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SOME INEQUALITIES AND PROPERTIES

CONCERNING CHORDAL SEMI–POLYGONS

MIRKO RADIĆ

(communicated by V. Volenec)

Abstract. The paper deals with some inequalities and properties concerning semi-chordal poly-
gons.

1. Preliminaries

Semi-polygon. Let A1 , . . . ,An be any given different points in a plane. Then the
union

A1A2 ∪ A2A3 ∪ · · · ∪ An−1An ∪ S (1)

of the line segments A1A2 , . . . ,An−1An and the set S wich is either empty set or the
segment AnA1 , will be called a semi-polygon and denoted by A1 . . .An or briefly by
A .

So, each polygon may be called semi-polygon, but not conversely if S is empty
set.

If A1 . . . An is a semi-polygon which is not a polygon, then its vertices A1 and An

will be called end-vertices.
Chordal semi-polygon. A semi-polygon A1 . . . An will be called a chordal semi-

polygon if there is a circle C such that each of the vertices A1, . . . , An lie on C .
Now in short about the angles wich play an important role in the following consid-

erations.
Let A1 . . . An be a chordal semi-polygon and let C be the centre of its circumcircle.

Then

βi = measure of <)CAiAi+1, i = 1, . . . , n (2)
ϕi = measure of <)AiCAi+1, i = 1, . . . , n. (3)

In this paper we shall use oriented angles. As it is known, an angle <)PQR is positively
or negatively oriented if it is going from QP to QR counter-clockwise or clockwise.

It is very important to remark that the angles βi and ϕi given by (2) and (3) have
opposit orientation, e. g. see Fig. 1
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Fig. 1

The measure of an oriented angle will be taken in radians and will be with sign +
or − depending on if the orientation of the angle is positive or negative.

Obviously, for βi and ϕi is valid

0 � |βi| <
π
2
, 0 < |ϕi| � π,

since no two of the consecutive vertices in A1 . . . An are the same (by the given defini-
tion).

For simplicity, the measures of the oriented angles given by (2) and (3) we shall
also write as βi and ϕi .

Notice 1. In the following, when we speak about chordal semi-polygon, it will be
meant that this polygon is a such one that no two of its consecutive vertices are the same
and that no one of its sides is a diameter of its circumcircle, that is, no one of β1, . . . , βn

is zero. Also we suppose that its vertices are not collinear.
Of course, in the case when some of βi is zero, then we have radius r readily.

Also, in the case when all vertices are collinear, the polygon is very simple one.
Notice 2. Whenever A = A1 . . . An is a chordal semi-polygon under consideration,

then by C , r and C will be denoted center, radius and circumcircle of A respectively.
Also βi and ϕi are given by (2) and (3), α1, . . . ,αn are given by

αi = measure of <)An−1+iAiAi+1, i = 1, . . . , n.

Of course, <)An−1+iAiAi+1 is oriented and indices are calculated modulo n .
Bay a1, . . . , an will be denoted the lengths of the sides of A .

DEFINITION 1. Let A = A1 . . .An be a chordal semi-polygon and let

φ = |ϕ1 + · · · + ϕn|, (4)

u = the number of the elements in the set {i : βi > 0}, (5)
v = the number of the elements in the set{i : βi < 0}, (6)

where ϕn in (4) is omited if A is not a polygon.
Then we say that (φ, u, v) is a characteristic of A .
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For example, the semi-polygon in Fig. 2 has (φ, 2, 1) as a characteristic, where
φ = measure of <)A1CA4 .

Fig. 2

DEFINITION 2. Let A = A1 . . . An be a chordal semi-polygon. We say that A is
of the first kind if inside C there is a point 0 such that all of the angles <)AiOAi+1 ,
i = 1, . . . , n , have the same orientation. If such a point 0 does not exists, that is, not all
of the angles <)AiOAi+1 have the same sign, we say that A is of the second kind.

DEFINITION 3. Let A = A1 . . . An be a chordal polygon and let 0 be a point inside
C such that

|ψ1 + · · · + ψn| = 2kπ, (7)

where k is a positive integer ant ψi = measure of <)AiOAi+1 . If the point 0 is a such
one that k is maximal, then we say that A is a k -inscribed polygon of the first kind or
the second kind depending on if A is of the first or of the second kind.

If
|ϕ1 + · · · + ϕn| = 2jπ, (8)

where ϕi = measure of <)AiCAi+1 , then we say that j is an index of A . Of course,
j ∈ {0, 1, . . . , k} .

A k -inscribed chordal polygon of the first kind whose index is k will be briefly
called k -chordal polygon. Using Definition 1 it can be said: A polygon is k -chordal if
its characteristic (φ, u, v) has property that φ = 2kπ , u = n or v = n .

It is easy to see that A1 . . . An is a k -chordal polygon iff

|β1 + · · · + βn| = (n − 2k)
π
2
, (9)

where β1 > 0 , i = 1 , . . . , n or β1 < 0 , i = 1 , . . . , n .
For example, if βi > 0 , then ϕi < 0 , and ϕi = −π + 2βi , so that the equation

|ϕ1 + · · · + ϕn| = 2kπ

when βi > 0 , i = 1, . . . , n can be written as

(−π + 2β1) + · · · + (−π + 2βn) = −2kπ,

from which follows (9).
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Thus, if βi > 0 , i = 1 , . . . ,n then

β1 + · · · + βn = (n − 2k)
π
2
.

But if βi < 0 , i = 1 , . . . ,n , then β1 + · · · + βn = (−n + 2k)
π
2

.

The sign of the sum β1 + · · · + βn depends on the orientation of the polygon. In
brief about this.

Let A = A1 . . .An be a chordal n -gon and let B = B1 . . .Bn be such that
Bi = An+1−i , i = 1 , . . . ,n . Then A and B are in fact the same since their vertices lie
just in opposite order. But if it is a question of an oriented polygon, then A and B have
opposite orientations.

An orientation of A1 . . . An is positive or negative depending on if starting from
A1 and going to An the polygon is circumscribed counter-clockwise or clockwise.

If A = A1 . . .An is a k -chordal polygon, then βi , i = 1 , . . . ,n is negative if A
is positively oriented and vice versa. But in the case when A is a chordal polygon of
the second kind, then some βi are negative and some positive.

Notice 3. In the following, for the sake of simplicity, we shall suppose that a
polygon and a semi-polygon as well are negatively oriented.

Then ϕ1 + · · · + ϕn � 0 but β1 + · · · + βn � 0 . So, for example, instead of

|β1 + · · · + βn| = (n − 2k)
π
2

we can write β1 + · · · + βn = (n − 2k)
π
2

.

Therefore, in the following when we say chordal semi-polygon or chordal polygon
it will always be meant that the assumptions in Notice 1 and Notice 3 are fulfiled.

Now about notation which will be used.

Symbol �n − 1
2

� . If n is a positive integer, then �n − 1
2

� =
n − 1

2
if n is odd,

�n − 1
2

� =
n − 2

2
if n is even.

Symbol Pn
j . If j and n are positive integers and j � n , then Pn

j is the sum of( n
j

)
products of the form

cos βi1 . . . cos βij sin βij+1
. . . sinβin ,

where (i1, i2, . . . , in) is a permutation of {1, 2, . . . , n} .
For example:

P3
1 = cos β1 sin β2 sinβ3 + sinβ1 cos β2 sin β3 + sin β1 sin β2 cosβ3.

2. Some inequalities and properties concerning chordal semi-polygons

We commence with the following theorem.

THEOREM 1. Let A = A1 . . . An be a chordal polygon. Then it is valid

α1 + · · · + αn = 2(β1 + · · · + βn). (10)
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Proof. Obviously, if A is convex and C is inside of A , then

α1 = βn + β1

α2 = β1 + β2

α3 = β2 + β3

. . . . . . . . .

αn = βn−1 + βn

that is
αi = βn−1+i + βi, i = 1, . . . , n. (11)

It is not difficult to see that (11) is valid in all other cases too. So, if A1 . . . A5 is a
pentagon as in Fig. 3, then

αi = β4+i + βi, i = 1, . . . , 5.

Let us remark that all α1, . . . ,α5 are positive and that β1 and β4 are negative.

Fig. 3

Generally, no matter which is a chordal polygon, beginning from its first vertex, it
is easy to see that α1 = βn + β1 , then that is α2 = βn−1 + β2 , and so on. The situation
is like in a proof by induction.

So, Theorem 1 is proved. �
Now we state some of its corollaries.

COROLLARY 1.1. Let A1 . . . An be a chordal polygon. Then there is an integer z
such that

β1 + · · · + βn =z
π
2

, (12)

α1 + · · · + αn =zπ. (13)
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Proof. It follows from the equation ϕ1 + · · · + ϕn = 2jπ since

ϕi = π + 2βi or ϕi = −π + 2βi

depending on if βi < 0 or βi > 0 .

COROLLARY 1.2. Let A1 . . .An be a chordal n -gon whose index is j and let v of
the angles β1 , . . . ,βn be negative. Then

α1 + · · · + αn = [n − 2(j + v)]π. (14)

Proof. Let, for simplicity, be βi < 0 , i = 1 , . . . , v . Then βi > 0 for i = v + 1 ,
. . . ,n . Thus, the equality

ϕ1 + · · · + ϕn = −2jπ

can be written as
v∑

i=1

(π + 2βi) +
n∑

i=v+1

(−π + 2βi) = −2jπ

or
2βi + · · · + 2βn = [n − 2(j + v)]π, (15)

and by (10) it can be written as (14).

COROLLARY 1.3. Let A1 . . .An be as in Corollary 1.2. Then

|β1| + · · · + |βn| = [n − 2(j + v)]
π
2

+ 2τ, (16)

where
τ = − (sum of all βi which are negative).

Proof. From (15) we have

β1 + · · · + βn =[n − 2(j + v)]
π
2

, (17)

2τ + β1 + · · · + βn =[n − 2(j + v)]
π
2

+ 2τ.

COROLLARY 1.4. Let A1 . . .An be a chordal n -gon. If n is odd, then

β1 + · · · + βn > 0,

but if n is even then may be β1 + · · · + βn = 0 . (Instead of |β1 + · · · + βn| we may
write β1 + · · · + βn by Notice 3.)

Proof. If n is even then may be [n − 2(j + v)]
π
2

= 0 or n = 2(j + v) . So, for

example, it A1A2A3A4 is a chordal quadrangle which is not convex, then β1 + β2 +
β3 + β4 = 0 .
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COROLLARY 1.5. If A1 . . . An is k -inscribed chordal n -gon, then

β1 + · · · + βn � (n − 2k)
π
2
. (18)

Proof. If A1 . . . An is k -chordal n -gon, that is, a k -inscribed chordal n -gon

whose index is maximal, then β1 + · · · + βn = (n − 2k)
π
2

.

So, fox example, the pentagon in Fig. 4a is 1-chordal pentagon, and that in Fig. 4b
is 1-inscribed chordal pentagon (where A2 is A3 in Fig. 4a and vice versa). For the
first one it is valid.

α1 + · · · + α5 = 3π, β1 + · · · + β5 = 3
π
2

, (19)

but for that in Fig. 4b it is obviously |α + · · · + α5| < 3π .

Fig. 4

COROLLARY 1.6. If A1 . . . An is a k -inscribed chordal n -gon, then

j + v � k. (20)

Proof. From [n − 2(j + v)]
π
2

� (n − 2k)
π
2

it follows j + v � k .

COROLLARY 1.7. If A1 . . . An is a k -inscribed chordal n -gon, then

2k � n − 2 if n is even,

2k � n − 1 if n is odd.

In the following corollary we shall use the following definition.

DEFINITION 4. Let A1 . . .An be a k -inscribed chordal n -gon. Then the chordal
semi-polygon whose end vertices are A1 and An will be called k -inscribed chordal
semi-polygon.
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COROLLARY 1.8. If A1 . . . An is a k -chordal semi-polygon, then

(n − 1 − 2k)
π
2

< β1 + · · · + βn−1 < (n − 2k)
π
2

. (21)

THEOREM 2. If A = A1 . . . An is a k -chordal polygon and p is an positive integer,
then

cosp β1 + · · · + cosp βn > n
(2k

n

)p
. (22)

Proof. In [1], Theorem 1, we have the following result:
Let k and n be any given positive integers such that n − 2k > 0 , and let β1 ,

. . . ,βn satisfy

β1 + · · · + βn = (n − 2k)
π
2
, 0 < βi <

π
2
. (23)

Then
cos β1 + · · · + βn > 2k cos βj, j = 1, . . . , n. (24)

The proof is as follows.

Since cosπx > 1 − 2x if 0 < x <
1
2

, putting α = πx we obtain

cosα > 1 − 2
π
α, 0 < α <

π
2
. (25)

Consequently
n∑

i=1

cosβi > n − 2
π

n∑
i=1

βi = n − 2
π

(n − 2k)
π
2

= 2k > 2k cosβj.

Here we need to prove that (22) holds for p = 2, 3, . . . too.

From (25), since 0 < βi <
π
2

, we have

cosp βi > (1 − 2
π
βi)p. (26)

So for p = 2 we can write (using the property of arithemetical mean)

n∑
i=1

cos2 βi > n − 4
π

(β1 + · · · + βn) +
( 2
π

)2
(β2

1 + · · · + β2
n )

� n − 2(n − 2k) + n
(β1 + · · · + βn

n

)2

= n − 2(n − 2k) +
(n − 2k)2

n
= n

[n − (n − 2k)
n

]2
= n

(2k
n

)2

Similarly for p = 3 we have

n∑
i=1

cos3 βi > n − 3(n − 2k) + 3n
(n − 2k

n

)2
− n

(n − 2k
n

)3

= n
[n − (n − 2k)

n

]3
= n

(2k
n

)3
.
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It is easy to see that it generally holds
n∑

i=1

cosp βi > n
[n − (n − 2k)

n

]p
= n

(2k
n

)p
.

Let us remark that
n∑

i=1
cosp βi > n

(2k
n

)p
for β1 = . . . = βn = (n − 2k)

π
2n

, since

n cosp(n − 2k)
π
2n

= n sinp kπ
n

,

sin
kπ
n

>
2k
n

for each n � 3 and k = 1, . . . , �n − 1
2

�.

Also let us remark that
n∑

i=1
cosp βi = 2k for β1 = . . . = βn−2k =

π
2

, βn−2k+1 =

. . . = βn = 0 and that 2k > n
(2k

n

)p
if p > 1 .

So Theorem 2 is proved. �
COROLLARY 2.1. Let A = A1 . . . An be a k -chordal polygon and let a1 , . . . , an

be the lengths of its sides. Then
n∑

i=1

ap
i > n

(2k
n

)p
ap

j , j = 1, . . . , n. (27)

Proof. It is valid ai = 2r cos βi , i = 1 , . . . ,n .

COROLLARY 2.2. If 2k is maximal, that is

2k = n − 1 if n is odd, 2k = n − 2 if n is even,

then

n∑
i=1

ap
i > n

(
1 − 1

n

)p
ap

j , j = 1, . . . , n for n odd,

n∑
i=1

ap
i > n

(
1 − 2

n

)p
ap

j , j = 1, . . . , n for n even.

COROLLARY 2.3. Let A = A1 . . . An be a k -inscribed chordal n -gon.Then
n∑

i=1

cosp βi > n
[2(j + v − σ)

n

]p
, (28)

where σ is the number such that σ · π
2

= τ , and j, v, τ are as in Corollary 1.3.

Proof. If |β1| + · · · + |βn| = s · π
2

, 0 < |βi| <
π
2

, i = 1 , . . . ,n , then

n∑
i=1

cosp βi > n
(
2 − s

n

)p
. (29)
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Now, the proof is similar to the proof of Theorem 2. Let us remark that from

|β1| + · · · + |βn| = [n − 2(j + v − σ)]
π
2

(30)

it follows that s = n − 2(j + v − σ) and

1 − s
n

=
2(j + v − σ)

n
.

Also let us remark that in (28) we must write |β1|+ · · ·+ |βn| instead of β1 + · · ·+βn .
It because od (25). For example, if p = 1 , we have

n∑
i=1

cos βi > n − 2
π

(|β1| + · · · + |βn|) = 2(j + v − σ).

COROLLARY 2.4. Let A = A1 . . . An be as in Corollary 2.3. Then

n∑
i=1

ap
i > n

[2(j + v − σ)
n

]p
· ap

j , j = 1, . . . , n. (31)

where a1, . . . , an are the lengths of the sides of A1 . . . An .

COROLLARY 2.5. Let A1 . . . An be as in Corollary 2.4 and let w = j+v−σ . Then

a1 + · · · + an

n sin
wπ
n

�2r <
a1 + · · · + an

2w
, (32)

2wai

ai + · · · + an
< cos βi �

nai sin
wπ
n

a1 + · · · + αn
. (33)

Proof. From

2r cosβi = ai, |βi| = arc cos
ai

2r

arc sin x + arc cos x =
π
2
, 0 � x � 1

n∑
n=1

arc sin
ai

2r
+

n∑
i=1

arc cos
ai

2r
= n · π

2
,

n∑
i=1

arc cos
ai

2r
= (n − 2w)

π
2

,

it follows
n∑

i=1

arc sin
ai

2r
= wπ

or
a1 + · · · + an

2r
+

1
2
· 1
3

[(a1

2r

)3
+ · · · +

(an

2r

)3]
+ · · · = wπ. (34)
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Thence, using the property of arithmetical mean, we get

arc sin
a1 + · · · + an

2rn
� wπ

n
or

2r � a1 + · · · + an

n sin
wπ
n

. (35)

Now, from

cos βi =
ai

a1
cos β1

n∑
i=1

cos βi =
a1 + · · · + an

a1
cos β1

2w <
a1 + · · · + an

a1
cosβ1

it follows

cos β1 >
2wa1

a1 + · · · + an
(36)

As cos β1 =
a1

2r
we have the following inequality

a1

2r
>

2wa1

a1 + · · · + an

or
2r <

a1 + · · · + an

2w
. (37)

Finally, since ai = 2r cos βi , the equality (34) can be rewritten as

(cos β1 + · · · + cos βn) +
1
2
· 1
3
(cos3 β1 + · · · + cos3 βn) + · · · = wπ

or, using (35) and supposing that a1 = max{a1, . . . , an} ,

(a1 + · · · + an

a1

)
cosβ1 +

1
2
· 1
3

(a3
1 + · · · + a3

n

a3
1

)
cos3 β1 + · · · = wπ,

from which, using the property of arithmetical mean, it follows that

a1 + · · · + an

na1
cosβ1 � sin

wπ
n

.

As cos β1 =
a1

ai
cosβi , we have the inequality

cos βi �
nai sin

wπ
n

a1 + · · · + an
. (38)
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COROLLARY 2.6. We have that

2w
n

� sin
wπ
n

. (39)

Proof. The above inequality follows from
n∑

i=1
cos βi > 2w and (38).

COROLLARY 2.7. Let A1 . . .An be a k -chordal polygon such that
n∑

i=1

ap
i > 2kap

j , j = 1, . . . , n, (40)

where k = �n − 1
2

� . Then for enough large n it is valid a1 ≈ a2 ≈ · · · ≈ an .

Proof. In n is odd then from (40) it follows that

ap
1 + . . . + ap

n

n
>

(
1 − 1

n

)
ap

j , j = 1, . . . , n.

Similar is for even n .

COROLLARY 2.8. If A1 . . . An is a k -inscribed chordal semi-polygon and 2ε · π
2

=

|βn| , s = n − 2(j + v − σ + ε) , then

n−1∑
i=1

cosp βi > (n − 1)
(
1 − s

n − 1

)p
, (41)

n−1∑
i=1

ap
i > (n − 1)

(
1 − s

n − 1

)p
ap

j , j = 1, . . . , n − 1. (42)

For example, if |β1| + · · · + |βn−1| =
π
3

, then

n−1∑
i=1

ap
i > (n − 1)

[
1 − 2

3(n − 1)

]p
ap

j , j = 1, . . . , n − 1.

Let us remark that from s · π
2

=
π
3

it follows that s =
2
3

.

The following theorem and its corollaries are concerning the condition which the
lengths a1, . . . , an satisfy in the case when a polygon is k -chordal polygon.

THEOREM3. Let A1 . . . An be a k -chordal polygon and let a1 = max{a1, . . . ,αn} .
Then

a1 + · · · + an

a1
+

1
2
· 1
3
· a3

1 + · · · + a3
n

a3
1

+ · · · > kπ. (43)

Proof. Let cos γi =
ai

a1
, i = 1, . . . , n . Then

γ1 + · · · + γn < (n − 2k)
π
2
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since

β1 + · · · + βn = (n − 2k)
π
2
,

cos βi =
ai

a1
cosβ1, i = 1, . . . , n. (44)

Let us remark that β1 > 0 if A is a k -chordal polygon.
Now from

n∑
i=1

arc sin
ai

a1
+

n∑
i=1

arc cos
ai

a1
= n · π

2
,

n∑
i=1

arc cos
ai

a1
< (n − 2k)

π
2

it follows
n∑

i=1

arc sin
ai

a1
> kπ,

which can be written as (43). And Theorem 3 is proved. �

COROLLARY 3.1. The condition (43) is not only necessary for a1 , . . . , an to be
the lengths of the sides of a k -chordal polygon, but also sufficient.

Proof. Let (43) be fulfiled and let

cos γi =
ai

a1
cos γ1, i = 1, . . . , n.

Since γi → π
2

when cos γ1 → 0 , it is clear that there is 0 < γ1 <
π
2

such that

γ1 + · · · + γn = (n − 2k)
π
2

,

a1

cos γ1
= · · · =

an

cos γn
= c,

where c = 2r .

COROLLARY 3.2. There is a k -chordal polygon whose sides have the lengths a1 ,

. . . , an iff there is 0 < β1 <
π
2

such that

a1 + · · · + an

a1
cos β1 +

1
2
· 1
3
· a3

1 + · · · + a3
n

a3
1

cos3 β1 + · · · = kπ. (45)

Proof. Iff
n∑

i=1
arc cos

( ai

a1
cosβ1

)
= (n − 2k)

π
2

then (45) is valid.
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COROLLARY 3.3. If β1 + · · ·+βn = (n−2k)
π
2

, 0 < βi <
π
2

, i = 1 , . . . , n , then

cos β1 + · · · + cos βn � n sin
kπ
n

. (46)

Proof. It follows from (44) and (45) (using the property of arithmetical mean).
Before making a statement of the following corollary here are some examples

which may bi interesting.
1. If ai = b+ i , i = 1 , . . . , 5 and b is a positive integer less than 27, then there

is no 2-chordal pentagon whose sides have the lengths ai = b + i , i = 1 ,
. . . , 5. So if ai = 10 + i , i = 1 , . . . , 5, then

4∑
i=1

arc cos
10 + i

15
≈ 130.066◦ > 90◦.

2. If ai = 27 + i , i = 1 , . . . , 5, then

4∑
i=1

arc cos
27 + i

32
≈ 88.689◦ < 90◦.

3. If n = 6 , k = 2 , then β1 + · · · + β6 = π and b may be 9, but not less then
9. For b = 9 we have

5∑
i=1

arc cos
9 + i
15

≈ 178.855◦ < 180◦.

4. If n = 7 , k = 3 , then b can not be less than 89. If b = 89 , then

6∑
i=1

arc cos
89 + i

96
≈ 89.889◦ < 90◦.

Of course, if m is a positive integer such that m � �n − 1
2

� and if there is

m -chordal polygon whose sides have the lengths a1 , . . . ,an , then for each
k = l , . . . ,m there is a k -chordal polygon whose sides have the lengths a1 ,
. . . ,an . Namely, if there is β (m)

1 such that

n∑
i=1

arc cos
( ai

a1
cosβ (m)

1

)
= (n − 2m)

π
2

,

then there is β (k)
i such that

n∑
i=1

arc cos
( ai

a1
cos β (k)

1

)
= (n − 2k)

π
2

.

So if a1 = 89+ i , i = 1 , . . . , 7 there is k -chordal heptagon for each k = 1, 2, 3 .
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COROLLARY 3.4. If the lengths a1 , . . . , an are such that

a1 + · · · + an > n q

√
2m
n

aj, j = 1, . . . , n (47)

where m = �n − 1
2

� , q = 2m−1 , then at least for n � 12 there is m -chordal polygon

whose sides have the lengths a1 , . . . , an .

Proof. Supposing that (47) holds, we need to prove that

n∑
i=1

arc cos
ai

a1
< (n − 2m)

π
2

. (48)

For this purpose we shall prove the following lemma.

LEMMA. If cos γ1 + · · · + cos γn � c , 0 < γi <
π
2

, i = 1 , . . . , n , then

γ1 + · · · + γn � n arc cos
c
n
.

In the proof we shall use the following fact: If

γ1 + . . . γn = a, 0 < γi <
π
2

, i = 1, . . . , n

then max(cos γ1 + · · · + cos γn) = n · cos
a
n

, that is cos γ1 + · · · + cos γn = maximal

for γ1 = · · · = γn =
a
n

.

Thus, if γ1 + · · · + γn = n arc cos
c
n

, then cos γ1 + · · · + cos γn will be maximal

if γ1 = · · · = γn = arc cos
c
n

.

It is not possibly to be γ1 + · · · + γn = s , where s > n arc cos
c
n

since then

cos γ1 + · · · + cos γn � n cos
s
n

< n cos(arc cos
c
n
) = c.

So our lemma is proved.

Now from (47) we have

cos γ1 + · · · + cos γn > n q

√
2m
n

,

where cos γi =
ai

a1
, i = 1 , . . . ,n , a1 = max{a1, . . . , an} . Since

n∑
i=1

arc cos
ai

a1
< n · arc cos q

√
2m
n
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and

n · arc cos q

√
2m
n

< (n − 2m)
π
2
,

it follows that (48) is valid.

Here are some examples.

1. If n = 12 , then m = 5 , 12 arc cos
(10

12

) 1
9 = 126.4330954◦ < 180◦ .

2. If n = 13 , then m = 6 , 13 arc cos
(12

13

) 1
11 = 89.74674144◦ < 90◦ .

3. If n = 20 , then m = 9 , 20 arc cos
(18

20

) 1
17 = 127.44811◦ < 180◦ .

4. If n = 51 , then m = 25 , 50 arc cos
(50

51

) 1
49 = 83.06960318◦ < 90◦ .

5. If n = 100 , then m = 49 , 100 arc cos
( 98

100

) 1
97 = 116.9342793◦ < 180◦ .

6. If n = 201 , then m = 100 , 200 arc cos
(200

100

) 1
999 = 81.53632288◦ < 90◦ .

7. If n = 500 , then m = 249 , 500 arc cos
(498

500

) 1
497 = 115.0490895◦ < 180◦ .

8. If n = 501 , then m = 250 , 501 arc cos
(500

501

) 1
499 = 81.23113761◦ < 90◦ .

9. If n = 1 001 , then m = 500 , 1 001 arc cos
(1 000

1 001

) 1
999 = 81.10950368◦ <

90◦ .

10. If n = 10 001 , then m = 5 000 , 81.03657137◦ < 90◦ .

11. If n = 20 000 , then m = 9 999 , 114.591559◦ < 180◦ .

From (47) it follows that each of the sequences

un =n arc cos
(n − 1

n

) 1
n−2

, n is od and n � 3, (49)

vn =n arc cos
(n − 2

n

) 1
n−3

, n is even and n � 4, (50)

must be convergent. Namely, it is clear that |ai − aj| → 0 when n → ∞ . Thus,
A1 . . .An converge to an equilateral polygon, and equilateral polygon has the property:

If a1 , . . . ,an are equal, then for each k = l , . . . , �n − 1
2

� there is a k -chordal polygon

whose sides have the lengths a1 , . . . ,an .

From the above examples it is clear that the sequences (49) and (50) are very
slowly convergent which may be interesting in itself.
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Also may be interesing that

0 < n arc cos
(n − 1

n

) 1
n−2

<
π
2

, n is odd

π
2

< n arc cos
(n − 2

n

) 1
n−3

< π, n is even

or

1 >
(n − 1

n

) 1
n−2

> cos
π
2n

,

cos
π
2n

>
(n − 2

n

) 1
n−3

> cos
π
n
.

COROLLARY 3.5. Let the lengths a1 , . . . , an be so that

a2m−1
1 + · · · + a2m−1

n > 2m a2m−1
j , j = 1, . . . , n (51)

where m = �n − 1
2

� . Then at least for n � 12 there is m -chordal polygon whose

sides have the lengths a1 , . . . , an .

Proof. The proof is similar to the proof of Corollary 3.4. Namely, from (51) we
have

n∑
i=1

( ai

a1

)2m−1
> 2m

or
n∑

i=1

cos2m−1 γi > 2m,

from wich it follows that there are angles γ1, . . . , γn such that

n∑
i=1

γi < n arc cos
(2m

n

) 1
2m−1

.

For example, if
cos11 γ1 + · · · + cos11 γ13 > 12

then γ1 + · · · + γ13 < 13 arc cos
(12

13

) 1
11 = 89.74674144◦ < 90◦ .

Let us remark that from (51) it follows that for each i, j ∈ {1, . . . , n} it is valid
|ai − aj| → 0 when n → ∞ .

Notice 4. The assertion in Corollary 3.5 is a hypothesis in the paper [1]. So this
hypothesis is now proved.

Notice 5. At this point we restrict ouerselves to the k -chordal polygon. Of course,
similarly holds for k -inscribed chordal polygon.

Previous to stating the following theorem we give one definition.
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DEFINITION 5. Let a1 , . . . ,an be given lengths. If there exists a k -inscribed
chordal polygon whose sides have the lengths a1 , . . . ,an , then it will be denoted
by A(k)(a1, . . . , an) and instead of notation β1 , . . . ,βn will be used notation β (k)

1 ,

. . . ,β (k)
n .

If β (k)
u1 , . . . ,β (k)

uj are negative, then it will be denoted by

A(k)(a1, . . . , an; u1, . . . , uj).

In the case when a1 = · · · = an = a , then will be written

A(k)
n (a; u1, . . . , uj).

Each two polygons A(k)(a1, . . . , an) and A(l)(a1, . . . , an) , if both of them exist, will be
called related chordal polygons and it will be written

A(k)(a1, . . . , an)RA(l)(a1, . . . , an)

if signβ (k)
i = signβ (l)

i , i = 1 , . . . ,n .

Thus A(k)(a1, . . . , an)RA(l)(a1, . . . , an) if and only if

A(k)(a1, . . . , an; u1, . . . , uj)RA(l)(a1, . . . , an; u1, . . . , uj).

Here are some examples.

1. A(1)
8 (1; 2) and A(2)

8 (1; 2) in Fig. 5 are related chordal octagons.

Fig. 5

2. Each of the polygons A(1)
11 (1; 2, 6) , A(2)

11 (1; 2, 6, ) and A(3)
11 (1; 2, 6) (see Fig.

6) are related chordal 11-gons.
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Fig. 6

3. The polygons A(1)
11 (1; 1) , A(2)

11 (1; 1) , A(3)
11 (1; 1) , A(4)

11 (1; 1) , are related chordal
11-gons, but, of course, they are not related to the polygons in the previous
example.

4. The polygons A(1)
11 (1; 2, 4, 6, 8) Fig. 7 is only one 11-gon whose angles β2 ,

β4 , β6 , β8 are negative and a1 = · · · = a11 = 1 .

Fig. 7

It is easy to see that the number of related chordal n -gons can be at most �n − 1
2

� .

This number depends not only of the lengths a1 , . . . ,an but also of the number v (on
the number of the negative angles βi ). For example, polygon shown in Fig. 7 is only
one if β2 , β4 , β6 , β8 are negative and a1 = · · · = a11 = 1 .

Now we can state the following theorem in which the symbol Pn
j (given in Pre-

liminaries) will be used.

THEOREM 4. If A1 . . . An is a k -inscribed chordal polygon, then β1 , . . . ,βn

satisfy
m∑

i=1

(−1)i+1Pn−1
2i−1 = (−1)w+1 cosβn, (52)

where w = j + v , m =
n − 1

2
if n is odd and m =

n
2

if n is even.

Proof. If A1 . . .An is k -inscribed chordal polygon then

β1 + · · · + βn = (n − 2w)
π
2

, (53)
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where w = j + v . In the paper [1], Corollary 3.1, is proved that (52) holds if A1 . . . An

is a k -chordal polygon, that is, when v = 0 . Obviously, (52), is valid when v 	= 0 as
well. Putting w instead k all essentially remain the same. So Theorem 4 is proved. �

Previous to we state some of its corollaries here are some examples.

1. Let the polygon be A(1)
5 (1; 2) . Then β1 = β3 = β4 = β5 =

π
6

, β2 = −π
6

and we have

P4
1 − P4

3 = cosβ1 sin β2 sin β3 sinβ4 + sinβ1 cos β2 sin β3 sinβ4

+ sinβ1 sin β2 cos β3 sin β4 + sin β1 sinβ2 sin β3 cos β4

− cosβ1 cosβ2 cosβ3 sin β4 − cosβ1 cos β2 sin β3 cosβ4

− cosβ1 sinβ2 cos β3 cos β4 − sin β1 cos β2 cos β3 cosβ4

−
√

3
2

= (−1)2+1 cos
π
6

.

Let us remark that w = 2 since j = 1 , v = 1 .

2. Let the polygon be A(1)
6 (1; 4) . Then β1 = β2 = β3 = β5 = β6 =

π
4

,

β4 = −π
4

and it is easy to find that

P5
1 − P5

3 + P5
5 = (−1)2+1 cos

π
4

.

3. Let the polygon be A(1)
7 (1; 2, 5) . Then w = 1 + 2 and we have

P6
1 − P6

3 + P6
5 = (−1)3+1 cos

π
6

=
√

3
2

.

COROLLARY 4.1. Let A(k)(a1, . . . , an) be a k -inscribed chordal polygon where jk
is its index and v is the number of βi which are negative. The radius of the circumcircle
of A(k)(ai, . . . , An) is a root of the equation

m∑
i=1

(−1)i+1 Pn−1
2i−i(a1, . . . , an; r) = (−1)wk+1 an

2r
, (54)

where Pn−1
2i−i(a1, . . . , an; r) is obtained by Pn−1

2i−i putting
ai

2r
instead of cos βi and

signβi

√
1 −

( ai

2r

)2
instead of sinβi . Of course, wk = jk + v .

Here are some examples.
1. The radius of A(1)

7 (1; 2) is the root of the equation

4∑
i=1

(−1)i+1P6
2i−1(1, 1, 1, 1, 1, 1, 1; r) = (−1)2+1 1

2r
.

It can be found that r = 0.85065 .
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2. The radius of A(2)
9 (1; 2, 6) is the root of the equation

4∑
i=1

(−1)i+1P8
2i−1(1, 1, 1, 1, 1, 1, 1, 1, 1; r) = (−1)4+1 1

2r
.

It can be found that r = 0.52573 .

COROLLARY 4.2. Let A(1)(a1, . . . , an) be a 1 -inscribed chordal polygon. If there
are l chordal polygons related to A(1)(a1, . . . , an) then their radii r1, . . . , rl are the
roots of the equations

m∑
i=1

(−1)i+1Pn−1
2i−i(a1, . . . , an) = (−1)wk

an

2rk
, k = 1, . . . , l (55)

where wk as in Corollary 4.1.

Of course, the number v in the sum jk + v is the same (by Definition 5) for all
chordal polygon related to the polygon A(1)(a1, . . . , an) .

Here are some examples.
1. If n = 11 , a1 = · · · = a11 = 1 (see Fig. 6), then (55) can be written as

5∑
i=1

(−1)i+1P10
2i−1(1, . . . , 1; r) = (−1)jk+2 1

2rk
, k = 1, 2, 3

from which it follows r1 = 1.15238 , r2 = 0.63952 , r3 = 0.51286 .
2. If n = 12 , a1 = · · · = a12 = 1 , v = 0 then (55) can be written as

6∑
i=1

(−1)i+1P11
2i−1(1, . . . , 1; r) = (−1)k+1 1

2rk
, k = 1, . . . , 5

from which it follows r1 = 1.93185 , r2 = 1 , r3 = 0.70711 , r4 = 0.57735 ,
r5 = 0.51176 .

Since each chordal polygon determines a chordal semi-polygon, each of the poly-
gon in the above examples determines a chordal semi-polygon.

The radius of a chordal semi-polygon which is not a polygon, can be obtained in
the following way.

Let A1 . . .An be a chordal semi-polygonwhose sides have the lengths a1, . . . , an−1

and let the sum β1 + · · ·+βn−1 be given with sign of each βi . If β1 + · · ·+βn−1 = τ ,
then the equation

cos(β1 + · · · + βn−1) = cos τ
can be used. For example, if n = 5 , a1 = a2 = a3 = a4 = 1 , β1 = β2 = β3 = β4 =
π
6

, β2 = −π
6

then we have the equation

cos(β1 + β2 + β3 + β4) =c1c2c3c4 − s1s2c3c4 − s1c2s3c4 − c1s2s3c4

− s1c2c3s4 − c1s2c3s4 − c1c2s3s4 + s1s2s3s4,
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where, for brevity, instead od sin βi is written si and ci instead of cosβi . Hence, using

the expressions cosβi =
1
2r

, sin βi = signβi

√
1 −

( 1
2r

)2
we find that r =

√
3

3
.
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