o(x,y)  (x,y €9). (2.1)
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Then there exists a unique function f : S — G such that f is a solution of (1.1)
and

f () =g < Pilx,x) (¥ €S), (2:2)

where ®;(x,y) =Y., % < oo forall x,y€S.
Proof. Substituting x =y into (2.1) and using the G -homogeneity of H, we get
lg(xox) —g(x)H(L,1)] < @(x,x) (xeS). (2.3)

Let x € S be fixed, and replace x by x[2"~!] in (2.3).
Then we obtain

g(:2") g2 | _ e@[2"~ 1, +2"7 1)
H(1,1)»  H(1,1)n=1| = |H(L,1)|"

forall x € S and n € N. Let gy := g and define, for n € N, the function g, by

g(x2")
gn(X) = H(l 1)" (x € S)
1
Then g, : S — G (since HIT) € G) and, due to (2.4), we have

|gn(x) — gm(x Z |gi(x) — gj—1(x)]

j=m+1
Z P(x 2] 'T,x271)
\J m—+1 1 1 ‘j

for n > m > 0. Taking the limit m — oo in the last inequality, the sequence g,(x) is
a Cauchy sequence for all fixed x € S from the definition of ®;. Since the set G is
closed, we can define a mapping f : S — G by

F) = Jim ) (xe ).

It follows from (2.4) that

|gn gO ‘\Z |H 171 |J

S~ QG2 A2 )
J; HLDF

Taking the limit n — oo, we obtain (2.2).
To see that f satisfies (1.1), let x,y € S and replace x,y by x[2"], y[2"] in (2.1).
Using Lemma 2, we get

8((x o y)[2"]) — H(g(x[2"]), s (V2" < @(x[2"], ¥[2"]).
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Hence, by the G-homogeneity of H,

e(x[2"],y[2"])

‘gn(xoy)7H(g,,(x),gn()’))| < ‘H(Ll)‘"

forall x,y € S and n € N. Taking the limit n — oo, by the continuity of H and the
definition of ®; it follows that

f (xoy) —H{F x),f O =0 (xye€S).

Thus (1.1) holds.
Assume that f* : § — G is another function which satisfies (1.1) and (2.2). It
follows from (2.2) that

* o )| = l *.X' nyy _ X n
R A )]

STELP (IF " (x2"]) — e 2] + 8 (x[2"]) = f (+2"])1)

2

< m‘bl(x[zn}vx[z"])

forall x € S and n € N. By letting n — oo in the preceeding inequality, we
immediately see the uniqueness of f from the definition of @;, and the theorem is
proved. O

COROLLARY 1. [7, theorem 2]. Let S be a nonempty set and o be a square-
symmetric operation on S. Let G be a closed multiplicative subsemigroup of C with
1€ Gand H: G X G — G be a continuous G-homogeneous function such that

1
|[H(1,1)] > 1 and HOD) € G. Assume that, for some € > 0, a function g : S — G

satisfies the inequality

lg(xoy) —H(g(x),g)|<e  (x,y€S). (2.5)

Then there exists a unique function f : S — G such that f is a solution of (1.1) and

8 ~fWI < =y WES)

Proof. Apply Theorem 1 with ¢(x,y) =¢. O

We say that the operation o has the divisibility property if, for each x € §, there
exists a unique element y € S such that y o y = x. In this case the equation y[2"] = x
has a unique solution y for each fixed x € § and n € N. Denote this unique element
y by x[27"]. Clearly, the mapping x — x[27"] is also an endomorphism of (S, o).

THEOREM 2. Let S be a nonempty set and o be a square-symmetric operation
with the divisibility property on S. Let G be a closed multiplicative subsemigroup of C
with 1 € G and H : G X G — G be a continuous G -homogeneous function. Assume
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that a function g : S — G satisfies the inequality (2.1). Then there exists a function
f 8 — G suchthat f is a solution of (1.1) and

f (x) —g(x)| < D2(x,x)  (x€S), (2:6)
where ®(x,y) = > 2 @(x[27"],y27")H(L, 1)|""! < co forall x,y € S.

Proof. The proof of this theorem is analogous to that of Theorem 1.
Replacing x and y by x[27"] in (2.1) and using the G-homogeneity of H, we
get

g(x2'7") — g2 DH(1, )| < o(x27"],x27"])  (x€ S, nEN).
Thus
g2 H(1, 1) — g(x27)H(1,1)"|
< Q27" A27IHA, D! (2.7)
for x € §, n € N. Let gy := g and define, for n € N, the function g, by
gn(x) == gx[27")H(1,1)" (x€9).

Then g, : S — G and, by (2.7), as in the proof of Theorem 1, we can deduce that the
sequence g,(x) is a Cauchy sequence for all fixed x € S from the definition of ®,.
Define f as the pointwise limit function of the sequence g, . It follows from (2.7) that

|80(x) — go(x)| < Y @27, x27])|H(L, P!

M=

—

~

oo

<D oG x27DIH(L DY

i1

~

Taking the limit n — oo, we obtain (2.6).
To see that f satisfies (1.1), let x,y € S, replace x,y by x[27"], y[27"] in (2.1).
Then we get

lg((eoy)277]) = H(g(x[27"]), e V27" < @(x27"], ¥[277)).

Hence, by the G-homogeneity of H and an endomorphism of the above mapping
x — x[271],

[gn(x 0 y) = H(gn(x), 8a ()| < @(x[27"], x[27"])[H (1, 1)|"

forall x,y € S, n € N. Taking the limit » — oo, by using the continuity of H and
the definition of ®,, it follows that

[f (xoy) —H{F x),f O =0 (xy€S).

Therefore (1.1) holds and the uniquness can be proved in a similar manner of Theorem
1, Hence the theorem is proved. [
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COROLLARY 2. [7, theorem 3]. Let S be a nonempty set and o be a square-
symmetric operation with the divisibility property on S. In addition, let G be a closed
multiplicative subsemigroup of C with 1 € G and H : G X G — G be a continuous
G -homogeneous function such that |H(1,1)| < 1. Assume that, for some € > 0, a
Sunction g : S — G satisfies the inequality (2.5). Then there exists a unique function
f 8 — G suchthat f is a solution of (1.1) and

)
If (x) — g(x)] gm (x €9).

Proof. Apply Theorem 2 with ¢(x,y) =¢. O

COROLLARY 3. Let G be a closed multiplicative subsemigroup of C with 1 € G
and H : Gx G — G be a continuous G -homogeneous function such that |H(1,1)| # 0

1
and m € G. Assume that a function g : G — G satisfies the inequality

lg(H(x,y)) — H(g(x),g(»)| < o(x,y)  (x,y € G).

Then there exists a unique function f : G — G such that f is a solution of

fH(x,y) =H(fx).f(y) (xy€G). (2.8)
and

0l < g

Proof. In order to apply Theorem 1, let S := G and xoy := H(x,y). By Lemma
1, o is a square-symmetric operation. In the case |H(1,1)| # 0, the statement of
Theorem 1 is also equivalent to that of this corollary.

For application of the Theorem 2, it suffices to show that o satisfies the divisibility
assumption. Let x € G. Then the equation y oy = x is equivalent to yH(1,1) = x.

Since the element m isin G, we have

(x € G).

X
-~ _€G.
YTHID ©

Thus, in this case, Theorem 2 can be applied. [

COROLLARY 4. [7, Corollary 2]. Let G be a closed multiplicative subsemigroup
of Cwith 1 € G and H: G X G — G be a continuous G -homogeneous function

1
suchthat |H(1,1)| # 0,1 and ") € G. Assume that, for some € > 0, a function

g : G — G satisfies the inequality

lg(H(x,y)) —H(g(x),g(y)<e  (x,y€G).

Then there exists a function f : G — G such that f is a solution of the equation (2.8)

and
£

V(x)_g(x)‘gm (x € G).
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Proof. Apply Corollary 3 with @(x,y) = €. By separating |[H(1,1)] > 1 and
|[H(1,1)] <1 for ®;(x,y) and D,(x,y), the proof is completed. [J

In the next results we obtain that the below equation (2.9) is stable in Givruta’s
senseif |a+b| # 0. Inthe case when X = C or X = R these results are also corollaries
of Theorems 1 and 2 if one takes the homogeneous function H(x,y) = ax + by.

THEOREM 3. Let X be a Banach space over K, where K denotes the field of real
or complex numbers. Let S be a nonempty set and o be a square-symmetric operation
on S. Let a,b € K, such that |a+b| # 0. Assume that a function g : S — X satisfies
the inequality

lg(xoy) —ag(x) —bg(y)| < o(x,y)  (x,y €S). (2.9)

Then there exists a unique function f : S — X such that f is a solution of

fxoy)=af (x)+bf(y)  (xy€S) (2.10)
and
If (x) —g(x)| < @3(x,x)  (x€S), (2.11)
where @3(x,y) = >, % < oo forall x,y € S.

Proof. The proof of this theorem is analogous to that of Theorem 1. Substituting
x =y into (2.9),

lg(xox) — (a+ b)g(x)| < @(x,x) (xeS). (2.12)

Let x € S be fixed, and replace x by x[2"~!] in (2.12). Then, for x € S and n € N,

g(ef2) g2 ') | _ o2 x{2'Y)) (2.13)

(a+Db) (a+b)yn=1| = |a + b

Let go := g and define, for n € N, the function g, by

gn(x) == ] (x€9).

Then, for the inequality (2.13), by arguing in the same way as in the proof of
Theorem 1, we can see that the sequence g,(x) is a Cauchy sequence for all fixed x € S
from the definition of @3 . Defining f : § — X by

F(x) = lim g,(x) (x€9),

n—oo

and making analogous steps, we can see that f satisfies (2.10) and the estimate
(2.11). O
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COROLLARY 3. [7, theorem 4]. Let X be a Banach space over K, where K
denotes the field of real or complex numbers. Let S be a nonempty set and o be a
square-symmetric operation on S. Let a,b € K, such that |a+ b| > 1. Assume that,
for some € > 0, afunction g : S — X satisfies the inequality

lg(xoy) —aglx) —bg(y)| <e  (x,y€S). (2.14)

Then there exists a unique function f : S — X such that f is a solution of (2.10) and

I () — g(x)| <« ——

ST S).
la+b|l—1 (x€5)

THEOREM 4. Let X be a Banach space over K, S be a nonempty set and o be a
square-symmetric operation on S with the divisibility property. Assume that a function
g : S — X satisfies the inequality (2.9).

Then there exists a function f : S — X such that f is a solution of (2.10) and

g(x) —=f ()| < Palx,x) (v €9),
where ®4(x,y) = > @(x[27"],y27"])|a + b|"~! < 0o forall x,y € S.

Proof. The proof of this theorem is analogous to that of Theorem 2. Define x[2 "]
exactly as it was defined therein. Replacing x and y by x[27"] in (2.9), we get

82" = (a+b)g(x27") < @27, x27"))  (x€ S, neN).
Thus, for x € S and n € N,

(@ +b)"'g(x[2'")) — (a + b)"g(x[27"])|
< o(x[27",x[27")|a + "1 (2.15)

Let go := g and define, for n € N, the function g, by
gn(x) = (a+b)"g(x[27"])  (x€S).

Now, for the inequality (2.15), using the definition of ®,, an analogous argument
such as Theorem 2 shows that f satisfies the desired conditions of this theorem. [

COROLLARY 6. [7, theorem 5]|. Let X be a Banach space over K, where K
denotes the field of real or complex numbers. Let S be a nonempty set and o be a
square-symmetric operation on S with the divisibility property. Let a,b € K, such
that |a+ b| < 1. Assume that, for some € > 0, a function g : S — X satisfies the
inequality (2.14).

Then there exists a function f : S — X suchthat f is a solution of (2.10) and

If (x) — g(x)

3

<— .
ST avg €Y

Proof. Apply Theorem 4 with ¢(x,y) =¢. O
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REMARK. The assumption (stability in the spirit of Gdvruta) that each infinite series
®; (i = 1,2,3,4)converges can be weakly changed. In Theorem 1, the Givruta’s
assumption can replace limsup {/@(x[2"],x[2"]) < y < oo and |H(1,1)| > y. This
is because the term of series @; can be represented by the forms

n

o lim sup {/@(x[2~1],x[2"~1])
" |H(1,1)] ’

where P, is less than 1. Thus the series ®; converges by using the Cauchy-criterion
(or Test of infity series). Of course this idea could be extended to all the well-known
results of this form. The results of Theorem 2,3 and 4 also can be applied to similiar
corollaries without the assumption that each infinite series ®; converges. Corollary 1
could be considerd as an example of the particular case: limsup {/@(x[2"],x[2"]) = €.

In view of the above remark, we can obtain the similar results of the following:

COROLLARY 7. Let S be a nonempty set and o be a square-symmetric opera-
tion on S. Let G be a closed multiplicative subsemigroup of C with 1 € G and

1
H : G x G — G be a continuous G-homogeneous function such that ———~ €

H(1,1)
G. Assume that a function g : S — G satisfies the stability inequality (2.1) and

lim sup {/@(x[2"],x[2"]) <y < o (x,y€89).
Then the series ®, converges if |H(1,1)| > v. There exists a unique function
f S — G suchthat f is a solution of (1.1) and

f(x) —g@)] < @ifx,x)  (xE€S).
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