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INTERSECTION PROPERTIES FOR CONES OF MONOTONE

AND CONVEX FUNCTIONS IN SCALE OF LIPSCHITZ SPACES

INNA KOZLOV

(communicated by V. Burenkov)

Abstract. The basic results of the real interpolation method is known to be valid for couples
(X0 ∩ Q,X1 ∩ Q) under the condition that the cone Q has the so-called intersection property
with respect to the couple (X0, X1) . In this paper we study this property for the cones of monotone
and convex functions with respect to the couple of Lipschitz (Nikol’skii-Besov) spaces.

1. Introduction

Many important problems in harmonic analysis, PDE and approximation theory
require interpolation of operators preserving a convex cone structure (positivity, mono-
tonicity, convexity etc). The only robust interpolation method in this case is the real
interpolation method, since all others are hardly rely on the linear structure of underly-
ing data. It was noted by Y. Sagher ([12], [13]) that the basic results of the real method
are valid under the condition named below the cone intersection property, see Defini-
tion 1.1. In this paper we study this property and its modification for cones of univariate
monotoneand convex functionswith respect to the scale of Lipschitz (Nikol’skii-Besov)
spaces. In all previous works on this problem (see references below) the underlying
spaces were always taken to be lattices.

Let Y be a linear space over the field of reals. Suppose that X ⊂ Y is a linear
subspace and that Q ⊂ Y is a cone. A norm on X ∩ Q is a map ‖ · ‖ of X ∩ Q to
[0,∞) satisfying the properties usually required for a norm on a linear space, except
that the formula ‖λx‖ = |λ |‖x‖ is only required to hold for λ � 0 .

Hereafter we shall use the basic notions of interpolation space theory, see [2] or [4].

DEFINITION 1.1. A cone Q has the intersection property ( IP ) with respect to a
Banach couple X̄ = (X0, X1) if for all t > 0

(X0 + tX1) ∩ Q = (X0 ∩ Q) + t(X1 ∩ Q) (1.1)

where the norms are equivalent up to constants independent of t .
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Here the norm of (X0 + tX1) ∩ Q is taken to be simply the restriction to Q of the
natural norm (K -functional) on X0 + tX1 and the norm on (X0 ∩ Q) + t(X1 ∩ Q) is
taken to be

K(f , t; X̄ ∩ Q) = inf{‖f 0‖X0 + t‖f 1‖X1 : f = f 0 + f 1, f i ∈ Xi ∩ Q},
i.e., it is the K -functional of the couple of cones X̄ ∩ Q := (X0 ∩ Q, X1 ∩ Q) .

Hence the intersection property (1.1) is equivalent to the two-sided inequality

K(f , t; X̄ ∩ Q) ≈ K(f , t; X̄), (f ∈ Q, t > 0). (1.2)

Here F ≈ G means that C1F � G � C2F for some constants 0 < C1, C2 < ∞
independent of the arguments of F, G . In particular, (1.2) holds uniformly with respect
to t > 0 and f ∈ Q . We also use the notation F ≺ G(G 	 F) if F � C1G for some
constant C1 > 0 independent of the arguments of F, G .

If Q satisfies the intersection property then it also satisfies:

(X0 ∩ Q, X1 ∩ Q)θ,q = Q ∩ (X0, X1)θ,q (0 < θ < 1, 1 � q � ∞) (1.3)

with equivalence of the norms.
Let us recall that the norm of the cone on the left is determined by

‖f ‖(X0∩Q,X1∩Q)θq
:=

(∫ ∞

0

(
K(t, f ; X̄ ∩ Q)

tθ

)q dt
t

) 1
q

.

DEFINITION 1.2. The cone Q has the weak intersection property (WIP ) with
respect to a Banach couple (or seminormed couple) X̄ = (X0, X1) if (1.3) holds with
equivalence of norms.

As it was mentioned, cones satisfying (1.3) were first introduced and studied by
Y. Sagher ([12], [13]). He called them “Marcinkiewicz cones". He also gave some
interesting applications of his results to harmonic analysis. The intersection property
for the cone of concave nondecreasing nonnegative functions on R+ was studied by I.
Asekritova [1]. She proved that it has the IP with respect to a couple of weighted L∞
spaces where the weights are quasi-concave on R+ . Recently J. Cerdà and J. Martin
[5] have obtained a similar result for the cone of non-negative non-increasing functions
on R+ with respect to (Lp, Lq) and also with respect to couples of Lorentz spaces.

To illustrate the role of the intersection property we introduce the following results,
a version of Holmstedt’s formula, which also be used below. Unfortunately, we cannot
apply Holmstedt’s proof ([8]) directly to the case of a couple of cones X̄Q := (X0 ∩
Q, X1 ∩ Q) because we have to avoid taking differences of two functions from a cone.
Nevertheless, we can use the following version of the reiteration theorem in our setting.
In order to formulate the results we set

K̄Q(f , s) := K(f , s, (X̄Q)θ0,q0 , (X̄
Q)θ1 ,q1).

PROPOSITION 1. Suppose that for fixed θj ∈ (0, 1) and qj ∈ [1,∞] the isomor-
phism

(X0 ∩ Q, X1 ∩ Q)θi,qi = (X0, X1)θi ,qi ∩ Q (1.4)
holds for i = 0, 1 . For all f ∈ ∑

(X̄Q) := X0 ∩ Q + X1 ∩ Q and j = 0, 1 let
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PQ
j (t) = (

t∫
0

[s−θjK(f , s, X0 ∩ Q, X1 ∩ Q)]qj
ds
s

)1/qj

and

RQ
j (t) = (

∞∫
t

[s−θjK(f , s, X0 ∩ Q, X1 ∩ Q)]qj
ds
s

)1/qj .

Then
K̄Q(f , tλ ) ≈ PQ

0 (t) + tλRQ
1 (t). (1.5)

Here θ0 < θ1 and λ := θ1 − θ0 .

Proof. We adapt Holmstedt’s proof to to our case of a couple of cones. The
inequality

PQ
0 (t) + tλRQ

1 (t) � CK̄Q(f , tλ )

is proved as in [8], pp. 180–182.
To obtain the converse inequality we choose for f ∈ ∑

(X̄Q) and for t > 0 a
decomposition f = gt + ht ∈ X0 ∩ Q + X1 ∩ Q , gt ∈ X0 ∩ Q , ht ∈ X1 ∩ Q such that

‖gt‖X0 + t‖ht‖X1 � 2K(f , t, X0 ∩ Q, X1 ∩ Q). (1.6)

With this choice we have

K̄Q(f , tλ ) � ‖gt‖(X̄Q)θ0 ,q0
+ tλ‖ht‖(X̄Q)θ1,q1

= (
∞∫
0

[s−θ0K(gt, s, X0 ∩ Q, X1 ∩ Q)]q0 ds
s )1/q0+

+tλ (
∞∫
0

[s−θ1K(ht, s, X0 ∩ Q, X1 ∩ Q)]q1 ds
s )1/q1 .

(1.7)

To estimate the right hand side of (1.7) we have to apply (1.4):

K̄Q(f , tλ ) � C{(
∞∫
0

[s−θ0K(gt, s, X0, X1)]q0 ds
s )1/q0 + tλ (

∞∫
0

[s−θ1K(ht, s, X0, X1)]q1 ds
s )1/q1}

� C{(
t∫

0
[s−θ0K(gt, s, X0, X1)]q0 ds

s )1/q0 + (
∞∫
t
[s−θ0K(gt, s, X0, X1)]q0 ds

s )1/q0

+tλ (
t∫

0
[s−θ1K(ht, s, X0, X1)]q1 ds

s )1/q1 + tλ (
∞∫
t
[s−θ1K(ht, s, X0, X1)]q1 ds

s )1/q1}.
(1.8)

For the first term we obtain, by the triangle inequality,

(
t∫

0
[s−θ0K(gt, s, X0, X1)]q0 ds

s )1/q0 � (
t∫

0
[s−θ0K(f , s, X0, X1)]q0 ds

s )1/q0+

+(
t∫

0
[s−θ0K(ht, s, X0, X1)]q0 ds

s )1/q0 .
(1.9)

Since for every cone Q

K(f , s, X0, X1) � K(f , s, X0 ∩ Q, X1 ∩ Q),
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it follows that

(

t∫
0

[s−θ0K(f , s, X0, X1)]q0
ds
s

)1/q0 � PQ
0 (t).

According to the choice of ht (see (1.6)) the latter integral in (1.9) is bounded by

(
t∫

0
[s−θ0s‖ht‖X1 ]q0 ds

s )1/q0 = C1(‖ht‖X1 t)t−θ0

� 2C1K(f , t, X0 ∩ Q, X1 ∩ Q)t−θ0

� C2
K(f ,t,X0∩Q,X1∩Q)

t

t∫
t
2

s−θ0ds.

(1.10)

Since the function t → K(f , t, X0 ∩ Q, X1 ∩ Q) is concave, K(f ,t,X0∩Q,X1∩Q)
t �

K(f ,s,X0∩Q,X1∩Q)
s , if s � t . Therefore the right hand side of the above inequality does

not exceed

C2

t∫
t
2

[s−θ0K(f , s, X0 ∩ Q, X1 ∩ Q) ds
s � C2(

t∫
t
2

[s−θ0K(f , s, X0 ∩ Q, X1 ∩ Q)]q0 ds
s )1/q0

� C3(
t∫

0
[s−θ0K(f , s, X0 ∩ Q, X1 ∩ Q)]q0 ds

s )1/q0 = C3P
Q
0 (t).

(1.11)
(The first inequality in (1.11) follows from Hölder’s inequality).

The second term of (1.8) is estimated by similar arguments

(
∞∫
t
[s−θ0K(gt, s, X0, X1)]q0 ds

s )1/q0 � (
∞∫
t
[s−θ0‖gt‖X0 ]q0 ds

s )1/q0

� 2(
∞∫
t
[s−θ0K(f , t, X0 ∩ Q, X1 ∩ Q)]q0 ds

s )1/q0 � CK(f , t, X0 ∩ Q, X1 ∩ Q)t−θ0

� C(
t∫

0
[s−θ0K(f , s, X0 ∩ Q, X1 ∩ Q)]q0 ds

s )1/q0 = CPQ
0 (t)

(1.12)
The remaining two terms of (1.8) are treated analogously. Summing the four

estimates we obtain the required inequality

K̄Q(f , tλ ) � C(PQ
0 (t) + tλRQ

1 (t))

completing the proof of the theorem.

The following result is easily proved by an adaptation of the previous proof.

PROPOSITION 2. Suppose that for fixed θ ∈ (0, 1) and q ∈ [1,∞] the following
isomorphism

(X0 ∩ Q, X1 ∩ Q)θ,q = (X0, X1)θ,q ∩ Q

holds. Then

K(f , tθ , X0, (X̄Q)θ,q) ≈ tθ(

∞∫
t

[s−θK(f , s, X0 ∩ Q, X1 ∩ Q)]q
ds
s

)1/q
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Let us now define the main cones which are studied in this paper.

DEFINITION 1.3. M is the cone of nonnegative nondecreasing functions defined
on [0, 1) .

DEFINITION 1.4. C is the cone of nonnegative nondecreasing convex functions
defined on [0, 1) .

We shall let Ḣα
p denote the (seminormed) Lipschitz(Nikol’skii-Besov) space

which is defined as follows:

DEFINITION 1.5. For α > 0 we write r = [α] + 1 . The space Ḣα
p (0, 1) ,

1 � p � ∞ consists of all functions f ∈ Lp(0, 1) for which the seminorm

|f |Ḣα
p

:= sup
t>0

(t−αωr(f , t)p)

is finite.

Here ωr denotes the modulus of smoothness of order r , i.e.

ωr(f , t, [0, 1])p := ωr(f , t)Lp(0,1) := ωr(f , t)p := sup
0�h�t

‖Δr
hf (·)‖Lp(Irh)

where Δr
hf (x) :=

∑r
i=0(−1)r−i

(r
i

)
f (x + ih) is the rth order difference of f , and

Irh = [0, 1 − rh] , t ∈ [0, 1
r ] ; and ωr(f , t)p := ωr(f , 1

r )p , if t > 1
r .

In turn, the norm of the (normed) space Hα
p is defined by

‖f ‖Hα
p

:= |f |Ḣα
p

+ ‖f ‖Lp .

In section 2, we prove the following result.

THEOREM 1.
(i) If 0 < α < 1

p and 1 � p < ∞ then M has the IP with respect to the
couple (Lp, Hα

p ) .
(ii) If α � 1

p , 1 � p < ∞ or if α > 0 , p = ∞ then M does not have neither

the WIP nor the IP with respect to the couple (Lp, Ḣα
p ) .

In section 3 we study the IP for the cone of convex functions C and prove the
following theorem.

THEOREM 2.
(i) The cone C := C has the IP with respect to (Lp, Hα

p ) , p ∈ [1,∞] , if
0 < α < 1 .

(ii) C does not have the WIP with respect to (Lp, Ḣα
p ) , if α > 1 .

Note that the more restrictive assumptions on α in the first theorem related to the
fact that smoothness of functions in M is, roughly speaking, 1 while that of functions
in C equals 2 .

Other results about the IP with respect to these couples and couples of Lp -spaces
and the application relates to reverse embeddings forLipschitz(Nikol’skii-Besov) spaces
are obtained in [9].
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2. Proof of Theorem 1

Recall first the following result (see [3]):

For each f ∈ Lp[0, 1] and p ∈ [1,∞]

K(f , t, Lp, Ẇ
r
p) ≈ ωr(f , t1/r, [0, 1])p, (2.13)

where the constants of equivalence depend only on r .

To prove (i) apply the reverse embedding theorem of Herz [7]

Lq,∞ ∩ M ⊂ Hα
p

where 0 < α < 1
p , α = 1/p−1/q , p < q < ∞ . Then we have for each f ∈ Hα

p ∩M :

K(f , t, Lp ∩ M, Hα
p ∩ M) � C1K(f , t, Lp ∩ M, Lq,∞ ∩ M).

Now we estimate the right hand side using the fact that the cone of monotone
functions has the IP with respect to couples of Lorentz spaces ([5], [6]), that is,

K(f , t, Lp ∩ M, Lq,∞ ∩ M) � C2K(f , t, Lp, Lq,∞).

Combining these two inequalities with the Peetre embedding theorem ([11]):

Hα
p ⊂ Lq,∞

with above mentioned α, p, q we, at least, obtain

K(f , t, Lp ∩ M, Hα
p ∩ M) � C3K(f , t, Lp, H

α
p )

for each f ∈ Hα
p ∩ M . This proves the IP for α < 1/p and 1 � p < ∞ .

(ii) Let us,first, show that the cone M does not have any intersection property with
respect to (Lp, Ḣα

p ) , when α � 1/p and 1 � p < ∞ .
We begin with the case α = 1/p . Assume, on the contrary, that

[
∞∫
0

[t−θK(f , t, Lp ∩ M, Ḣ1/p
p ∩ M)]q dt

t ]
1
q

� C[
∞∫
0

[t−θK(f , t, Lp, Ḣ
1/p
p )]q dt

t ]
1
q

(2.14)

for some positive C .
To obtain a contradiction we require the formula

K(f , t, Lp, Ḣn+α
p ) ≈ t sup

s�t
n+1
n+α

ωn+1(f ,s1/(n+1))p
s(n+α)/(n+1)

= t sups�t
ωn+1(f ,s1/(n+α))p

s

(2.15)

for 0 � α < 1 , n ∈ N ∪ {0} and n + α > 0 . This result is a direct consequence of
(2.13), Holmstedt’s theorem ([2], p.53, Corollary 3.6.2) and following from them the
isomorphism Ḣn+α

p = (Lp, Ẇn+1
p ) n+α

n+1 ,∞ .
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Take the function

f (x) :=
{

0 if 0 � x � ε;

1 if ε < x � 1.
(2.16)

Let us consider first the case p > 1 . Since

ω1(f , sp)p =
{

s if s < ε1/p;

ε1/p if s � ε1/p,
(2.17)

using the formula (2.15) with n = 0 implies for 1 < p < ∞ :

K(f , t, Lp, Ḣ
1/p
p ) ≺

{
t if t � ε1/p;

ε1/p if t > ε1/p
.

Hence

∞∫
0
[t−θK(f , t, Lp, Ḣ

1/p
p )]q dt

t ≺
ε1/p∫
0

[t−θ t]q dt
t +

∞∫
ε1/p

[t−θε1/p]q dt
t

=
1

θ(1 − θ)q
ε

q
p (1−θ).

(2.18)

Now let us consider the K -functional with constraints:

K(f , t, Lp ∩ M, Ḣ1/p
p ∩ M)

= inf{‖f − g‖Lp + t|g|
H

1/p
p

| g ∈ Ḣ1/p
p ∩ M, f − g ∈ M}. (2.19)

It is clear, that g in (2.19) has to be 0 for 0 � x � ε and a constant, say 0 � b � 1
for ε < x � 1 :

g(x) =
{

0 if 0 � x � ε;

b if ε < x � 1,
(2.20)

where 0 � b � 1 .
In this case

|g|
H

1/p
p

= b

and
‖f − g‖Lp = (1 − b)(1 − ε)1/p.

So we get

K(f , t, Lp ∩ M, Ḣ1/p
p ∩ M) = inf

0�b�1
{(1 − b)(1 − ε)1/p + tb}

= min{(1 − ε)1/p, t)} =
{

t if t � (1 − ε)1/p;

(1 − ε)1/p otherwise.

(2.21)

Hence

∞∫
0

[t−θK(f , t, Lp ∩ M, Ḣ1/p
p ∩ M)]q dt

t =
(1−ε)1/p∫

0
[t−θ t]q dt

t +

+(1 − ε)q/p
∞∫

(1−ε)1/p

t−θq dt
t = 1

θ(1−θ)q(1 − ε)
q
p (1−θ).

(2.22)
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From (2.18) and (2.22) follows that if ε is sufficiently small we obtain a contra-
diction to the assumption (2.14).

The same conclusion can be drawn for α = 1
p when p = 1 . In fact, in this case the

function f defined in (2.16) satisfies ω2(f , h)1 = min{2h, ε} and so |f |Ḣ1
1
= 2 . Sim-

ilarly the function g defined in (2.20) satisfies |g|Ḣ1
1

= 2b . Using the decomposition
f = 0 + f for t � ε and f = −χ[0,ε] + χ[0,1) for t > ε , we obtain that

K(f , t, L1, Ḣ
1
1) � 2 min{t, ε}.

By a similar argument to above we have

K(f , t, L1 ∩ M, Ḣ1
1 ∩ M) = inf

0�b�1
{(1 − b)(1 − ε) + 2bt}

� (1 + b) min{t, 1 − ε} � min{t, 1 − ε}.
(2.23)

Thus the inequalities (2.18) and (2.22) also hold when p = 1 and again we obtain
a contradiction to (2.14) for sufficiently small ε .

We now consider a counter-example for the WIP for p < ∞ and α > 1/p . Let

f (x) :=
{

0 if 0 � x � 1/2;

1 if 1/2 < x � 1.
(2.24)

For α < 1 we shall use the fact that

ω1(f , s)p = min(s1/p, 2−1/p), 0 � s < ∞. (2.25)

For α � 1 we shall use the fact that

ω2(f , s)1 = min(2s,
1
2
), 0 � s < ∞. (2.26)

We have from these two estimates and the inequality ωk(f , s)p � 2k−jωj(f , s)p ,
0 � j � k , that for arbitrary k � 2 and 1 � p � ∞

ωk(f , s)p ≺ min(s1/p, 2−1/p), 0 � s < ∞. (2.27)

From here and (2.15) with appropriate n we estimate the K - functional for
1 � p < ∞ and all α > 0 :

K(f , t, Lp, Ḣ
α
p ) ≺ min(t

1
pα , 2−1/p).

Hence for θ < 1
pα

∞∫
0

[t−θK(f , t, Lp, Ḣ
α
p )]q

dt
t

< ∞. (2.28)

From (2.25) and (2.26) it follows that f ∈ Ḣ
1
p
p , and f /∈ Ḣα

p , if 1
p < α < 1 for

p > 1 and 1 < α < 2 for p = 1 . But Ḣα
p ⊂ Ḣβ

p if α > β and therefore f /∈ Ḣα
p for

every α > 1
p .
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Now estimate below the K -functional with constraints for α > 1
p

K(f , t, Lp ∩ M, Ḣα
p ∩ M)

= inf{‖f − g‖Lp + t|g|Hα
p
|g ∈ Ḣα

p ∩ M, f − g ∈ M}
� inf{‖f − g‖Lp | g ∈ Ḣα

p ∩ M, f − g ∈ M}.
(2.29)

Every g such that g ∈ M , and f − g ∈ M must have the form g = βχ[0,1/2] +
γ χ(1/2,1) with β = 0 . If also g ∈ Ḣα

p , with α > 1/p then by the embedding
theorem (see, for instance, [10], Section 6.3) g ∈ C[0, 1] and therefore γ = β = 0 .
Consequently

K(f , t, Lp ∩ M, Ḣα
p ∩ M) � (

1
2
)1/p.

Since for each θ ∈ (0, 1) and q ∈ [1,∞]

∞∫
0

(K(f , t, Lp ∩ M, Ḣα
p ∩ M)t−θ )q dt

t
= ∞,

we deduce, using (2.28) that the WIP does not hold.
It remains to consider a counterexample for p = ∞ . Let an integer b > 2 and Cb

be a Cantor type set on [0, 1] constructed as follows. In the classical Cantor construction
we will remove the middle interval of length (1 − 2

b )|I| from each interval appearing
at each step of the construction. (If we choose b = 3 then Cb will be the usual Cantor
set C3 ). So, we have

Cb = [0, 1] \
∞⋃
k=1

(ck, dk),

where the right endpoints of the intervals (ck, dk) are numbers of the form

dk =
Nk∑

n=1

an

bn
, (2.30)

with an assumes only the values b − 1 and 0 and aNk �= 0 . Now we define a Cantor-
Lebesgue type function u : [0, 1] → [0, 1] . Every point t of Cb can be uniquely

represented as t =
∞∑
n=1

an(t)
bn , where an(t) ∈ {0, 1, . . . , b − 1} . Define now the one-to-

one correspondence ϕb : Cb → C3 by

ϕb(t) :=
∞∑

n=1

ãn(t)
3n

,

where ãn(t) := 0 if an(t) = 0 and ãn(t) := 2 if an(t) = b − 1 . Extend ϕb to each
adjacent interval (ck, dk) continuously as a linear function. The extended function ϕ̃b

is a monotone bijection of [0, 1] and therefore, it is continuous. Set now

ub := u ◦ ϕ̃b,
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where u is the classical Cantor function. Then ub is continuous on [0, 1] and at every
t ∈ [ck, dk] with dk determined by (2.30) we have

ub(t) =
Nk∑

n=1

ãn(dk)
2n

. (2.31)

Show that ub ∈ Ḣlogb 2
∞ . The case b = 3 is considered in [14]. For the sake of

completeness we outline the proof for arbitrary b .

Choose t1 < t2 such that ti = dki , i = 1, 2 with k1 �= k2 , where dki =
Nki∑
n=1

ai
n

bn ,

ai
n ∈ {0, b − 1} and suppose that a1

n = a2
n for every 1 � n � s , and a1

s+1 �= a2
s+1 .

Then
|u(t2) − u(t1)| � C|t2 − t1|β (2.32)

where β = logb 2 . In fact,

0 � u(t2) − u(t1)
(t2 − t1)β

=
u(dk2) − u(dk1)
(dk2 − dk1)β

� C

1
2s+1 +

∑
n�s+2

1
2n

( 1
bs+1 −

∑
n�s+2

1
bn )β

� C(
bβ

2
)s+1 2

[1 − 1
b−1 ]

β

This proves (2.32) for such t1 and t2 . But since the points of the form dk are a
dense subset of Cb it follows that (2.32) holds for all t1, t2 ∈ Cb . Next, suppose that

t1, t2 are arbitrary points in
∞⋃
k=1

[ck, dk] . So, t1 ∈ [ck1 , dk1 ] and t2 ∈ [ck2 , dk2 ] . If k1 = k2

obviously (2.32) holds. Otherwise suppose without loss of generality that dk1 < ck2 .
Then, since ckj ∈ Cb ,

|u(t2) − u(t1)| = |u(ck2) − u(dk1)| � C|ck2 − dk1 |β � C|t2 − t1|β

Finally, since
∞⋃
k=1

[ck, dk] is dense in [0, 1] , we deduce (2.32) for all t1, t2 ∈ [0, 1] . This

precisely means that u ∈ Ḣβ
∞ , where β = logb 2 .

It is easy also to see that u does not belong to Ḣα
∞ , for any α > logb 2 . Since

Ḣα
∞ ⊂ Ḣγ

∞ whenever 0 < γ < α , it suffices to consider the case α < 1 . But, for
such α < 1 we have

0 �
u( b−1

bn ) − u(0)
( b−1

bn − 0)α
= (b − 1)1−α(

bα

2
)n → ∞

as n → ∞ .
If we have the WIP for (L∞, Ḣα∞) for some 0 < α then there exists a constant

C so that ∞∫
0

(K(f , t, L∞ ∩ M, Ḣα
∞ ∩ M)t−θ )q dt

t

� C
∞∫
0
(K(f , t, L∞, Ḣα

∞)t−θ )q dt
t .

(2.33)
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Let u be as above with b chosen so that u ∈ Ḣβ
∞ ∩ M for some β < α

(0 < β < 1 ) and u /∈ Ḣα
∞ . Then for f = u and arbitrary k � 1 we have

ωk(f , t, [0, 1])L∞ � C(k)ω1(f , t, [0, 1])L∞ � C(k) min(tβ , 1).

Hence, similarly to the case p < ∞ , we get

K(f , t, L∞, Ḣα
∞) ≺ min(t

β
α , 1),

and so the right hand side of (2.33) is finite for all θ ∈ (0, 1) , q ∈ (0,∞] such that
θ < β

α .
On the other hand,

K(f , t, L∞ ∩ M, Ḣα
∞ ∩ M)

= inf{‖f − g‖L∞ + t|g|Hα∞ | g ∈ Gf },
(2.34)

where
Gf := {g ∈ Ḣα

∞ ∩ M, f − g ∈ M}.
If g ∈ M and f − g ∈ M , then for 0 < t1 < t2 � 1

0 � g(t2) − g(t1) � f (t2) − f (t1) � C(t2 − t1)β

where C is independent of g . Besides, 0 � g � f � 1 . Thus, according to the
Arzela-Ascoli theorem, Gf is precompact in C[0, 1] . Since Gf is clearly closed in
C[0, 1] it is compact in C[0, 1] . Therefore there exists a function g0 ∈ Gf such that
inf

g∈Gf
{‖f − g‖L∞} = ‖f − g0‖L∞ . Then we have

inf
g∈Gf

{‖f − g‖L∞ + t|g|Hα∞} � inf
g∈Gf

{‖f − g‖L∞}
= ‖f − g0‖L∞ .

(2.35)

Since f −g0 ∈ M , the function g0 has to be constant on each interval of constancy
of f . But g0 cannot equal f a.e., since then f ∈ Ḣα

∞ contradicting the condition
f /∈ Ḣα∞,α > β above.

Thus ‖f − g0‖L∞ > 0 .
Then we get from (2.35) that

K(f , t, L∞ ∩ M, Ḣα
∞ ∩ M) � ‖f − g0‖L∞ > 0

so that ∞∫
0

(K(f , t, L∞ ∩ M, Ḣα
∞ ∩ M)t−θ )q dt

t
= ∞

and we have a contradiction with (2.33) .

REMARK. M does not also have the WIP with respect to (L∞, Ẇr∞) for r � 1 .
As a counter-example for this couple we let f be the classical Cantor function. Then
f ∈ L∞ ∩M . Let g ∈ Wr

∞ ∩M be a “good” approximation for the K -functional with
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constraints and f − g ∈ M . This forces g to be constant on each interval of constancy
of f . Thus g′ = 0 a.e. on [0, 1] . Since g ∈ W1

∞ it is absolutely continuous and so it
is constant. But this means that

‖f − g‖L∞ � 1
2
. (2.36)

Since
K(f , t, L∞, Ẇr

∞) ≈ ωr(f , t1/r)∞ � 2r−1ω1(f , t1/r)∞ (2.37)

and f is continuous, this K -functional tends to 0 as t tends to 0. This proves that
the cone of monotone functions M does not have the IP with respect to (L∞, Ẇr

∞) .
Applying the Lθ∞( dt

t ) norm to both sides of (2.37) and choosing θ := (log3 2)/r we
have

sup
t>0

t−θK(f , t, L∞, Ẇr
∞) ≺ 2r−1 sup

t>0
t−rθω1(f , t)∞ = 2r−1|f |

Ḣ
log3 2
∞

.

Since f ∈ Ḣ
log3 2
∞ , sup

t>0
t−θK(f , t, L∞, Ẇr

∞) < ∞ .

On the other hand, by (2.36),

sup
t>0

t−θK(f , t, L∞ ∩ M, Ẇr
∞ ∩ M) � 1

2
sup
t>0

t−θ = ∞.

Thus, the cone M also does not have the WIP with respect to (L∞, Ẇr
∞) .

3. Proof of Theorem 2

(i). If f ∈ Lp ∩C , then the left derivative f ′
− exists at every point of and is also

a non decreasing function. Set for t � 1

gt(x) =
{

f (x) if 0 � x � 1 − t;

T(x) if 1 − t < x � 1,
(3.38)

where T(x) := T1(x, xt) := f (1 − t) + f ′−(1 − t)(x − 1 + t) .
We shall show that for t � 1

‖f − gt‖Lp(0,1) + t‖g′t‖Lp(0,1) � Cω1(f , t)p. (3.39)

It is readily seen that both gt and f − gt belong to C . Thus from (3.38) and
(3.39) will follow that

K(f , t, Lp ∩ C, W1
p ∩ C) � ‖f − gt‖Lp(0,1) + t(‖g′t‖Lp(0,1) + ‖gt‖Lp(0,1))

� C(ω1(f , t)p + ‖f ‖Lp(0,1)) (0 < t � 1).
(3.40)

Since the right-hand side is equivalent to K(f , t, Lp, W1
p ) , we get for t � 1 that

K(f , t, Lp ∩ C, W1
p ∩ C) � CK(f , t, Lp, W1

p ) .
For t > 1

K(f , t, Lp ∩ C, W1
p ∩ C) � ‖f ‖Lp(0,1) � K(f , t, Lp, W

1
p ).
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This means that C has the IP with respect to (Lp, W1
p ). From here we conclude that

C has the IP with respect to (Lp, (Lp, W1
p )α,∞) = (Lp, Hα

p ) with 0 < α < 1 . In fact,
applying the Proposition 2 and the Holmstedt’s formula, see Corollary 3.6.2 (b) of [2]
p. 53 we get

K(f , t, Lp ∩ C, (Lp, W1
p )α,∞ ∩ C)

� Ct1−α(
∞∫
t
[s−(1−α)K(f , s, Lp ∩ C, W1

p ∩ C)]q ds
s )1/q

� Ct1−α(
∞∫
t
[s−(1−α)K(f , s, Lp, W1

p )]
q ds

s )1/q � CK(f , t, Lp, (Lp, W1
p )α,∞)

(3.41)
Thus it remains to prove (3.39). According to (3.38) we have for f ∈ Lp ∩ C

‖f − gt‖Lp(0,1) = ‖f − T‖Lp(1−t,1) � ‖f − f (1 − t)‖Lp(1−t,1).

But
‖f − f (1 − t)‖Lp(1−t,1) � CE0(f ; [1 − t, 1])Lp

and the right-hand side does not clearly exceed Cω1(f , t)p . So we get

‖f − gt‖Lp(0,1) � Cω1(f , t)p.

To estimate the second term in (3.39), write using definition (3.38)

t‖g′t‖Lp(0,1) � t‖f ′‖Lp(0,1−t) + t‖f ′
−(1 − t)‖Lp(1−t,1). (3.42)

Since f ∈ C , we get for every x ∈ (1 − t, 1 − t
2 )

f ′
−(1 − t) � f ′

−(x) �
Δ t

2
(f , x)

t/2
.

Thus

t‖f ′
−(1 − t)‖Lp(1−t,1) � 21+1/p‖Δ t

2
(f )‖Lp(1−t,1− t

2 )

� 21+1/pω1(f , t
2 )Lp(0,1) � 22+1/pω1(f , t)Lp(0,1).

(3.43)

It remains to estimate the first term in (3.42). Since f is convex, for every
x ∈ [0, 1 − t] we have

f ′
−(x) �

Δ t
2
(f , x)

t/2
.

Then we get, since f ′ = f ′
− a.e., that

t‖f ′‖Lp(0,1−t) � 2‖Δ t
2
(f )‖Lp(0,1−t) � 2ω1(f ,

t
2
)Lp(0,1).

Thus part (i) of the theorem is proved.
(ii) Prove now that C does not have the WIP (and therefore, also does not have

the IP ) with respect to (Lp, Ḣ1+α
p ) with α > 0 . First, assume that α � 1/p (this

excludes the case p = ∞ ).
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Suppose, on the contrary, that for every f ∈ H1+α
p ∩ C , θ ∈ (0, 1) and q � 1

‖K(f , ·, Lp ∩ M̂2, Ḣ
1+α
p ∩ C)‖Lθq ( dt

t ) � C‖K(f , ·, Lp, Ḣ
1+α
p )‖Lθq ( dt

t ) (3.44)

for some absolute constant C > 0 .
We shall show that the function

f ε(x) :=
{

0 if 0 � x � ε;

x − ε if ε < x � 1.
(3.45)

for some suitable ε ∈ (0, 1/2) gives the desired counterexample to (3.44).
Applying Holmstedt’s formula (2.15) to the case Ḣ1+α

p = (Lp, Ẇ2
p )θ,∞ with

θ := 1+α
2 < 1 , we have

K(f ε, t, Lp, Ḣ
1+α
p ) ≈ t sup

s�t
1

1+α

ω2(f ε, s)p

s1+α � t sup
s�t

1
1+α

ω1(f ′
ε , s)p

sα
.

But a direct calculation of modulus of continuity for the step-function f ′
ε (cf.

(2.17)) gives
ω1(f ′

ε , s)p = min{s1/p, ε1/p}.
Hence

K(f ε, t, Lp, Ḣ
1+α
p ) � C

{
tε1/p−α , if t � ε1+α ,

t
1

1+α ε1/p, if t > ε1+α ,

and for 1
1+α < θ < 1

‖K(f ε, ·, Lp, Ḣ
1+α
p )‖Lθq ( dt

t ) � C1ε
1+1/p−θ(1+α). (3.46)

Now we shall estimate the modified K -functional from below. To this end we
denote by G(f ε) the set

G(f ε) := {g ∈ H1+α
p ∩ C| f ε − g ∈ C}.

From the definition of the function f ε it follows that each g ∈ G(f ε) has the form

gb(x) =
{

0 if 0 � x � ε;

b(x − ε) if ε < x � 1,
(3.47)

for some b ∈ [0, 1] . Thus, by definition of the modified K -functional and by equiva-
lence of the norms of Lipschitz(Nikol’skii-Besov) spaces (see e.g. [10], 4.2.4, p.159),
we have

K(f ε, t, Lp ∩ C, Ḣ1+α
p ∩ C) ≈ inf

b∈[0,1]
{‖f ε − gb‖Lp(0,1) + t|g′b|Hα

p
}. (3.48)

We can easily calculate the norm and the seminorm on the right:

‖f ε − gb‖Lp(0,1) =
(1 − b)(1 − ε)1+1/p

(p + 1)1/p
,
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|g′b|Hα
p

= sup
s>0

ω1(g′b, s)p

sα
= bε1/p−α .

Thus the required K -functional equals

inf
b∈[0,1]

{ (1 − b)(1 − ε)1+1/p

(p + 1)1/p
+ tbε1/p−α} = min{ (1 − ε)1+1/p

(p + 1)1/p
, tε1/p−α}.

Hence
‖K(f ε, t, Lp ∩ C, Ḣ1+α

p ∩ C)‖Lθq ( dt
t ) � C2ε

(1/p−α)θ (3.49)

for some absolute constant C2 > 0 . Applying (3.46) and (3.49) to estimate the terms
of inequality (3.44) we then have

ε(1/p−α)θ � C3ε
1+1/p−θ(1+α) (

1
1 + α

< θ < 1)

and consequently
ε(θ−1)(1+1/p) � C3 < ∞

which is impossible if ε → 0 .

It remains to consider the case α > 1/p . Introduce the function f 0 defined by

f 0(x) :=
{

0 if 0 � x � 1/2;

x − 1/2 if 1/2 < x � 1.
(3.50)

Since for k � 2

ωk(f 0, s)p � 2k−2sω1(f ′
0 , s)p = 2k−2s min{s1/p, 2−1/p} (3.51)

the function f 0 belongs to Ḣ1+1/p
p . On the other hand, f 0 does not belong to Ḣ1+α

p with
α > 1/p . Actually, by the embedding theorem ([10], Section 6.3) Ḣ1+α

p ⊂ C1[0, 1] if
α > 1/p whereas f ′

0 is discontinuous.
Let us now estimate the K -functional of f 0 using Holmstedt’s formula (2.15) and

(3.51). We get

K(f ε, t, Lp, Ḣ
1+α
p ) ≈ t sup

s�t
1

1+α

ωk(f 0, s)p

s1+α � Ct sup
s�t

1
1+α

min{s1/p, 2−1/p}
sα

.

Here k is the smallest integer more than 1 + α . Then, similarly to the previous
case we get for 1

1+α < θ < 1+1/p
1+α that

‖K(f 0, ·, Lp, Ḣ
1+α
p )‖Lθq ( dt

t ) < ∞. (3.52)

On the other hand,

K(f 0, t, Lp ∩ C, Ḣ1+α
p ∩ C) = inf

g∈G(f 0)
{‖f 0 − g‖Lp(0,1) + t|g|H1+α

p
},
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where
G(f 0) := {g ∈ H1+α

p ∩ C| f 0 − g ∈ C}.
Because of these conditions on g , it should have the form

g(x) =
{

0 if 0 � x � 1/2;

b(x − 1/2) if 1/2 < x � 1,
(3.53)

for some b ∈ [0, 1] . Since g ∈ Ḣ1+α
p ⊂ C1[0, 1] , the number b has to be 0. So

G(f 0) = {0} and therefore we have

K(f 0, t, Lp ∩ C, Ḣ1+α
p ∩ C) = ‖f 0‖Lp(0,1) = (

1
2
)1/p.

Thus, this K -functional does not belong to Lθq (
dt
t ) . Comparing this statement with

inequality (3.52), we conclude that inequality (3.44) is also impossible in this case.
The proof of the theorem is complete.
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