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ON A CLASS OF MEANS OF SEVERAL VARIABLES

ZOLTAN DAROCZY AND ZSOLT PALES

(communicated by G. Bennett)

Abstract. The aim of this paper is to solve the comparison and equality problems of L —conjugate
means of n > 2 variables defined by

_ 0! (w(n) T 002) +---+olwm) — <P(L(X1,xz,~..,xn))) 7

L(;(Xlax%--wxn) = n—1

where L : I — [ is a symmetric mean on the open real interval I and ¢ : I — R is continuous
strictly monotonic function. The homogeneous L —conjugate means are also described. In
the last section, the arithmetic mean is characterized as being the only mean that is conjugate
arithmetic and quasiarithmetic.

1. Introduction

Let I C R be anopeninterval and let n > 2 be a given natural number. A function
M : I" — I is called a mean of n variables on I if it possesses the following properties
(i) If x1,x2,...,x, €I and x; # x; for some k,l € {1,2,...,n} then

min{x; |i=1,2,...,n} < M(x1,x2,...,%,) <max{x; | i=1,2,...,n};

(ii) M(x1,x2,...,x,) is symmetric for all variables x;,x,...,x, € I;
(iii) M is continuous on [".

Let CM(I) denote the set of all continuous and strictly monotonic real functions
defined on the interval /.

DEFINITION 1. Let L : I" — I be a fixed meanon I. Amean M : I" — I is called
an L—conjugate mean of n variables on I if there exists @ € CM(I) for which

0! <(P(x1) +@(x2) + -+ @) — @(L(x1, %2, - .- ,x,,)))

M(x1,x2,...,%,) = 1

=: L(’;(xl,xz, ceey Xn)

(1.1)
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forall x1,x;,...,x, € 1. Then the function @ is called the generating function of the
L—conjugate mean Ly, of n variables.

It can be easily seen that for any ¢ € CM(I) M = Lj : I" — I is a mean of
n variables on [, that is, the properties (i), (ii), and (iii) are fulfilled. For n = 2 the
definition of L—conjugate mean with two variables was introduced by Dar6ezy [3].

In this paper we examine the problem of comparison of two L—conjugate means
of n variables and generalize the result obtained in [3]. Using these results, the
homogeneous L—conjugate means are also determined. In the last section we determine
those means that are quasiarithmetic and also conjugate arithmetic.

2. Comparison

Let L : I" — I be a fixed mean of n variables on /. The problem of comparison
for L—conjugate means of n variables is the following: What conditions are necessary
and sufficient for a pair of functions ¢, y € CM(I) in order that

Lo (X1, X2,y Xn) < Ly (X1, %2, -+ 0, %) (2.1)

be satisfied for all xi,xp,...,x, € I?
This question is answered by our main result contained in the following

THEOREM 1. Let @,y € CM(I). Then the inequality (2.1) holds forall x1,x,, . . .,
X, € I ifand onlyif e, yo@~" is convex, where €, = 1 if y isincreasing and &, = —1
if v is decreasing.

Proof. We prove the theorem if y is increasing. The proof in the other case is
similar. So let w € CM(I) be increasing. Then (2.1) implies

wop! ((P(xl) ey <p(;n)_—1 o(L(x1, . .. ,xn)))

< W) - A wln) — @(Llx, - -5 X))

= n—1

for all xy,...,x, € I. From this, with the notations @(x;) =: u; (u; € @(I) = J if
i=1,2,....,n) and f :=wo@ ! (f € CM(J)), we have

<n1>f(

uptuy 4wy — Mupu, .

un))) +f(M(u17u2, .. -,un))

n—1
<fln) +f () +- -+ f (), (2.2)
where

M(u17 u27 M uﬂ) = (p(L((p_l(ul)’ (p_l(u2)7 MR (p_l(uﬂ)) (23)
isamean of n variableson J. The inequality (2.2) is fulfilled forall u;, u, ..., u, € J.

Define N : J?> — J by
N, v) =M(u,...u,v) (u,vel). (2.4)

———
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Setting u; = -+ =u, = u, v=u, in (2.2) we get

(nl)quvN(u,v))

n—1

+f (N(u,v))
S=1f@+f0)  (wvel). (25)

o (

We need the following lemma.

LEMMA 1. Let M : J" — J (n > 2 fix) be a mean of n variables on J and let
N : J? — J be defined by (2.4). Then the sequence of functions defined by the iteration

Ni(u,v) := N(u,v)

—1 — N,
Niti(u,v) :=N ((n )u:_vl k(u’v),Nk(u,v)> (k>1)
is convergent and
-1
lim Ny(u,v) = w (2.6)

Proof. 1t is easy to see that if u < v (u,v € J) then u < N(u,v) < v and from

this we have
(n—1u+v—N(u,v)
u < <V
n—1
This means that the sequence Ni(u,v) (k € N) is well-defined. If u = v then the
assertion clearly holds, since N(u,u) = u (u € J). Let u < v (u,v € J) be fixed. It

can be easily seen that for the closed intervals

I == [0y (u, v), o (u, v)]

with the notations

o (u, v) :=min { (n— I)MZ_V - Nwsv) v)} ,
0, v) := max { (n— ”“:_V - Newsv) v)}

we have Iy1 C Iy (k € N) and hence the seuences oy (u,v) and wi(u,v) strictly
increase and decrease, respectively.

Moreover
(n N 1) (nfl)u;rilek(u,v) + Nk(lxt, V) (n - l)u Ty
= el
n n
forall k € N, i.e.,
-1
(= Dutv ﬂ L. (2.7)

Let

sup oy (u,v) = l1m oy (u,v) = o(u,v)
keN k—oo
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and

,igga’k(“ V) = 11)1(1)10 o (u,v) = o(u,v)

then
og(u,v) < au,v) < o(u,v) < o5(u,v) (2.8)

forall /,s € N. We show that
(n—Du+v

o(u,v) = o(u,v) = -

If there existed u < v such that o(u,v) < w(u,v) then, by the property of means,

ou,v) < N(a(u,v),o(u,v)) < o(u,v)
and
o(u,v) < N(w(u,v), a(u,v)) < o(u,v)
would hold. On the other hand, the continuity of N and the convergence (o (u, v), @i (u, v))
— (o(u,v), w(u,v)) (k — oo) imply the existence of ny € N for which
a(“? V) < N(ano (M, V)7 wﬂo(u7 V)) < a)(u, V)
and
Oﬂ(u7 V) < N(wﬂo (ua V)a aﬂo(u7 V)) < a)(u, V)a
that is,
N1 (1, v) €]o(u,v), o(u,v)].
Now N, 11(u,v) equals either a1 (u,v) or @y, (u, v) which contradicts (2.8). Thus

o(u,v) = o(u,v) is the only number that belongs to ﬂ I, that is, by (2.7),
k=1
-1
o(u,v) = o(u,v) = w
n

From this fact we get the assertion of Lemma 1. [J

Now we continue the proof of Theorem 1.

Substituting v by N(u,v) and u by %W in inequality (2.5), we get

(n— 1)y ((” - 1)””‘”"“(“)) T (Newa ()

n—1

<(n—1y ((n— l)u+v—Nk(u,v)> 4 F (Ne(u, ) (u,v € J)

n—1
forall k > 1. Hence, applying (2.5) and the above inequality repeatedly, we obtain

(n—Du+v— Ne(u,v)
n—1

(n—1)f ( ) P N)) < (- DF ) 4F() (29)
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forall k € N and u,v € J. Using the assertion of Lemma 1, by taking the limit kX — oo
in (2.9) we deduce that

(n—1)u+v

<n1>f<(””“” : >+f (B2 < - 1 +5 0

n—1

that is,

7 ((nl)quv) < (n—1)f () +f ()

n n

forall u,v € J. With a := =1 €]0, 1] we have that f (au + (1 — ot)v) < of (u) +
(I —a)f(v) forall u,v € J, thatis f is o -convex. Using a result of Daréczy-Pdles
[5], we get that f is Jensen-convex on J. By the continuity of f, this yields that f is
convex on J . This proves the necessity of the condition.

Now suppose that v € CM(I) is increasing and f := w o ¢! is convex on the
interval @(I) = J. Let x1,x2,...,x, € I be arbitrary and define u; := @(x;) (i =
1,2,...,n). Then we obtain

1

M, s, tr) = QL@ (1), 07 () = 3 2
i=1

for some Aj,...,A, > 0 with " A; = 1. Thus, by the convexity of f,
i=1

A (Z Ai”i) < Z)Lif(ui)

and
(I —A)u n
i=1 1—A
— | < i).
P S Z f (ui)

—~ p— 1
i=1

n

f

From the above inequalities we obtain

up+up+ -4 uy — M(u,u, ..
n—1

(n—l)f( ’”")>+f(M(u1,u2,...,un))

So(1 = A \
= (n—1)f l:lnfl +f (Z /L'ui>
i=1

n n

<00 )+ A ) <3S )

from which (with the substitution u; = @(x;) ) the inequality (2.1) follows. O
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REMARK. Observe that the necessary and sufficient condition obtained in Theo-
rem 1 is also necessary and sufficient for the comparison of the quasi—arithmetic means
generated by ¢ and y resp.

COROLLARY 1. Let @,y € CM(I). The equality

Ly (1, X2, -, Xn) = Ly (X1, %2, -+ ., %) (2.10)
holds for all xy,xa,...,x, € I if and only if there exist real constants o« # 0 and B
such that
w(x) = ag(x) + B (2.11)
forall x €1.
Proof. Dueto (2.10), we have Ly <Ly, and Ly, > Lj, . Thus, by Theorem 1, both
eyW o @ ! =:f is convex and concave in @(I) = J, that is, for all values of u,v € J
and 0 < A <1

FAu+ (1 —=A)Ww)=Af(u)+ (1 — A)f (v).
This implies f (1) = au+ B u € J for some constants o # 0 and 8. With the notation

u = @(x) (x € I) we obtain (2.11). Conversely, if y is of the form (2.11) one can
easily check equality (2.10). O

DEFINITION 2. Let @, W € CM(I). Then v and @ are called equivalent if there
exist real numbers o # 0 and B for which (2.11) holds for all x € I. Notation:

v~ or y(x) ~ ) (x€1).

3. Homogenous means

The following definition is well-known.

DEFINITION. If Ry denotes the set of positive real numbers and M : R, — R
is a mean of n variables on R then this mean is called homogenous if

M(txy,1x2, . .., 1%,) = tM(x1, X2, . . . Xp) (3.1)
holds for all xi,x3,...,%,,t € R,

THEOREM 2. Let L : R} — Ry be a fixed homogenous mean of n variables on
R, andlet ¢ € CM(R,). Thenthe L—conjugate mean L;, : R, — Ry of n variables
on Ry is homogenous if and only if

o) ~p(x)  (xeRy), (32)
where

(x) == { YoourE0 ey, (3.3)

logx ifp=0
Proof. Let L: R — R be a homogenous mean and ¢ € CM(R,) for which

Lz(txl, X2, ..o 1) = th(xl,xz, ) (3.4)
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holds for all x1,x5,...,x,,t € R, .
For afixed r € R, , let

W (x) := @(x) (x e Ry). (3.5)
Clearly, y, € CM(Ry) and, by (3.4),
Ly, (x1, %2, -+ oy X%0) = Lo (x1, %2, - -+, Xn)

for all x,xz,...,%,,t € Ry . Thus, by Corollary 1, there exist real numbers () # 0
and B(r) such that y,(x) = a(r)@(x) + B(z) forall x € R, , which implies, by (3.5),

¢(ix) = a(t)o(x) + B(1) (3.6)

for all elements x € R, and r € Ry and o(r) # 0. The functional equation (3.6) and
its solutions are known (see [6],p.69; or [3]). O

THEOREM 3. Let L : R, — Ry be a fixed homogenous mean of n variables on
R, . Then an L—conjugate mean M : R", — R, of n variables on R is homogenous
if and only if there exists p € R such that

M(x1,x2, ... %) = Ly (x1,%2, . .. 2 Xn)s
where
1
A+ =D, x, L x6) P
(1 2 ) if p#0
N n—1
Lp(xl,x2,...,xn): 1
n—1
X1X2 .« . Xp if p=0
L(xl,xz, P ,xn)
(3.7)
for all x\,x2,...,x, € Ry. The one parameter family of means of n variables

Ly : R — Ry isincreasing in p, that is, if p < q then
L;(xl,xz,...,x,,) gL;(xl,xz,...,xn). (3.3)
forall x1,xp,...,x, € Ry

Proof. By Theorem 2, (3.7) are the homogenous L—conjugate means of n vari-
ables. For the proof of the inequality (3.8), see [3], Theorem 5 (in the case n = 2).
]

4. Conjugate arithmetic means which are quasi—-arithmetic means

The best-known mean is the arithmetic mean A : I" — I of n variables defined
by
o X1+XZ+"'+X”
B n

A(x1,x2, ...y Xy) (4.1)
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for all x;,x5,...,x, € I. A mean M : I" — I of n variables on [ is called a
quasi—arithmetic mean of n variables on I if there exists y € CM(I) such that

M()Cl,)Cz,...,xn) =

! (w(m) + u/(Xz)nJr ot u/(xn)>

:AW(-xla-x27"'a-xn) (42)

forall x1,x,...,x, € I (see [1], [2], [6], [10], [11]). The following problem seems to
be natural: For which ¢ € CM(I) will the A—conjugate mean (or conjugate arithmetic
mean) of n variables A7 : I" — I be also a quasi-arithmetic mean of n variables on
the interval 1? This means that if ¢ is the required generating function, then there
exists ¥ € CM(I) such that

A (X1, X2,y Xn) = Ay (X1, %2, -+, Xn) (4.3)
holds for all xi,x5,...,x, € I. In more details, for the unknown functions ¢,y €

CM(I), the functional equation
o (QO(M) T002) + -+ @) - QO(’W)) _

n—1

o (Ml £t )y

n

holds for all xy,x;,...,x, € I, where n > 2 is a fixed natural number. For the case
n = 2 see [3] and [4], therefore we suppose that n > 3.

LEMMA 2. Let @, € CM(I) and n > 2. If the functional equation (4.4) holds
and @ is continuously differentiable on I with @'(x) # 0 for x € I then y is also
continuously differentiable on 1.

Proof. For arbitrary x,y € I let x; =x and x, =x3 =--- =x, =Y. Then
ot [P (= Do) — (=)
gi(x,y) =9 1

is continuously differentiable and

01(xy) _ ¢/(x0) — @/ ()

Ox @' (1(x,y))
On the other hand, by (4.4),

w(x) =ny(gi(x,y) — (n— Dy (y) (4.5)
forall x,y € I. Let xy € I be fixed then

¥ (x0) = ny(g1(x0,¥)) = (n = Dw(y)

for all y € I. Since y is monotonic, there exists yo € I such that y is differentiable
at g1(xo, yo) . Since

v(x) = ny(gi(x,y0)) — (n — D)w(yo),



ON A CLASS OF MEANS OF SEVERAL VARIABLES 339

by the chain rule, the right hand side is differentiable at xg, that is, v is differentiable
at xo. Thus, differentiating (4.5) with respect to x, we have

(p/(x) _ (p/(er(nn—l)y)%
¢'(g1(x,y))

' (x) = ny'(g1(x,y))

forall x,y € I. Since %i;(x,x) =1- % # 0 and Y’ : I — R is a measurable function,

therefore the previous equation implies (cf. Jérai [8] (Theorem 2) or [7] and [9]) that
v’ is continuous on /. [J

THEOREM 4. Let n > 3 be fixed and M : I" — I a conjugate arithmetic mean of
n variables on I which has a continuously differentiable generating function. Then M
is a quasi—arithmetic mean of n variables on I if and only if

_utodtotx
o n

M(xl,xz,...,xn)

forall x;,x3,...,x, €1.

Proof. Let ¢ € CM(I) be continuously differentiable on I for which M = A},
on [" andlet N := {x | x € I,¢'(x) = 0}. Then N is closed and I N (R\ N) is
open, nonvoid. Let K :=]ot, B[C I be a maximal component of 7N (R\ N). Then
either K = I or K # I and in this case at least of one the endpoints of K (for example
B) belongs to I. Clearly, ¢'(x) # 0 if x € K. Suppose that A7 : I" — I is a
quasi-arithmetic mean of n variables on /. Then there exists y € CM(I) such that
A, = Ay onthe set /. By the lemma, then y is continuously differentiable on K,
thus the equation

IR .
- Z v(xi) = WAy (x1, X2, - - X))
i=1
can be differentiated with respect to x; (k € {1,2,...,n}), which implies

/(3 — /()

qo’(A(’;(xl,xz, . 7)Cn))

*

1
;W/(xk) =y (AG (X1, %2,y X))

for all x,x,,...,x, € K. From this, by the symmetry, we have
X1+x+--+x,\ 1
W) (o) — g (L) )

v’ (x) <¢'(xk) -9 (xl R +---+xn) 1)

n n

for any x; and x; (k # [). Now, for arbitrary x,y,z € K, let x| := x,x, := y, and
X3 =Xx4 =--- = x, =z (itis possible because n > 3 ). Then, in the case k = 1,/ =2,
the previous equation implies,

l(p, (x+y+(n—2)z

n n

) W) — V@) = OW0) - T ) (46)
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for all x,y,z € K. We show that ¢’ and W’ are nonzero constant functions on K,
which would imply, by the continuity of @', @'(B) # 0, therefore necessarily K = I.

Assume that (4.6) is valid. There are two possible cases: (i) W’ is constant (clearly
nonzero) on K ; (ii) ¥’ is not constant on K, that is, there exist a < b (a,b € K) such
that y’'(a) # vw'(b).

In the case (i), by (4.6), @’ is constant (nonzero) on K .

Now we show that the case (ii) is impossible. Since W’ is continuous, in this case
there exist numbers a*,b* € K (a* < b*) for which y’'(a*) # y'(b*), furthermore
a* — (b* —a*) € K and b* + (b* — a*) € K hold at the same time. Thus, by n > 3,

a+b*+n—-2)K

n

a*,b* e
follows, that is, substituting x = a* and y = b* into (4.6), we have

pfantb +(n=2)z) _ @' (@)y'(b") — ¢'(b")y'(a”)
Y ( n ) N v (b%) — w'(a)

forall z € K. Thus ¢’ is constant on [a*, b*], which implies, by (4.6), that v’ is a
nonzero constant on [a¢*, b*], which is a contradiction.

Therefore ¢’ and W’ are nonzero constant functions on I, which yields that
¢(x) = ax+ B (x €1) forsome o #0, f € R. Hence, M = Aj, = A on the set I".
O

=:c#0

Notice that the functional equation (4.4) has further solutions in the case when
n =2 (see [3], [4]). The regularity assumptions in [3], [4] are similar to those of this
paper. It is a natural problem to solve equation (4.4) without any further regularity
condition for a fixed n > 3, however this problem is left open in this paper. In the next
result, we weaken the regularity assumptions, but we assume (4.4) to be valid not only
for fixed n € N.

THEOREM 5. Let ¢ € CM(I). The A—conjugate mean of n variables Ay 1" —1
equals the quasi-arithmetic mean of n variables A;, : I" — I generatedby y € CM(I )
forall n € N ifand only if ¢ ~ x (x € I), that is, Aj, = A on the set I" forall n € N,

Proof. In this case for all n and x1,x2,...,x, € [ (n > 2)
o (fp(xl) + @)+ + ) — @(’”’”ﬁ%””)) _
n—1 o

! (W(xl) + uf(xz)n+ ot "’(x")) . (47)

Letn:ZN(NEN) and x; = xp = - =Xy =X, XN4] = ANg2 = -0 = Xoy = Y.
Then from (4.7)

_ [No(x) +No(y) — o(52) (v + ()
¢ ( T )“” ( 2 >
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follows for all x,y € I and N € N. This implies, taking the limit N — oo,

0! ((p(x) + o(y)

2
forall x,y € I. Thus

V() = ao(x) + B

Hence (4.7) can be rewritten as

vx) +v()

)

(a #0,x€l).

1 ((P(X1) +o(2) + -+ ) — o
n—1

Thus

X1t+X2+-+Xpn ) )

() +@(x) + -+ ox,)

Xit+xX+ -+ x
¢ n

)
n

from which we obtain that ¢(x) = yx+3 (y # 0), thatis, ¢(x) ~ x (x € I). Therefore

Aj, = A, and in this case (4.7) holds. [J
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