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A SHARP INEQUALITY AND THE INRADIUS CONJECTURE

FARUK F. ABI-KHUZAM AND ROY BARBARA

(communicated by V. Volenec)

Abstract. We supply a proof of the following statement: The inradius of a triangle contained

inside a (closed) unit square never exceeds
√

5−1
4 .

1. Introduction

Suppose that T is a triangle contained inside a unit square S , how large can the
inradius of T be. That is, how large can the radius of the circle inscribed in T be.

If Δ is the area of T , s is its semi-perimeter and ρ is its inradius then Δ = sρ ,
and the question is to find the maximum of the ratio Δ

s subject to the constraint that T
be confined to the unit square.This question was posed by Funar [2][3] in 1984 when
it was conjectured that

ρ �
√

5 − 1
4

·
The purpose of the present note is to obtain the following sharp inequality.

PROPOSITION 1. If 0 � x � 1 and 0 � y � 1 then

(1 +
√

5)(1 − xy) �
√

1 + x2 +
√

1 + y2 +
√

(1 − x)2 + (1 − y)2. (1)

As an application, we obtain a proof of the inradius inequality.

THEOREM 2. Let T be any triangle contained in the unit square S and let ρ
be the inradius of T . Then

ρ �
√

5 − 1
4

· (2)

Equality holds if T is isosceles with side lengths 1,
√

5
2 ,

√
5

2 ·
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2. The sharp inequality

Before proceeding with the proof of the main inequality, let us note some simple
facts about the function F defined by

F(x, y) =
√

1 + x2 +
√

1 + y2 +
√

(1 − x)2 + (1 − y)2 − (1 +
√

5)(1 − xy).

First of all we have the symmetry relation F(x, y) = F(y, x) . Also the convexity of
ϕ(x) =

√
1 + x2 implies that ϕ(x) + ϕ(1 − x) � 2ϕ( 1

2 ) and hence that F(x, 0) � 0 .
If we fix y ∈ [0, 1] and let f (x) = F(x, y) be the resulting function defined for 0 �
x � 1 , then we calculate that

f ′(x) = (1 +
√

5)y +
x√

1 + x2
− (1 − x)√

(1 − x)2 + (1 − y)2

and

f ′′(x) =
1

[
√

1 + x2]3
+

(1 − y)2

[
√

(1 − x)2 + (1 − y)2]3
·

Thus f ′ is increasing and f is a convex function.We now go to the proof of Proposition
1 .

Proof. Let ε be the positive number defined by ε2 = 1 − 6
√

3
(1+

√
5)2 so that ε <

0.088 . For convenience put c = 1 +
√

5.We consider three cases.
Case 1. Suppose 1 � y � 1

4 . Set g(y) = c2y2(y2 − 2y + 2) − 1 . Then
g′(y) = 2c2y(2y2 − 3y + 2) > 0 so that g is increasing. As g( 1

4 ) > 0 , we have
g(y) > 0 for y � 1

4 . It follows that cy − 1√
y2−2y+2

> 0 and so f ′(0) > 0 . Since

f ′ is an increasing function we must have f ′(x) > 0 and so f is increasing on
[0, 1] . But f (0) = F(0, y) = F(y, 0) � 0 . Hence F(x, y) = f (x) � 0 on the set
{(x, y) : 0 � x � 1, 1

4 � y � 1} .
Case 2. Suppose 0 � x � 1

4 and 0 � y � ε . From the expression for f ′ we have

f ′(x) � (1 +
√

5)ε +
x√

1 + x2
− (1 − x)√

x2 − 2x + 2
.

In particular f ′( 1
4 ) � (1 +

√
5)ε + 1√

17
− 3

5 < 0 . As f ′ is increasing, f ′(x) < 0

when 0 � x � 1
4 . Consequently we have that f is decreasing on [0, 1

4 ] . But
f ( 1

4 ) = F( 1
4 , y) = F(y, 1

4 ) � 0 , by case 1 . Hence F(x, y) = f (x) � 0 on the set
{(x, y) : 0 � x � 1

4 and 0 � y � ε} .If we recall the symmetry property of F we see
that inequality (2) has been established at all points of the unit square outside the set
A = {(x, y) : ε � x � 1

4 , ε � y � 1
4} .

Case 3. Suppose now that (x, y) ∈ A . Then xy � ε2 . Let O(0, 0) , A(1, 0) ,
B(1, 1) and C(0, 1) be the vertices of the unit square in the xy -plane. For x, y ∈ [0, 1] ,
consider the points M(1, y) , N(x, 1) and let T be the triangle OMN . Then the
side lengths of T are given by a = |OM| =

√
1 + y2 , b = |ON| =

√
1 + x2 and

c = |MN| =
√

(1 − x)2 + (1 − y)2 . If we put P = 2s = a + b + c for the perimeter
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of T , then P equals the right-hand side in (2) . The area Δ of T may be calculated
by removing from the square the triangles OAM , MBN and OCN and one easily gets
that Δ = 1−xy

2 . If in Heron’s formula , [1] Δ =
√

s(s − a)(s − b)(s − c) , we apply the
inequality between the arithmetic and geometric mean of three non-negative numbers
we obtain

Δ �
√

s(
s
3
)3 =

P2

12
√

3
(3)

which is the isoperimetric inequality for triangles. Since Δ = 1−xy
2 we obtain

P �
√

6
√

3
√

1 − xy =

√
6
√

3√
1 − xy

(1 − xy) � (1 +
√

5)(1 − xy)

because we are assuming that
√

1 − xy �
√

6
√

3
(1+

√
5)

.This establishes inequality (2) when

xy � ε2 and completes the proof of Proposition 1. �

3. The inradius inequality

We now give the proof of Theorem 2.

Proof. We break down the first step of the proof into the following statements:
(a) If a circleC of radius r is contained in a triangle T of inradius ρ then

r � ρ with equality if and only if C is the incircle of T .
For if C is contained in T and is not itself the incircle of T , we may draw

tangents to C parallel to those sides of T not tangent to C .The constructed tangents
produce a triangle T ′ similar to T and having incircle C . Since the ratio of the
inradii of T and T ′ equals the ratio of similitude our assertion follows.

(b) If a triangleT1 of inradius r1 is contained in another triangleT2 of inra-
dius r2 then r1 � r2 .

This is immediate from (a) . For example, if T1 is contained in a unit square S

and lies completely on one side of a diagonal of S , then r1 � 1
2+

√
2

< 1
1+

√
5

=
√

5−1
4 .

(c) If a triangleT1 is contained in a squareS there is another triangleT2

containingT1 and having its vertices on the sides of S .
For if T1 = ABC and one of its vertices, say C , is not on the perimeter of S ,

extend AC to meet the perimeter of S in C′ . If T ′ = ABC′ does not have all
its vertices on the perimeter of S repeat the construction for T ′ and so forth.Then
T1⊆T ′⊆T ′′⊆T ′′′ = T2 .

(d) If a triangleT1 = ABC has all its vertices on the perimeter of the squareS ,
there is a triangle with larger inradius having one vertex at a vertex of S and the two
other vertices on the sides of S opposite that vertex.

For if S = EFGH , then the interior of one side of S , say EF , contains no
vertex of T1 . Slide triangle ABC so that the vertex nearest to EF coincides with E
or F .This gives a new triangle T ′ congruent to T1 and having one vertex at, say, E .
Keeping the vertex E of T ′ fixed we extend the sides of T ′ issuing from E to meet
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the perimeter of the square.If the extended sides meet the (closed) edges HG and GF
we have the required triangle. If the extended sides meet the same edge of S , say GF ,
then the extended triangle is included in triangle EFG which, again, is of the required
type: one vertex at F and the other vertices E on EH and G on GH .

It follows that of all triangles iscribed in a square, the one with largest inradius
must have one of its vertices at a vertex of the square and, the two other vertices one on
each of the ( closed) sides of the square opposite that vertex.We may assume the square
to be OABC and the triangle to be OMN as described in Proposition 1 above. The
problem then becomes that of finding the maximum value of the inradius ρ of OMN .
But

maxρ = max
2Δ
P

= max
0�x�1,0�y�1

1 − xy√
1 + x2 +

√
1 + y2 +

√
(1 − x)2 + (1 − y)2

.

By Proposition 1 we get maxρ � 1
1+

√
5

=
√

5−1
4 . Since equality holds when x = 1

2 ,

y = 0 it follows that maxρ =
√

5−1
4 . This completes the proof of Theorem 2. �
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