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SOME INEQUALITIES AND PROPERTIES
CONCERNING CHORDAL SEMI-POLYGONS

MIRKO RADIC

(communicated by V. Volenec)

Abstract. The paper deals with some inequalities and properties concerning semi-chordal poly-

gons.
1. Preliminaries
Semi-polygon. Let Ay, ... ,A, be any given different points in a plane. Then the
union
AlAy UAA3 U ---UA,_1A, US (1)
of the line segments AjA;, ... ,A,—1A, and the set S wich is either empty set or the

segment A,A;, will be called a semi-polygon and denoted by A;...A, or briefly by
A.

So, each polygon may be called semi-polygon, but not conversely if S is empty
set.

If A;...A, is a semi-polygon which is not a polygon, then its vertices A; and A,
will be called end-vertices.

Chordal semi-polygon. A semi-polygon A;...A, will be called a chordal semi-
polygon if there is a circle C such that each of the vertices Ay, ..., A, lieon C.

Now in short about the angles wich play an important role in the following consid-
erations.

Let A; ... A, beachordal semi-polygonandlet C be the centre of its circumcircle.
Then

Bi = measure of SCAA;11, i=1,...,n (2)
@; = measure of JA;CA;, i=1,...,n. (3)

In this paper we shall use oriented angles. As it is known, an angle SPQR is positively
or negatively oriented if it is going from QP to QR counter-clockwise or clockwise.

It is very important to remark that the angles [3; and ¢; given by (2) and (3) have
opposit orientation, e. g. see Fig. 1
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Fig. 1

The measure of an oriented angle will be taken in radians and will be with sign +
or — depending on if the orientation of the angle is positive or negative.
Obviously, for §; and ¢; is valid

0<IBl <3 0<lol<m

since no two of the consecutive vertices in Ay ...A, are the same (by the given defini-
tion).

For simplicity, the measures of the oriented angles given by (2) and (3) we shall
also write as f3; and ¢;.

Notice 1. In the following, when we speak about chordal semi-polygon, it will be
meant that this polygon is a such one that no two of its consecutive vertices are the same
and that no one of its sides is a diameter of its circumcircle, that is, no one of B, ..., f,
is zero. Also we suppose that its vertices are not collinear.

Of course, in the case when some of f3; is zero, then we have radius r readily.
Also, in the case when all vertices are collinear, the polygon is very simple one.

Notice2. Whenever A = A; ... A, is achordal semi-polygon under consideration,
thenby C, r and C will be denoted center, radius and circumcircle of A respectively.
Also f; and ¢; are given by (2) and (3), ay, ..., o, are given by

o; = measure of JA,_1AAi+, i=1,...,n.

Of course, JA,—1+iA;A;;1 is oriented and indices are calculated modulo 7.
Bay ajy,...,a, will be denoted the lengths of the sides of A.

DEFINITION 1. Let A = A;...A, be a chordal semi-polygon and let

o=lor+ -+, 4)
u = the number of the elements in the set {i : §; > 0}, (3)
v = the number of the elements in the set{i : f; < 0}, (6)

where @, in (4) is omited if A is not a polygon.
Then we say that (¢,u,v) is a characteristic of A.
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For example, the semi-polygon in Fig. 2 has (¢,2,1) as a characteristic, where
¢ = measure of JA;CA,.

DEFINITION 2. Let A = A;...A, be a chordal semi-polygon. We say that A is
of the first kind if inside C there is a point 0 such that all of the angles <A;O0A;,
i=1,...,n, have the same orientation. If such a point 0 does not exists, that is, not all
of the angles JA;0A;;, have the same sign, we say that A is of the second kind.

DEFINITION 3. Let A = A ...A, be achordal polygon and let O be a point inside

C such that
|W1+"'+Wn‘:2kﬂ', (7)
where k is a positive integer ant y; = measure of JA;OA;, . If the point O is a such
one that k is maximal, then we say that A is a k-inscribed polygon of the first kind or

the second kind depending on if A is of the first or of the second kind.
If

o1 + -+ @u| = 2jm, (8)

where @; = measure of JA;CA;;;, then we say that j is an index of A. Of course,
je{0,1,... k}.

A k-inscribed chordal polygon of the first kind whose index is k will be briefly
called k-chordal polygon. Using Definition 1 it can be said: A polygon is k -chordal if
its characteristic (¢, u,v) has property that ¢ = 2km, u =n or v=n.

Itis easy to see that A;...A, is a k-chordal polygon iff

Bit -+ Bl = (=207, ©)

where f; >0,i=1,...,nor ;1 <0,i=1,...,n.
For example, if §; > 0, then ¢@; < 0, and ¢; = —7 + 2f3;, so that the equation

|(Pl++(Pn|:2k7f

when B; >0, i = 1,...,n can be written as
(—m+2B) + -+ (—m+2B,) = —2km,

from which follows (9).
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Thus,if B; >0,i=1,...,n then
T
B1 +~-~+ﬁn=(n—2k)§.

Bmﬁﬁp<&i:I,“”nJMnBr+~~+m:4—n+2mg.

The sign of the sum ; + - - - + B, depends on the orientation of the polygon. In
brief about this.

Let A = A;...A, be a chordal n-gon and let B = B;...B, be such that
Bi=A,.1—i,i=1,...,n. Then A and B are in fact the same since their vertices lie
just in opposite order. But if it is a question of an oriented polygon, then A and B have
opposite orientations.

An orientation of A;...A, is positive or negative depending on if starting from
A; and going to A, the polygon is circumscribed counter-clockwise or clockwise.

If A=A;...A, is a k-chordal polygon, then f;, i = 1, ... ,n is negative if A
is positively oriented and vice versa. But in the case when A is a chordal polygon of
the second kind, then some f3; are negative and some positive.

Notice 3. In the following, for the sake of simplicity, we shall suppose that a
polygon and a semi-polygon as well are negatively oriented.

Then ¢@; + -+ @, < 0 but By +---+ B, > 0. So, for example, instead of
|&+m+m:@7%gwmmmm&+n+m:mf%g.

Therefore, in the following when we say chordal semi-polygon or chordal polygon
it will always be meant that the assumptions in Notice 1 and Notice 3 are fulfiled.

Now about notation which will be used. | |

— n—

Symbol L%j . If n is a positive integer, then LnTj = if n is odd,

-1 -2
" J:n2 if n is even.

|

Symbol P;. If j and n are positive integers and j < n, then P is the sum of

(’; ) products of the form

cos B, ...cos B sin B, ...sin B,

where (i, i,...,I,) is a permutation of {1,2,...,n}.
For example:

P} = cos B sin B, sin B3 + sin B; cos B, sin B; + sin Py sin B cos Bs.

2. Some inequalities and properties concerning chordal semi-polygons

We commence with the following theorem.

THEOREM 1. Let A = A, ...A, be a chordal polygon. Then it is valid

a4 =21+ + Bu). (10)
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Proof. Obviously, if A is convex and C is inside of A, then

alzﬁtz+ﬁl
o =P+ B
oz =P+ B3

o = ﬁnfl + Bn

that is

ai:ﬁn—lJri—’_Bh l:1,77’l (11)
It is not difficult to see that (11) is valid in all other cases too. So, if A;...As is a
pentagon as in Fig. 3, then

ai:B4+i+ﬁia l:1a75

Let us remark that all ¢, ..., &s are positive and that 8, and B4 are negative.

Fig. 3

Generally, no matter which is a chordal polygon, beginning from its first vertex, it
is easy to see that &y = fB, + B1, then thatis o = f3,—; + B, and so on. The situation
is like in a proof by induction.

So, Theorem 1 is proved. [

Now we state some of its corollaries.

COROLLARY 1.1. Let A;...A, be a chordal polygon. Then there is an integer z
such that
T
Bit- o+ bu=275, (12)
R (13)
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Proof. 1t follows from the equation ¢; + - - - + ¢, = 2j7 since
(pi:ﬁ+2ﬁi or ¢, = —775+2Bi
depending on if ; <0 or f3; > 0.

COROLLARY 1.2. Let Ay ...A, be a chordal n-gon whose index is j and let v of
the angles By, ..., B, be negative. Then

051+"'+an:[n_2(j+v)]ﬂ' (14)

Proof. Let, for simplicity, be f; <0, i=1,...,v. Then ;>0 fori=v+1,
. ,n. Thus, the equality
Qo+t =-2n

can be written as

i(ﬂ +2B) + i (—m+2B) = -2z
i=1 i=v
o +1
2Bt -+ 2By = [n— 20+ V)7, (15)

and by (10) it can be written as (14).
COROLLARY 1.3. Let Ay ...A, be asin Corollary 1.2. Then

B+ + 1B = [ =2+ V)5 + 27, (16)

where
T = — (sumofall B; which are negative).

Proof. From (15) we have

3

Bl+"'+Bn:[n_2(j+v)]_> (17)

\S]

2T+Bl+"'+ﬁn :[n72(1+1))]g+27«-

COROLLARY 1.4. Let A;...A, be achordal n-gon. If n is odd, then
Bit--- 4B >0,

but if n is even then may be [y + -+ B, = 0. (Instead of |B1 + - - - + Bu| we may
write By + - -- + B, by Notice 3.)

Proof. If n is even then may be [n — 2(j + v)]g =0orn=2(j+v). So, for

example, it AjA,A3A4 is a chordal quadrangle which is not convex, then f; + 8, +
Bs+Bs=0.
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COROLLARY 1.5. If Ay ... A, is k-inscribed chordal n-gon, then
T

Pt 4By <(n—-2k)7

(18)
Proof. If A;...A, is k-chordal n-gon, that is, a k-inscribed chordal n-gon
whose index is maximal, then fB; +--- + B, = (n — 2k)g .

So, fox example, the pentagon in Fig. 4a is 1-chordal pentagon, and that in Fig. 4b
is l-inscribed chordal pentagon (where A, is Az in Fig. 4a and vice versa). For the
first one it is valid.

T
o+ a5 =31, i+ B =37, (19)

but for that in Fig. 4b it is obviously |ot + - -+ + 5| < 37.

Fig. 4

COROLLARY 1.6. If Ay ...A, is a k-inscribed chordal n-gon, then
JF+v >k (20)

]E

Proof. From [n —2(j 4 v) 5 < (n— 2k)g it follows j+v > k.

COROLLARY 1.7. If Ay ...A, is a k-inscribed chordal n-gon, then

<n-—2if n is even,
2k <n—1if n is odd.

In the following corollary we shall use the following definition.

DEFINITION 4. Let A;...A, be a k-inscribed chordal n-gon. Then the chordal
semi-polygon whose end vertices are A; and A, will be called k-inscribed chordal
semi-polygon.
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COROLLARY 1.8. If Ay ... A, is a k-chordal semi-polygon, then

@fLam%<&+m+m4<m—%g. (21)

THEOREM 2. If A = A, ...A, isa k-chordal polygon and p is an positive integer,

then ok
P
cos” By + -+ - + cos’ B, >n(—) . (22)
n

Proof. In [1], Theorem 1, we have the following result:
Let k and n be any given positive integers such that n — 2k > 0, and let f3;,
..., By satisfy

Bit o+ Bi=(n—25, 0<fi< 2. (23)

Then
cos i+ -+ By > 2kcosf, j=1,...,n. (24)

The proof'is as follows.

. . 1 . .
Since cosmx > 1 —-2x if 0 <x < R putting ¢ = 7x we obtain

2
cosa>1——a, 0<a<?Z. (25)
/) 2

Consequently
- 2 ¢ 2
;:1 cosfi >n— p ;_1 Bi=n-— E(n - 2k)g =2k > 2kcos ;.

Here we need to prove that (22) holds for p = 2,3,... too.
T
From (25), since 0 < f3; < 5 we have

cos” B > (1 — 7—27:61')[)~ (26)

So for p =2 we can write (using the property of arithemetical mean)

ScosBisn— 2Bt B+ (2) B+ B
i=1

>n—2(n—2k) Jrn(u)z
=n—2(n-2k) + (n —n2k)2 = n{n_ (r;— Zk)r = n(%)z

Similarly for p = 3 we have

’210053 Bi > n—3(n—2k) +3n(n—2k)2 7n(n—2k)3

- n n
i=1

o[ (%)

n n
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It is easy to see that it generally holds
: — (n—2k)» 2k\P
Zcos”ﬁi > n[w} = n(—) .
i1 n n
n 2k\P T
Let us remark that ) cos” ff; > n(—) for fi=...=f,=(n- 2k)2— , since
i=1 n n
T . kT
ncos’ (n — 2k)— = nsin’ —,
n n
k 2k -1
sin % = = for each n>3 and k:l,...,[n |
n n 2
Also let us remark that > cos” f; = 2k for f; = ... = By_u = 7—27:, Broki1 =
i=1
2kN\P
... =B, = 0 and that 2k>n( ) if p>1.
n
So Theorem 2 is proved. [
COROLLARY 2.1. Let A = Ay ...A, be a k-chordal polygon and let ay, ... ,a,
be the lengths of its sides. Then
. 2k\P
Za{-’>n(7) a, j=1,....n (27)
i=1

Proof. Ttisvalid a; =2rcosf;, i=1,...
COROLLARY 2.2. If 2k is maximal, that is

2k=n—1 if n isodd, 2k=n—-2 if n iseven,
then

n

e, .
Za‘i”>n(l——) ai, j=1,...,n for n odd,

n

i=1

n 2 pp .

Za{’>n(1—;) a, j=1,...,n for n even.
i=1

COROLLARY 2.3. Let A=A, ...A, be a k-inscribed chordal n-gon.Then

écos” Bi > n{w]p,

(28)
where o is the number such that o - g =1, and j,v,T are as in Corollary 1.3.
T T .
Proof. If |By|+ -+ |Bul =5~ 5 0<|B] < 5 i=1,...,n,then
n N
Zcosp Bi > n(2 - —) . (29)
n
i=1
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Now, the proof is similar to the proof of Theorem 2. Let us remark that from
. V2
Bil + -+ |Bul = ["*2(I+V*U)]§

it follows that s =n —2(j+ v — 0) and

17572(]'+1270')
no n ’

Also let us remark that in (28) we must write |B;|+ - - - +|B,| instead of B +- -+ B,.

It because od (25). For example, if p = 1, we have
n 2 )
d_cosBi>n——(|Bil++|Bul) =20 +v - 0).
i=1
COROLLARY 2.4. Let A=A, ...A, beasin Corollary 2.3. Then
2 _
Zap> [(]+V )rwﬂ j=1,...,n

where ay, . ..,a, are the lengths of the sides of A, ...A,.

(31)

COROLLARY 2.5. Let Ay ...A, beasin Corollary 2.4 andlet w = j+v— 0. Then

a+...+a a+...+a
¥ <2r< %7
nsin — w
n
Ywa na; sin —
d <cos B < n
a; + ay 1+ + o

Proof. From
a;
2rcos B = a;, |Bi| = arccos —
2r
2
E, 0 < X < 1

n n
Z . a; 4 a; T
arc sin — E arccos — =n- —
- 2r — 2r 2’
n= i=

- a; T
& m—ow=
.E_ arc cos (n—2w) X

arc sin x + arc cosx =

it follows

or

(32)

(33)

(34)
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Thence, using the property of arithmetical mean, we get

al+...+an<w_n

arc sin
2rn “on
or P
a PRI a
2> S
nsin —
n
Now, from
@
cosfB; = —l cos B
-+a
Z cosffi = —— " cos B
a _|_ . _|_ a
ow< LT s B
a
it follows 5
wa
cosfBy > ——1
al + e _|_ an

As cos B = ;— we have the following inequality
r

ap 2wa,
J— > R
2r  ar+-+ay

or -
2r < u
2w
Finally, since a; = 2rcos f3;, the equality (34) can be rewritten as
1 1

(cos B+ -+ +cos ) + 5 - S (cos” B + -+ + cos’ B,) +

or, using (35) and supposing that a; = max{ay,...,a,},
a+---+ay, 1 1/ad+---+d
( ! ) sBi+ = - —(173)0053[31+
ay 2 3 aj

from which, using the property of arithmetical mean, it follows that

a1+...+an

. owrm
cos B < sin —.
nai n

As cos B = — cos 3, we have the inequality
a;

= WT

.= wr,

311

(36)
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COROLLARY 2.6. We have that
2w w1t

AAPS /= 39
. sin . (39)

Proof. The above inequality follows from >_ cos ff; > 2w and (38).
i=1

COROLLARY 2.7. Let Ay ...A, be a k-chordal polygon such that

S d >k, j=1,....n, (40)
i=1

-1
where k = LnTJ Then for enough large n it is valid ay ~ ay = --- = a,.
Proof. In n is odd then from (40) it follows that

P+ .. +d 1
atota (1— )a;’, i=1,....n
- .

Similar is for even n.

COROLLARY 2.8. If A} ... A, isa k-inscribed chordal semi-polygon and 2¢ - g =

|Bal, s=n—2(j+v—0o+¢), then
n—1 s ?
Zcos”ﬁi>(n71)(lf ) : (41)
: n—1
P S N
Za nfl(lfn_l) & j=1,...,n—1. (42)
For example, if |Bi| + -+ + |Bu- 1\—— then

2 p
P
E a>mn-1) {1 3(n71)} ai, j=1,...,n—1

T 7 2
Let us remark that from s - — = — it follows that s = 3

The following theorem and its corollaries are concerning the condition which the

lengths ay, ..., ay, satisfy in the case when a polygon is k-chordal polygon.
THEOREM 3. Let A ... A, bea k-chordal polygon andlet a; = max{a, ..., 04}.
Then ; 5
a+---+a, 1 1 aj+---+a
L Tt S A e | AT E O N 43
ap + 23 Cl’f' * ( )

Proof. Let cosy; = ﬂ, i=1,...,n. Then
a

T
}/1+-~-+y,,<(n—2k)E
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since

n
Bit -t Bu=(n—2k)7,
cosf3; = ﬂcosﬁl, i=1,...,n.
a
Let us remark that 8; > 0 if A is a k-chordal polygon.
Now from
- . ag - a; T
arc sin — + arccos — =n- —,

z a; T
— < (n—2k)=
; arc cos m (n ) 3
it follows

Z arc sin 4 >k,
i-1 @
which can be written as (43). And Theorem 3 is proved. O

COROLLARY 3.1. The condition (43) is not only necessary for ay,
the lengths of the sides of a k -chordal polygon, but also sufficient.

Proof. Let (43) be fulfiled and let

ai .
cosy; = a—cos)/l7 i=1,...,n.
1

Since y; — — when cosy; — 0, itis clear that there is 0 < y; < — such that

3
Nt = (=20,
aq ay
= = = C7
cos Y COS ¥,
where ¢ = 2r.

COROLLARY 3.2. There is a k-chordal polygon whose sides have the lengths a, ,
. . T
coay iffthereis 0 < By < 5 such that

.. " 1 1 &B+--- 3
ucosﬁl_i'__._.L’;—Fancos:sﬂl_i'_...:kn. (45)
a 2 3 aj
n a; T . .
Proof. Iff > arc cos(a—l cos Bl) =(n- 2k)§ then (45) is valid.
i=1

313

...,a, to be
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COROLLARY 3.3. IfB1+-~-+[3,,:(n72k)7—2Z, 0< B < 7—; i=1,...,n,then

k
cos Py + -+ + cos B, < nsin —. (46)
n

Proof. Tt follows from (44) and (45) (using the property of arithmetical mean).
Before making a statement of the following corollary here are some examples
which may bi interesting.
1. Ifag;=b+i,i=1,...,5and b is a positive integer less than 27, then there
is no 2-chordal pentagon whose sides have the lengths a; = b +1i, i = 1,
..., Soif g =10+1i,i=1,...,5,then

10 + i
" arccos 1;” ~ 130.066° > 90°.

27 +i
Zarc cos 3;1 ~ 88.689° < 90°.

3.If n=6, k=2,then ; + -+ B¢ = m and b may be 9, but not less then
9. For b = 9 we have

5 .
9
E arc cos 1+51 ~ 178.855° < 180°.
i=1

4. If n =7, k=3, then b can not be less than 89. If b = 89, then

6 .
E arc cos 89+ i ~ 89.889° < 90°.
i=1 96

Of course, if m is a positive integer such that m < L?J and if there is

m-chordal polygon whose sides have the lengths ay, ... ,a,, then for each

k=1, ...,m thereis a k-chordal polygon whose sides have the lengths a; ,
. ,a, . Namely, if there is [31(’") such that

Z arc cos(ﬂ cos Bl(m>) =(n- 2m)£,
i=1 @ 2

then there is B*) such that > arc cos(ﬁ cos ﬁl(k>) =(n- 2k)g .
i=1 ai
Soif aj =89+i,i=1,...,7thereis k-chordal heptagon foreach k =1,2,3.
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COROLLARY 3.4. Ifthe lengths ai, ... ,a, are such that

/2
a1+...+an>nq—maj7j:l,...,n (47)
n
1

where m = Ln;j , q =2m—1, then at least for n > 12 there is m-chordal polygon

whose sides have the lengths ay, ..., a,.

Proof. Supposing that (47) holds, we need to prove that

n

a; T
arccos — < (n —2m)—.
2 meeong = (s

For this purpose we shall prove the following lemma.

T
LEMMA. If cosy; +---+cosy, = c, 0<y,-<5, i=1,...,n, then

i+ 4+ < narccosE.
n
In the proof we shall use the following fact: If

T
Nn+...v%=a, 0<)/,-<§7 i=1,...,n

a . .
then max(cosy; + -+ cosy,) = n-cos —, thatis cosy; + - - - + cos ¥, = maximal
n

for V= "=%= C_l
" c
Thus, if y; + --- + ¥, = narccos —, then cosy; + - - - + cos ¥, will be maximal
n

. c
1fy1:~-~:y,,:arccos;.

. . c .
It is not possibly to be y; + - - - + ¥, = s, where s > narccos — since then
n

S C
cosy + -+ €os Y, < ncos — < ncos(arccos —) = c.
n n

So our lemma is proved.

Now from (47) we have

12
cosyl+~-~+cosyn>nq —m,
n

a; . .
where cosy;= —,i=1,...,n, ag = max{aj,...,a,}. Since
ai

n
a; q/2m
g arccos — < n-arccos {/ —
ay n

i=1
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2
n - arccos {/ = (n—2m)
n

it follows that (48) is valid.
Here are some examples.

and

Nlﬁ

o —

1. Ifn=12,then m=>5, 12arccos( ) — 126.4330954° < 180° .

el e
% oI5 SIS

._.l_

2. If n=13.then m =6, 13 arccos( ) — 89.74674144° < 90° .

\ll"

3. If n=20,then m =9, 20arccos( ) — 127.44811° < 180°

® — 83.06960318° < 90°.

4 If n =51, then m =25, 50arccos(2(l))
98 \ 95

5. If n = 100, then m = 49, 100arcc0s( 00) 7 116.9342793° < 180°.

6. If n = 201 , then m = 100, 200 arc cos(igg) = — 81.53632288° < 90°.
498 497

7. If n = 500, then m = 249, 500 arc cos(soo) — 115.0490895° < 180°.

8. If n = 501, then m = 250, 501 arc cos(zg?) w — 81.23113761° < 90°.

1000
1001

1
9. If n = 1001, then m = 500, 1001 arc cos( )9"9 — 81.10950368° <
90° .
10. If n = 10001, then m = 5000, 81.03657137° < 90° .
11. If n = 20000, then m = 9999, 114.591559° < 180°.

From (47) it follows that each of the sequences

n—1

e
)"‘2, nisodand n > 3, (49)

1
— 2\ = )
n ) 3, nisevenand n > 4, (50)

It, =N arc cos (

Vv, =n arc cos (
n

must be convergent. Namely, it is clear that |a; — aj\ — 0 when n — oo. Thus,

A; ... A, converge to an equilateral polygon, and equilateral polygon has the property:
n—

1
If a,...,a, areequal, thenforeach k =1, ... ,| | thereis a k-chordal polygon
whose sides have the lengths ay, ... ,a,.

From the above examples it is clear that the sequences (49) and (50) are very
slowly convergent which may be interesting in itself.
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Also may be interesing that

n

1
I\ = .
0<narccos( ) ? < 7—;, n is odd

n

—2),,_

|_

N
w

T .
E < narccos( < T, n 1seven

S

or

—

n—1\,—2 T
1>( ) > COS —

n 2n’
T (n2),,13 T
COS — > > COS —.
2n n n
COROLLARY 3.5. Let the lengths ay, ... ,a, be so that
A"t @2 > om af"’fl, j=1,...,n (51)

-1
where m = Ln—J Then at least for n > 12 there is m-chordal polygon whose

sides have the lengths ay, ... ,a,.

Proof. The proof is similar to the proof of Corollary 3.4. Namely, from (51) we

have
n
a; 2m—1
Z(—l) > 2m
5 ai
i=1
or

n
Z cos™ Ly, > 2m,
i=1
from wich it follows that there are angles 71, . .., ¥, such that

n 1
2m\ 2m—1
E y,-<narccos(—) .
n
i=1
For example, if
cos'! T+ + cos'! Yi3 > 12

1

then 71 + -+« + 113 < 13 arccos(%) T _ 89.74674144° < 90°.

Let us remark that from (51) it follows that for each i,j € {1,...,n} itis valid
la; — a;| — 0 when n — .

Notice 4. The assertion in Corollary 3.5 is a hypothesis in the paper [1]. So this
hypothesis is now proved.

Notice 5. At this point we restrict ouerselves to the k-chordal polygon. Of course,
similarly holds for k -inscribed chordal polygon.

Previous to stating the following theorem we give one definition.
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DEFINITION 5. Let a;, ... ,a, be given lengths. If there exists a k-inscribed
chordal polygon whose sides have the lengths a;, ... ,a,, then it will be denoted
by AW (ai,...,a,) and instead of notation B, ...,[, will be used notation Bfk),
B

If Bbslf) Y ,ﬁéﬁ are negative, then it will be denoted by

A(k>(a1, Ce Ay UL, ).
In the case when a; = - - - = a,, = a, then will be written
AW (a; uy,. .. ).

Each two polygons AW (a1,...,a,) and AW (a1,...,a,),if both of them exist, will be
called related chordal polygons and it will be written

/_\(k>(a1, R a,,)RA(l) (ai,y...,ay)

if signBi<k) = signBiU), i=1,...,n.
Thus A (ay, ..., a,)RAV(ay, ..., a,) if and only if

A(k>(a1, ey UL, - ,uj)RA(l)(al, Ce Ay UL, ).

Here are some examples.
1. f_\él)(l; 2) and f_\éz)(l; 2) in Fig. 5 are related chordal octagons.

Fig. 5

2. Each of the polygons Agll>(l;2, 6), Agzl)(l;2,6,) and Aﬁ)(l;2,6) (see Fig.
6) are related chordal 11-gons.
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¢

Fig. 6

3. Thepolygons Aﬁ)(l; 1), f_\ﬁ)(l; 1), f_\fl)(l; 1), 4543(1; 1), arerelated chordal
11-gons, but, of course, they are not related to the polygons in the previous

example.
4. The polygons Aglﬁ(l; 2,4,6,8) Fig. 7 is only one 11-gon whose angles f,,
Bs, Bs, Bs are negativeand a; = ---=a;; = 1.

Fig. 7

-1
It is easy to see that the number of related chordal n-gons can be at most LnTj .

This number depends not only of the lengths ay, ... ,a, but also of the number v (on
the number of the negative angles f3;). For example, polygon shown in Fig. 7 is only
oneif B, B4, Bs, Ps are negativeand a; = --- =aj; = 1.

Now we can state the following theorem in which the symbol P (given in Pre-
liminaries) will be used.

THEOREM 4. If Ay...A, is a k-inscribed chordal polygon, then B, ...,B,
satisfy

> (=D)L = (=1)"" cos By, (52)
i=1
n—1

where w =j+v, m = ifnisoddandm:gifniseven.

Proof. If Ay ...A, is k-inscribed chordal polygon then

Bit 4B =(n—2w)>

57 (53)
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where w = j + v. In the paper [1], Corollary 3.1, is proved that (52) holds if A;...A,
is a k-chordal polygon, that is, when v = 0. Obviously, (52), is valid when v # 0 as
well. Putting w instead & all essentially remain the same. So Theorem 4 is proved. [J

Previous to we state some of its corollaries here are some examples.

12 2
1. Let the polygon be Agl>(l;2). Then 1 = 3 = By = Bs = e B, = %
and we have
P} — P§ = cos By sin B, sin B3 sin B4 + sin B cos B, sin B sin By
—+ sin 3 sin 3, cos B3 sin B4 + sin By sin B, sin B3 cos B4
— cos P31 cos B, cos B3 sin B4 — cos B cos B, sin B3 cos B4
— cos B sin B, cos 5 cos B4 — sin B cos B cos B3 cos By
3 T
- % = (=1)*"'cos 3
Let us remark that w =2 since j =1, v=1.
2. Let the polygon be Ag)(l; 4). Then B = B = B3 = Bs = Bs = % ,
V1
By = ~2 and it is easy to find that
S _p5 ., pS 2+1 z
P, —P3+P;=(—1)""cos 7
3. Let the polygon be Agl)(l; 2,5). Then w = 1 + 2 and we have
3
P8 — P+ P8 = (—1)*"!cos T _ £
: 6 2
COROLLARY 4.1. Let A® (ai,...,a,) be a k-inscribed chordal polygon where jy
is its index and v is the number of B; which are negative. The radius of the circumcircle
of A¥(a;, ..., A,) is a root of the equation
S P ) = (1) (54)
r
i=1
where P';i:li(al, ...,ap;r) is obtained by P’;i:li putting ? instead of cos f}; and
r

N2
sign iy /1 — (%) instead of sin ;. Of course, wy = ji + v.

Here are some examples.
1. The radius of f_\gm(l; 2) is the root of the equation

4

. 1
Z(il)lﬂklpgi—l(L 1a 17 1a 17 1a l;r) = (71)2+12_'
r
i=1

It can be found that » = 0.85065 .
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2. The radius of 45)2)(1; 2,6) is the root of the equation

4

. 1
SOEDTPE (L L L L L L L) = (- 1)4“2—.

r
i=1

It can be found that » = 0.52573.

COROLLARY 4.2. Let AV (ay, ..., a,) be a 1-inscribed chordal polygon. If there
are | chordal polygons related to A<1)(a1, ...,ay) then their radii ry,...,r are the
roots of the equations

m
Ap

S D)TP ar o an) = (D)% k=1, (55)

2r
i—1 k

where wy as in Corollary 4.1.

Of course, the number v in the sum ji + v is the same (by Definition 5) for all
chordal polygon related to the polygon AV (ay, ..., a,).
Here are some examples.
1. If n=11, a; =--- = aj =1 (see Fig. 6), then (55) can be written as

5

. 1
S EDHPY () = (- 1)Jk+2 L k=1,2,3

i=1

from which it follows r; = 1.15238, r, = 0.63952, r3 = 0.51286.

2. fn=12,a; =---=app =1, v=0 then (55) can be written as
o 1
SRR (L ) = () k=S
T

i=1

from which it follows r; = 1.93185, r» =1, r3 = 0.70711, ry, = 0.57735,
rs = 0.51176.
Since each chordal polygon determines a chordal semi-polygon, each of the poly-
gon in the above examples determines a chordal semi-polygon.
The radius of a chordal semi-polygon which is not a polygon, can be obtained in
the following way.
Let A; ...A, be achordal semi-polygon whose sides have the lengths ay, ..., a,—1
and let the sum f; +---+ B,_1 be given with signofeach ;. If B; +---+f,_1 = 7,
then the equation
cos(Bi + -+ Bu—1) =cosT

can be used. Forexample,if n=5, g =ax=as=ay=1, 1= ===
v

5 B = f% then we have the equation

cos(P1 + B2 + B3 + Pu) =cicacsca — $152¢3¢4 — $1€283C4 — C15283C4

— S1C2C384 — C152C384 — C1C28384 + §1528354,
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where, for brevity, instead od sin 3; is written s; and ¢; instead of cos f3;. Hence, using

1 142 3
the expressions cos f§; = % sin 3 = sign B4/ 1 — (2—) we find that r = g .
r r
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