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SOME INEQUALITIES FOR COSINE SUMS

STAMATIS KOUMANDOS

(communicated by Th. M. Rassias)

Abstract. We establish sharp lower and upper estimates for the cosine sums
n∑

k=1

cos kθ
k+1 . We also

discuss the possibility of extending these results to other cosine sums of this type.

1. Introduction

In 1928, Rogosinski and Szego” [8], showed that for every positive integer n and
for 0 < θ < π ,

1
2

+
n∑

k=1

cos kθ
k + 1

� 0. (1)

Over the years, several extensions and generalizations of this inequality have been
obtained by different authors (see for example [1], [2], [4] ). In [9], Tomić improved the
Rogosinski-Szego” inequality above, when n � 2 , by showing that there is a constant
K > 0 , independent of n and θ such that the inequality

1
2

+
n∑

k=1

cos kθ
k + 1

� K >
1

168
, (2)

holds (see also [6], ch. 4).
Here, we are able to prove that this result of Tomić admits considerable improve-

ment by determining the best constant K in (1.2). In this paper, we develop a method
of estimating cosine sums of this type which enables us to find also an n -independent
functional upper bound for these sums.

Our main results are the following:

THEOREM 1. For any positive integer n > 1 and 0 < θ < π we have the
inequality

41
96

+
n∑

k=1

cos kθ
k + 1

� 0. (3)

The leading constant 41
96 in the above inequality is best possible and corresponds to the

case n = 2 .
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THEOREM 2. For all positive integers n and for 0 < θ < π , we have

n∑
k=1

cos kθ
k + 1

< Ci
(π

2

)
+

∞∑
k=1

cos kθ
k + 1

. (4)

Note that

Ci
(π

2

)
= −

∫ ∞

π
2

cos t
t

dt = 0.472 . . .

and this is the best constant in the inequality (1.4).

Of course, it is well-known and easy to see that

∞∑
k=1

cos kθ
k + 1

= −1 − cosθ log(2 sin
θ
2

) +
(
π − θ

2

)
sin θ. (5)

(cf. [7]).
In [3], we established a corresponding result of (1.3) for a simpler case of cosine

sums. More specifically, it is shown in [3] that the inequality

1 +
n∑

k=1

cos kθ
k

� 1
6
, (6)

holds for all n � 2 and 0 < θ < π , the constant 1
6 being the best possible.

In this paper we are able to prove an analogous result of (1.4) for the sums of (1.6).
Namely, we have

THEOREM 3. For all positive integers n and for 0 < θ < π , we have

n∑
k=1

cos kθ
k

� 1
2

+
∞∑
k=1

cos kθ
k

. (7)

The only case of equality in (1.7) occurs when n = 1 and θ = π
3 .

Note that the constant 1/2 in the above inequality is best possible. This result
improves an old result of W. H. Young [10], viz.

n∑
k=1

cos kθ
k

� 5 − log(2 sin
θ
2
), 0 < θ < π.

As it is well known
∑∞

k=1
cos kθ

k = − log(2 sin θ
2 ) .

A different functional upper bound for the cosine sums of (1.7) has been obtained
by Hyltén-Cavallius [5]. This is

n∑
k=1

cos kθ
k

� − log(sin
θ
2

) +
π − θ

2
, 0 < θ < π. (8)

(See also [6], ch. 4). Our inequality (1.7) is sharper than (1.8) for the same range of θ .



SOME INEQUALITIES FOR COSINE SUMS 269

In the following sections we prove Theorem 1, Theorem 2 and Theorem 3. In
the final section we discuss the more general problem of extending (1.4) to the case of
cosine sums

n∑
k=1

cos kθ
k + p

.

2. Proof of Theorem 1

Let

Sn(θ) =
n∑

k=1

cos kθ
k + 1

.

Summing twice by parts and using the familiar formulae

1
2

+
n∑

k=1

cos kθ =
sin(n + 1

2 )θ
2 sin θ

2

and

n∑
k=0

sin(k + 1
2 )θ

2 sin θ
2

=
1
2

(
sin(n + 1) θ2

sin θ
2

)2

we get (n � 2)

Sn(θ) = −1
3

+
n−2∑
k=1

1
(k + 1)(k + 2)(k + 3)

(
sin(k + 1) θ2

sin θ
2

)2

+
1

2n(n + 1)

(
sin n θ

2

sin θ
2

)2

+
sin(n + 1

2 )θ
2(n + 1) sin θ

2

. (1)

It follows from this that, for 0 < θ � 2π
2n+1 ,

41
96

+ Sn(θ) � 3
32

.

This settles (1.3) for this range of θ .
Suppose that θ > 2π

2n+1 . Using again (2.1) we obtain

41
96

+ Sn(θ) � 25
96

− 1
6

sin2 θ
2
− 1

2(n + 1) sin θ
2

.

We first consider the case where 2π
n+1/2 � θ < π . We set t = sin θ

2 and define

gn(t) =
25
48

− 1
3
t2 − 1

(n + 1)t
.
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It is not hard to see that, for sin π
n+1/2 � t < 1 , gn(t) is a concave function (g′′n (t) < 0 ).

Hence

gn(t) � min

{
gn

(
sin

π
n + 1/2

)
, gn(1)

}
> 0, (2)

for n � 5 . Therefore in this case (1.3) is true.
Now for the remaining interval π

n+1/2 � θ < 2π
n+1/2 , we use once more (2.1) to get

41
96

+ Sn(θ) � 25
96

− 1
6

sin2 θ
2
− 1

2(n + 1) sin θ
2

+
1
60

(3 − 4 sin2 θ
2
)2.

As in the previous case setting t = sin θ
2 , it suffices to prove that the function

Gn(t) = gn(t) +
1
30

(3 − 4t2)2,

is positive for sin π
2n+1 < t < sin π

n+1/2 . Indeed, we can easily verify that the function
Gn(t) is concave for this range of t , so that

Gn(t) � min

{
Gn

(
sin

π
2n + 1

)
, Gn

(
sin

π
n + 1/2

)}

= Gn

(
sin

π
2n + 1

)
> 0,

for n � 5 .
Finally, by a straightforward computation we can establish (1.3) for the cases

n = 2, 3, 4 . Note that the minimum of the cosine polynomial S2(θ) is − 41
96 which

specifies the best possible leading constant in (1.3). The proof of Theorem1 is complete.

3. Proof of Theorem 2

Throughout this section we shall employ the notations

Rn(θ) = Sn(θ) −
∞∑
k=1

cos kθ
k + 1

, 0 < θ < π.

and
θn =

π
2n + 1

.

To see that inequality (1.4) is sharp we first show that

lim
n→∞Rn(θn) = Ci

(π
2

)
. (1)

We observe that

Sn(θn) =
n∑

k=1

1
k + 1

− 2
n∑

k=1

sin2 k π
4n+2

k + 1
.
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Then using (1.5) we see that

Rn(θn) =
n+1∑
k=1

1
k
− 2

n∑
k=1

sin2 k π
4n+2

k + 1

+ cosθn log(2 sin
θn

2
) −

(
π − θn

2

)
sin θn. (2)

It is easy to verify that

lim
n→∞ 2

n∑
k=1

sin2 k π
4n+2

k + 1
= 2

∫ π
4

0

sin2 t
t

dt = log
π
2
− Ci

(π
2

)
+ γ ,

where

γ = lim
n→∞

(
n∑

k=1

1
k
− log n

)
= 0.577215 . . .

is Euler’s constant. From this and (3.2) we obtain (3.1).
As the cases of (1.4) for n = 1, 2, . . . , 5 can be directly checked, in order to

establish Theorem 2 we consider the following cases:

Case A. The interval 0 < θ � θn, n � 4 .

This interval is the most difficult one to handle. We first show that Rn(θ) is strictly

increasing on the subinterval 0 < θ � 3
2n + 1

. Differentiating and using (1.5) we

obtain

R′
n(θ) =

cos(n + 1
2 )θ

2 sin θ
2

− sin θ log(2 sin
θ
2

) −
(
π − θ

2

)
cosθ

+
n∑

k=1

sin kθ
k + 1

. (3)

We write

n∑
k=1

sin kθ
k + 1

=
n+1∑
k=1

sin kθ
k

−
∞∑
k=1

sin kθ
k(k + 1)

+
∞∑

k=n+2

sin kθ
k(k + 1)

− sin(n + 1)θ
n + 2

. (4)

One can easily verify that

∞∑
k=1

sin kθ
k(k + 1)

=
π − θ

2
(1 − cosθ) − sin θ log(2 sin

θ
2

) . (5)

Then a summation by parts gives∣∣∣∣∣
∞∑

k=n+2

sin kθ
k(k + 1)

∣∣∣∣∣ � 1

(n + 2)(n + 3) sin θ
2

.
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It follows from this, (3.3), (3.4) and (3.5) that

R′
n(θ) �

cos(n + 1
2 )θ

2 sin θ
2

+
n+1∑
k=1

sin kθ
k

− 1

(n + 2)(n + 3) sin θ
2

− π
2

+
θ
2
− 1

n + 2
. (6)

Also, it can be easily seen that the function on the right hand side of (1.5) is convex for
0 < θ < π . Now, for 0 < θ � 3

2n+1 , we have

S′′n (θ) = −
n∑

k=1

k2

k + 1
cos kθ < 0,

hence R′′
n (θ) < 0 for the same range of θ , which is to say that R′

n(θ) is strictly
decreasing on this interval. On the other hand, it is clear that

n+1∑
k=1

sin 3k
2n+1

k
>

∫ 3
2

0

sin t
t

dt = Si

(
3
2

)
= 1.3246 . . . .

Therefore by (3.6) we get

R′
n(θ) �

cos( 3
2 )

2 sin 3
4n+2

− 1

(n + 2)(n + 3) sin 3
4n+2

+
3

4n + 2
− 1

n + 2
+ Si

(
3
2

)
− π

2
> 0,

for n � 8 . Using (3.3) it can be directly checked that R′
n(

3
2n+1 ) > 0 for 4 � n � 7 .

We deduce from the above that R′
n(θ) > 0 for 0 < θ � 3

2n+1 , n � 4 .

Next, we prove that Rn(θ) < Ci
(π

2

)
for 3

2n+1 � θ � π
2n+1 .

We write θ = t
2n+1 , 3 � t � π . Then using (1.5) we obtain

Rn(θ) =
n+1∑
k=1

1
k
− 2

n+1∑
k=1

sin2 k t
4n+2

k + 1

+ cos
t

2n + 1
log

(
2 sin

t
4n + 2

)
−
(
π
2
− t

4n + 2

)
sin

t
2n + 1

+ 2
sin2 (n+1)t

4n+2

n + 2
. (7)

It is not hard to see that (3 � t � π)

n+1∑
k=1

sin2 k t
4n+2

k + 1
>

∫ t
4

0

sin2 u
u

du =
1
2

[
log
( t

2

)
− Ci

( t
2

)
+ γ
]
.
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We let

An(t) =
n+1∑
k=1

1
k

+ cos
t

2n + 1
log

(
2 sin

t
4n + 2

)
−
(
π
2
− t

4n + 2

)
sin

t
2n + 1

+ 2
sin2 (n+1)t

4n+2

n + 2
.

Then by a routine calculation we verify that

An(t) < lim
n→∞ An(t) = γ + log

( t
2

)
.

Combining the above estimates with (3.7) we obtain

Rn(θ) < Ci
( t

2

)
. (8)

Since the function Ci(x) attains its absolute maximum in (0, π/2] at x0 = π
2 , by (3.8)

the desired result follows.

Case B. The interval θn < θ � 2θn, n � 4 .

For this range of θ we shall show that R′
n(θ) < 0 . In view of the result of Case A, this

establishes (1.4) for the interval under consideration. We observe that

n∑
k=1

sin kθ
k + 1

=
n∑

k=1

sin kθ
k

−
∞∑
k=1

sin kθ
k(k + 1)

+
∞∑

k=n+1

sin kθ
k(k + 1)

and recall that
n∑

k=1

sin kθ
k

=
∫ θ

0

sin(n + 1
2 )t

2 sin t
2

dt − θ
2

then use (3.5) to obtain

n∑
k=1

sin kθ
k + 1

=
∫ θ

0

sin(n + 1
2 )t

2 sin t
2

dt − π
2

+
π − θ

2
cos θ + sin θ log(2 sin

θ
2
) +

∞∑
k=n+1

sin kθ
k(k + 1)

.

By virtue of (3.3) we get

−R′
n(θ) = −cos(n + 1

2 )θ
2 sin θ

2

−
∫ θ

0

sin(n + 1
2 )t

2 sin t
2

dt +
π
2
−

∞∑
k=n+1

sin kθ
k(k + 1)

. (9)

We recall also that
∞∑

k=n+1

sin kθ
k(k + 1)

� 1

(n + 1)(n + 2) sin θ
2

. (10)
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Next we show that −R′
n(θ) is a concave function in the interval in question. Indeed,

writing

f (θ) =
∞∑
k=1

cos kθ
k + 1

using (1.5) and a straightforward calculation we have f ′′′(θ) < 0 . On the other hand,
for the same range of θ

d3

dθ3
Sn(θ) =

n∑
k=1

k3

k + 1
sin kθ > 0.

In view of the above we obtain

−R′
n(θ) � min

{
−R′

n

(
π

2n + 1

)
, −R′

n

(
2π

2n + 1

)}
. (11)

Now using (3.9) and (3.10) we have

− R′
n

(
π

2n + 1

)

� −
∫ π

2n+1

0

sin(n + 1
2 )t

2 sin t
2

dt +
π
2
− 1

(n + 1)(n + 2) sin π
4n+2

� π
2
− Si

(π
2

) π
(4n + 2) sin π

4n+2

− 1
(n + 1)(n + 2) sin π

4n+2

> 0.0011, for n � 4. (12)

Similarly

− R′
n

(
2π

2n + 1

)

� 1
2 sin π

2n+1

−
∫ 2π

2n+1

0

sin(n + 1
2 )t

2 sin t
2

dt +
π
2
− 1

(n + 1)(n + 2) sin π
2n+1

� 1
2 sin π

2n+1

+
π
2
− Si(π)

π
(2n + 1) sin π

2n+1

− 1
(n + 1)(n + 2) sin π

2n+1

> 1 for n � 4. (13)

Combining (3.12) and (3.13) with (3.11) we obtain the desired result.

Case C. The interval 2θn < θ � 3θn, n � 6 .

In this case we write

Rn(θ) =
n∑

k=1

cos kθ
k

−
∞∑
k=1

cos kθ
k

+
∞∑

k=n+1

cos kθ
k(k + 1)

(14)
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Then we see that

n∑
k=1

cos kθ
k

−
∞∑
k=1

cos kθ
k

=
n∑

k=1

cos 2kπ
2n+1

k
+ log(2 sin

π
2n + 1

) +
∫ θ

2π
2n+1

cos(n + 1
2 )t

2 sin t
2

dt

�
n∑

k=1

cos 2kπ
2n+1

k
+ log(2 sin

π
2n + 1

). (15)

One can easily check that

n∑
k=1

cos 2kπ
2n+1

k
=

n∑
k=1

1
k
− 2

n+1∑
k=1

sin2 kπ
2n+1

k
+ 2

sin2 (n+1)π
2n+1

n + 1

<
n∑

k=1

1
k
− 2

∫ π
2

0

sin2 t
t

dt + 2
sin2 (n+1)π

2n+1

n + 1
.

It follows from this that

n∑
k=1

cos 2kπ
2n+1

k
+ log(2 sin

π
2n + 1

)

� Ci(π) +
2

n + 1
+ an, (16)

where

an =
n∑

k=1

1
k
− log

(
n +

1
2

)
− γ .

An elementary calculation shows that an is a strictly decreasing sequence. On the other
hand, for the same range of θ

∞∑
k=n+1

cos kθ
k(k + 1)

<
1

(n + 1)(n + 2) sin π
2n+1

.

A combination of this with (3.14), (3.15) and (3.16) yields

Rn(θ) < 0.435 < Ci
(π

2

)
, for n � 6,

which settles Case C.

Case D. The interval 3θn < θ � π, n � 6 .
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This case can be handled in a similar way by writing

n∑
k=1

cos kθ
k

−
∞∑
k=1

cos kθ
k

=
n∑

k=1

cos 3kπ
2n+1

k
+ log(2 sin

3π
4n + 2

) +
∫ θ

3π
2n+1

cos(n + 1
2 )t

2 sin t
2

dt. (17)

For θ in this interval we have

∫ θ

3π
2n+1

cos(n + 1
2 )t

2 sin t
2

dt �
∫ 5π

2n+1

3π
2n+1

cos(n + 1
2 )t

2 sin t
2

dt

� 5π
(4n + 2) sin 5π

4n+2

∫ 5π
2

3π
2

cos t
t

dt < 0.343 for n � 6. (18)

Moreover

n∑
k=1

cos 3kπ
2n+1

k
=

n∑
k=1

1
k
− 2

n+1∑
k=1

sin2 3kπ
4n+2

k
+ 2

sin2 (n+1)3π
4n+2

n + 1

<

n∑
k=1

1
k
− 2

∫ 3π
4

0

sin2 t
t

dt +
1

n + 1
,

whence

n∑
k=1

cos 3kπ
2n+1

k
+ log(2 sin

3π
4n + 2

)

� Ci

(
3π
2

)
+

1
n + 1

+ an, (19)

where an as above and Ci( 3π
2 ) = −0.1984 . . . . Also, in this case we have

∞∑
k=n+1

cos kθ
k(k + 1)

<
1

(n + 1)(n + 2) sin 3π
4n+2

.

Taking into account (3.14) and (3.15) and using the estimates of (3.18), (3.19) and the
above, we finally deduce that

Rn(θ) < 0.34 for n � 6.

Hence (1.4) is true for the case D as well.
The proof of Theorem 2 is now complete.
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4. Proof of Theorem 3

For n = 1 we observe that the function 1
2 − log(2 sin θ

2 )−cosθ attains its absolute
minimum in [0, π] at θ0 = π

3 and this yields directly (1.7).
Suppose that n � 2 . Let

Qn(θ) =
n∑

k=1

cos kθ
k

+ log(2 sin
θ
2
).

A straightforward differentiation gives

Q′
n(θ) =

cos(n + 1
2 )θ

2 sin θ
2

.

It follows from this that, for 0 < θ � π
2n+1 , the function Qn(θ) is strictly increasing,

so that

Qn(θ) �
n∑

k=1

cos kπ
2n+1

k
+ log(2 sin

π
4n + 2

) = Mn, say.

A direct computation yields

0.472 < Mn < 0.483 for 2 � n � 35.

Next we see that

Mn <

n∑
k=1

1
k
− 2

∫ π
4

0

sin2 t
t

dt + 2
sin2 (n+1)π

4n+2

n + 1
+ log(2 sin

π
4n + 2

) . (1)

For n � 36 we note that

2 sin2 (n + 1)π
4n + 2

< 1.022.

It follows from this and (4.1) that

Mn < Ci
(π

2

)
+ an +

1.022
n + 1

, (2)

where the sequence an as in the proof of Theorem 2. Recalling that an is strictly
decreasing we find that the right hand side of (4.2) does not exceed 0.4997 when
n � 36 . This establishes (1.7) for the interval (0, π

2n+1 ] . Inequality (1.7) is also true
for π

2n+1 < θ < 3π
2n+1 because the derivative Q′

n(θ) is negative for this range of θ .

For 3π
2n+1 � θ < π we use again the estimates of (3.17), (3.18) and (3.19) to find

that
Qn(θ) < 0.457 for n � 3.

By checking directly the case n = 2 we complete the proof of Theorem 3.
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5. Remarks

In addition to (1.1), Rogosinski and Szego” [8] showed that

1
1 + p

+
n∑

k=1

cos kθ
k + p

> 0, (1)

for all n and 0 < θ < π , when p � A , where A is a number not exceeding
2(1 +

√
2) = 4.8284 . . . and assume negative values for all p > A . Gasper [4] has

proved that A = 4.5678 . . . and A is a root of a polynomial of seventh degree. The
critical value A is determined by the case n = 3 and this result is best possible. Thus
there is no analogue of (1.3) and (1.6) in this more general case. However, there is
an analogue of (1.4) for the sums of (5.1) in the case where p is a positive integer.
Following the method of the proof of Theorem 2 it can be shown that for all positive
integers n and for 0 < θ < π the inequality

n∑
k=1

cos kθ
k + p

< Ci
(π

2

)
+

∞∑
k=1

cos kθ
k + p

(2)

holds and the constant Ci( π2 ) is the best possible. One has the immediate feeling that
the proof of (5.2) is more complicated and to present all the details in full, we would
need a much longer paper. In this paper we used the proof of Theorem 2 to give the
principal ideas of the method and the relevant techniques which we need for the proof
of (5.2).

In the case where p is a positive integer it is well known and easy to see that

∞∑
k=1

cos kθ
k + p

= − cos pθ

[
log (2 sin

θ
2

) +
p∑

k=1

cos kθ
k

]

+ sin pθ

[
π − θ

2
−

p∑
k=1

sin kθ
k

]
(3)

(cf. [7]).
To see that inequality (5.2) is sharp we let

Rp
n(θ) = −

∞∑
k=n+1

cos kθ
k + p

then using (5.3) we have

Rp
n(θ) = cos pθ

[
log (2 sin

θ
2
) +

n+p∑
k=1

cos kθ
k

]

− sin pθ

[
π − θ

2
−

n+p∑
k=1

sin kθ
k

]
. (4)
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Choosing θn =
π

2n + 1
it follows from (5.4) that

lim
n→∞Rp

n(θn) = Ci
(π

2

)
. (5)

This represents the Gibbs’s phenomenon for the convergence of the remainders Rp
n(θ)

of the Fourier series (5.3) in (0, π) .
Finally, it is interesting to observe that while (5.5) is valid for p = 0 , inequality

(5.2) fails to hold in this case and this is explained by our Theorem 3.
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