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ON A CLASS OF MEANS OF SEVERAL VARIABLES

ZOLTÁN DARÓCZY AND ZSOLT PÁLES

(communicated by G. Bennett)

Abstract. The aim of this paper is to solve the comparison and equality problems of L –conjugate
means of n � 2 variables defined by

L∗ϕ (x1, x2, . . . , xn) := ϕ−1
(
ϕ(x1) + ϕ(x2) + · · · + ϕ(xn) − ϕ(L(x1, x2, . . . , xn))

n − 1

)
,

where L : In → I is a symmetric mean on the open real interval I and ϕ : I → R is continuous
strictly monotonic function. The homogeneous L –conjugate means are also described. In
the last section, the arithmetic mean is characterized as being the only mean that is conjugate
arithmetic and quasiarithmetic.

1. Introduction

Let I ⊂ R be an open interval and let n � 2 be a given natural number. A function
M : In → I is called a mean of n variables on I if it possesses the following properties
(i) If x1, x2, . . . , xn ∈ I and xk �= xl for some k, l ∈ {1, 2, . . . , n} then

min{xi | i = 1, 2, . . . , n} < M(x1, x2, . . . , xn) < max{xi | i = 1, 2, . . . , n};
(ii) M(x1, x2, . . . , xn) is symmetric for all variables x1, x2, . . . , xn ∈ I ;
(iii) M is continuous on In .

Let CM(I) denote the set of all continuous and strictly monotonic real functions
defined on the interval I .

DEFINITION 1. Let L : In → I be a fixed mean on I . A mean M : In → I is called
an L –conjugate mean of n variables on I if there exists ϕ ∈ CM(I) for which

M(x1, x2, . . . , xn) = ϕ−1

(
ϕ(x1) + ϕ(x2) + · · · + ϕ(xn) − ϕ(L(x1, x2, . . . , xn))

n − 1

)
=: L∗

ϕ(x1, x2, . . . , xn)
(1.1)
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for all x1, x2, . . . , xn ∈ I . Then the function ϕ is called the generating function of the
L –conjugate mean L∗

ϕ of n variables.

It can be easily seen that for any ϕ ∈ CM(I) M = L∗
ϕ : In → I is a mean of

n variables on I , that is, the properties (i), (ii), and (iii) are fulfilled. For n = 2 the
definition of L –conjugate mean with two variables was introduced by Daróczy [3].

In this paper we examine the problem of comparison of two L –conjugate means
of n variables and generalize the result obtained in [3]. Using these results, the
homogeneous L –conjugatemeans are also determined. In the last section we determine
those means that are quasiarithmetic and also conjugate arithmetic.

2. Comparison

Let L : In → I be a fixed mean of n variables on I . The problem of comparison
for L –conjugate means of n variables is the following: What conditions are necessary
and sufficient for a pair of functions ϕ,ψ ∈ CM(I) in order that

L∗
ϕ(x1, x2, . . . , xn) � L∗

ψ (x1, x2, . . . , xn) (2.1)

be satisfied for all x1, x2, . . . , xn ∈ I ?
This question is answered by our main result contained in the following

THEOREM 1. Let ϕ,ψ ∈ CM(I) . Then the inequality (2.1) holds for all x1, x2, . . . ,
xn ∈ I if and only if εψψ◦ϕ−1 is convex, where εψ = 1 if ψ is increasing and εψ = −1
if ψ is decreasing.

Proof. We prove the theorem if ψ is increasing. The proof in the other case is
similar. So let ψ ∈ CM(I) be increasing. Then (2.1) implies

ψ ◦ ϕ−1

(
ϕ(x1) + · · · + ϕ(xn) − ϕ(L(x1, . . . , xn))

n − 1

)

� ψ(x1) + · · · + ψ(xn) − ϕ(L(x1, . . . , xn))
n − 1

for all x1, . . . , xn ∈ I . From this, with the notations ϕ(xi) =: ui (ui ∈ ϕ(I) = J if
i = 1, 2, . . . , n) and f := ψ ◦ ϕ−1 (f ∈ CM(J)) , we have

(n − 1)f
(

u1 + u2 + · · · + un − M(u1, u2, . . . , un))
n − 1

)
+ f (M(u1, u2, . . . , un))

� f (u1) + f (u2) + · · · + f (un), (2.2)

where
M(u1, u2, . . . , un) := ϕ(L(ϕ−1(u1),ϕ−1(u2), . . . ,ϕ−1(un)) (2.3)

is a mean of n variables on J . The inequality (2.2) is fulfilled for all u1, u2, . . . , un ∈ J .
Define N : J2 → J by

N(u, v) = M(u, . . . u︸ ︷︷ ︸
n−1

, v) (u, v ∈ J). (2.4)
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Setting u1 = · · · = un = u, v = un in (2.2) we get

(n − 1)f
(

(n − 1)u + v − N(u, v)
n − 1

)
+ f (N(u, v))

� (n − 1)f (u) + f (v) (u, v ∈ J). (2.5)

We need the following lemma.

LEMMA 1. Let M : Jn → J (n � 2 fix ) be a mean of n variables on J and let
N : J2 → J be defined by (2.4). Then the sequence of functions defined by the iteration

N1(u, v) := N(u, v)

Nk+1(u, v) := N

(
(n − 1)u + v − Nk(u, v)

n − 1
, Nk(u, v)

)
(k � 1)

is convergent and

lim
k→∞

Nk(u, v) =
(n − 1)u + v

n
. (2.6)

Proof. It is easy to see that if u < v (u, v ∈ J) then u < N(u, v) < v and from
this we have

u <
(n − 1)u + v − N(u, v)

n − 1
< v.

This means that the sequence Nk(u, v) (k ∈ N) is well-defined. If u = v then the
assertion clearly holds, since N(u, u) = u (u ∈ J) . Let u < v (u, v ∈ J) be fixed. It
can be easily seen that for the closed intervals

Ik := [αk(u, v),ωk(u, v)]

with the notations

αk(u, v) := min

{
(n − 1)u + v − Nk(u, v)

n − 1
, Nk(u, v)

}
,

ωk(u, v) := max

{
(n − 1)u + v − Nk(u, v)

n − 1
, Nk(u, v)

}
we have Ik+1 ⊂ Ik (k ∈ N) and hence the seuences αk(u, v) and ωk(u, v) strictly
increase and decrease, respectively.

Moreover

(n − 1) (n−1)u+v−Nk(u,v)
n−1 + Nk(u, v)

n
=

(n − 1)u + v
n

∈ Ik

for all k ∈ N , i.e.,
(n − 1)u + v

n
∈

∞⋂
k=1

Ik. (2.7)

Let
sup
k∈N

αk(u, v) = lim
k→∞

αk(u, v) = α(u, v)



334 ZOLTÁN DARÓCZY AND ZSOLT PÁLES

and
inf
k∈N

ωk(u, v) = lim
k→∞

ωk(u, v) = ω(u, v)

then
αl(u, v) � α(u, v) � ω(u, v) � ωs(u, v) (2.8)

for all l, s ∈ N . We show that

α(u, v) = ω(u, v) =
(n − 1)u + v

n
.

If there existed u < v such that α(u, v) < ω(u, v) then, by the property of means,

α(u, v) < N(α(u, v),ω(u, v)) < ω(u, v)

and
α(u, v) < N(ω(u, v),α(u, v)) < ω(u, v)

would hold. On the other hand, the continuity of N and the convergence (αk(u, v),ωk(u, v))
→ (α(u, v),ω(u, v)) (k → ∞) imply the existence of n0 ∈ N for which

α(u, v) < N(αn0(u, v),ωn0(u, v)) < ω(u, v)

and
α(u, v) < N(ωn0(u, v),αn0(u, v)) < ω(u, v),

that is,
Nn0+1(u, v) ∈]α(u, v),ω(u, v)[.

Now Nn0+1(u, v) equals either αn0+1(u, v) or ωn0(u, v) , which contradicts (2.8). Thus

α(u, v) = ω(u, v) is the only number that belongs to
∞⋂
k=1

Ik , that is, by (2.7),

α(u, v) = ω(u, v) =
(n − 1)u + v

n
.

From this fact we get the assertion of Lemma 1. �

Now we continue the proof of Theorem 1.
Substituting v by Nk(u, v) and u by (n−1)u+v−Nk(u,v)

n−1 in inequality (2.5), we get

(n − 1)f
(

(n − 1)u + v − Nk+1(u, v)
n − 1

)
+ f (Nk+1(u, v))

� (n − 1)f
(

(n − 1)u + v − Nk(u, v)
n − 1

)
+ f (Nk(u, v)) (u, v ∈ J)

for all k � 1 . Hence, applying (2.5) and the above inequality repeatedly, we obtain

(n − 1)f
(

(n − 1)u + v − Nk(u, v)
n − 1

)
+ f (Nk(u, v)) � (n − 1)f (u) + f (v) (2.9)
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for all k ∈ N and u, v ∈ J . Using the assertion of Lemma 1, by taking the limit k → ∞
in (2.9) we deduce that

(n − 1)f

(
(n − 1)u + v − (n−1)u+v

n

n − 1

)
+ f

(
(n − 1)u + v

n

)
� (n − 1)f (u) + f (v),

that is,

f

(
(n − 1)u + v

n

)
� (n − 1)f (u) + f (v)

n

for all u, v ∈ J . With α := n−1
n ∈]0, 1[ we have that f (αu + (1 − α)v) � αf (u) +

(1 − α)f (v) for all u, v ∈ J , that is f is α -convex. Using a result of Daróczy-Páles
[5], we get that f is Jensen-convex on J . By the continuity of f , this yields that f is
convex on J . This proves the necessity of the condition.

Now suppose that ψ ∈ CM(I) is increasing and f := ψ ◦ ϕ−1 is convex on the
interval ϕ(I) = J . Let x1, x2, . . . , xn ∈ I be arbitrary and define ui := ϕ(xi) (i =
1, 2, . . . , n) . Then we obtain

M(u1, u2, . . . , un) = ϕ(L(ϕ−1(u1), . . . ,ϕ−1(un)) =
n∑

i=1

λiui

for some λ1, . . . , λn � 0 with
n∑

i=1
λi = 1 . Thus, by the convexity of f ,

f

(
n∑

i=1

λiui

)
�

n∑
i=1

λif (ui)

and

f

⎛
⎜⎜⎝

n∑
i=1

(1 − λi)ui

n − 1

⎞
⎟⎟⎠ �

n∑
i=1

1 − λi

n − 1
f (ui).

From the above inequalities we obtain

(n − 1)f
(

u1 + u2 + · · · + un − M(u1, u2, . . . , un)
n − 1

)
+ f (M(u1, u2, . . . , un))

= (n − 1)f

⎛
⎜⎜⎝

n∑
i=1

(1 − λi)ui

n − 1

⎞
⎟⎟⎠+ f

(
n∑

i=1

λiui

)

� (n − 1)
n∑

i=1

1 − λi

n − 1
f (ui) +

n∑
i=1

λif (ui) �
n∑

i=1

f (ui),

from which (with the substitution ui = ϕ(xi) ) the inequality (2.1) follows. �
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REMARK. Observe that the necessary and sufficient condition obtained in Theo-
rem 1 is also necessary and sufficient for the comparison of the quasi–arithmetic means
generated by ϕ and ψ resp.

COROLLARY 1. Let ϕ,ψ ∈ CM(I) . The equality

L∗
ϕ(x1, x2, . . . , xn) = L∗

ψ (x1, x2, . . . , xn) (2.10)

holds for all x1, x2, . . . , xn ∈ I if and only if there exist real constants α �= 0 and β
such that

ψ(x) = αϕ(x) + β (2.11)

for all x ∈ I .

Proof. Due to (2.10), we have L∗
ϕ � L∗

ψ and L∗
ϕ � L∗

ψ . Thus, by Theorem 1, both
εψψ ◦ ϕ−1 =: f is convex and concave in ϕ(I) = J , that is, for all values of u, v ∈ J
and 0 < λ < 1

f (λu + (1 − λ )v) = λ f (u) + (1 − λ )f (v).

This implies f (u) = αu+β u ∈ J for some constants α �= 0 and β . With the notation
u = ϕ(x) (x ∈ I) we obtain (2.11). Conversely, if ψ is of the form (2.11) one can
easily check equality (2.10). �

DEFINITION 2. Let ϕ,ψ ∈ CM(I) . Then ψ and ϕ are called equivalent if there
exist real numbers α �= 0 and β for which (2.11) holds for all x ∈ I . Notation:
ψ ∼ ϕ or ψ(x) ∼ ϕ(x) (x ∈ I) .

3. Homogenous means

The following definition is well-known.

DEFINITION. If R+ denotes the set of positive real numbers and M : R
n
+ → R+

is a mean of n variables on R+ then this mean is called homogenous if

M(tx1, tx2, . . . , txn) = tM(x1, x2, . . . , xn) (3.1)

holds for all x1, x2, . . . , xn, t ∈ R+ .

THEOREM 2. Let L : R
n
+ → R+ be a fixed homogenous mean of n variables on

R+ and let ϕ ∈ CM(R+) . Then the L –conjugatemean L∗
ϕ : R

n
+ → R+ of n variables

on R+ is homogenous if and only if

ϕ(x) ∼ lp(x) (x ∈ R+), (3.2)

where

lp(x) :=
{

xp if p �= 0

log x if p = 0
(x ∈ R+). (3.3)

Proof. Let L : R
n
+ → R be a homogenous mean and ϕ ∈ CM(R+) for which

L∗
ϕ(tx1, tx2, . . . , txn) = tL∗

ϕ(x1, x2, . . . , xn) (3.4)
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holds for all x1, x2, . . . , xn, t ∈ R+ .
For a fixed t ∈ R+ , let

ψt(x) := ϕ(tx) (x ∈ R+). (3.5)

Clearly, ψt ∈ CM(R+) and, by (3.4),

L∗
ψt

(x1, x2, . . . , xn) = L∗
ϕ(x1, x2, . . . , xn)

for all x1, x2, . . . , xn, t ∈ R+ . Thus, by Corollary 1, there exist real numbers α(t) �= 0
and β(t) such that ψt(x) = α(t)ϕ(x) + β(t) for all x ∈ R+ , which implies, by (3.5),

ϕ(tx) = α(t)ϕ(x) + β(t) (3.6)

for all elements x ∈ R+ and t ∈ R+ and α(t) �= 0 . The functional equation (3.6) and
its solutions are known (see [6],p.69; or [3]). �

THEOREM 3. Let L : R
n
+ → R+ be a fixed homogenous mean of n variables on

R+ . Then an L –conjugate mean M : R
n
+ → R+ of n variables on R+ is homogenous

if and only if there exists p ∈ R such that

M(x1, x2, . . . , xn) = L∗
p(x1, x2, . . . , xn),

where

L∗
p(x1, x2, . . . , xn) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xp
1 + xp

2 + · · · + xp
n − Lp(x1, x2, . . . , xn)
n − 1

) 1
p

if p �= 0

(
x1x2 . . . xn

L(x1, x2, . . . , xn)

) 1
n−1

if p = 0

(3.7)
for all x1, x2, . . . , xn ∈ R+ . The one parameter family of means of n variables
L∗

p : R
n
+ → R+ is increasing in p , that is, if p � q then

L∗
p (x1, x2, . . . , xn) � L∗

q(x1, x2, . . . , xn). (3.8)

for all x1, x2, . . . , xn ∈ R+ .

Proof. By Theorem 2, (3.7) are the homogenous L –conjugate means of n vari-
ables. For the proof of the inequality (3.8), see [3], Theorem 5 (in the case n = 2 ).
�

4. Conjugate arithmetic means which are quasi–arithmetic means

The best-known mean is the arithmetic mean A : In → I of n variables defined
by

A(x1, x2, . . . , xn) :=
x1 + x2 + · · · + xn

n
(4.1)
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for all x1, x2, . . . , xn ∈ I . A mean M : In → I of n variables on I is called a
quasi–arithmetic mean of n variables on I if there exists ψ ∈ CM(I) such that

M(x1, x2, . . . , xn) =

ψ−1

(
ψ(x1) + ψ(x2) + · · · + ψ(xn)

n

)
= Aψ(x1, x2, . . . , xn) (4.2)

for all x1, x2, . . . , xn ∈ I (see [1], [2], [6], [10], [11]). The following problem seems to
be natural: For which ϕ ∈ CM(I) will the A–conjugate mean (or conjugate arithmetic
mean) of n variables A∗

ϕ : In → I be also a quasi–arithmetic mean of n variables on
the interval I ? This means that if ϕ is the required generating function, then there
exists ψ ∈ CM(I) such that

A∗
ϕ(x1, x2, . . . , xn) = Aψ(x1, x2, . . . , xn) (4.3)

holds for all x1, x2, . . . , xn ∈ I . In more details, for the unknown functions ϕ,ψ ∈
CM(I) , the functional equation

ϕ−1

(
ϕ(x1) + ϕ(x2) + · · · + ϕ(xn) − ϕ( x1+x2+···+xn

n )
n − 1

)
=

ψ−1

(
ψ(x1) + ψ(x2) + · · · + ψ(xn)

n

)
(4.4)

holds for all x1, x2, . . . , xn ∈ I , where n � 2 is a fixed natural number. For the case
n = 2 see [3] and [4], therefore we suppose that n � 3 .

LEMMA 2. Let ϕ,ψ ∈ CM(I) and n � 2 . If the functional equation (4.4) holds
and ϕ is continuously differentiable on I with ϕ′(x) �= 0 for x ∈ I then ψ is also
continuously differentiable on I .

Proof. For arbitrary x, y ∈ I let x1 = x and x2 = x3 = · · · = xn = y . Then

g1(x, y) := ϕ−1

(
ϕ(x) + (n − 1)ϕ(y) − ϕ( x+(n−1)y

n )
n − 1

)

is continuously differentiable and

∂g1(x, y)
∂x

=
ϕ′(x) − ϕ′( x+(n−1)y

n ) 1
n

ϕ′(g1(x, y))
.

On the other hand, by (4.4),

ψ(x) = nψ(g1(x, y)) − (n − 1)ψ(y) (4.5)

for all x, y ∈ I . Let x0 ∈ I be fixed then

ψ(x0) = nψ(g1(x0, y)) − (n − 1)ψ(y)

for all y ∈ I . Since ψ is monotonic, there exists y0 ∈ I such that ψ is differentiable
at g1(x0, y0) . Since

ψ(x) = nψ(g1(x, y0)) − (n − 1)ψ(y0),
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by the chain rule, the right hand side is differentiable at x0 , that is, ψ is differentiable
at x0 . Thus, differentiating (4.5) with respect to x , we have

ψ ′(x) = nψ ′(g1(x, y))
ϕ′(x) − ϕ′( x+(n−1)y

n ) 1
n

ϕ′(g1(x, y))

for all x, y ∈ I . Since ∂g1

∂x (x, x) = 1− 1
n �= 0 and ψ ′ : I → R is a measurable function,

therefore the previous equation implies (cf. Járai [8] (Theorem 2) or [7] and [9]) that
ψ ′ is continuous on I . �

THEOREM 4. Let n � 3 be fixed and M : In → I a conjugate arithmetic mean of
n variables on I which has a continuously differentiable generating function. Then M
is a quasi–arithmetic mean of n variables on I if and only if

M(x1, x2, . . . , xn) =
x1 + x2 + · · · + xn

n

for all x1, x2, . . . , xn ∈ I .

Proof. Let ϕ ∈ CM(I) be continuously differentiable on I for which M = A∗
ϕ

on In and let N := {x | x ∈ I,ϕ′(x) = 0} . Then N is closed and I ∩ (R \ N) is
open, nonvoid. Let K :=]α, β [⊂ I be a maximal component of I ∩ (R \ N) . Then
either K = I or K �= I and in this case at least of one the endpoints of K (for example
β ) belongs to I . Clearly, ϕ′(x) �= 0 if x ∈ K . Suppose that A∗

ϕ : In → I is a
quasi–arithmetic mean of n variables on I . Then there exists ψ ∈ CM(I) such that
A∗
ϕ = Aψ on the set I . By the lemma, then ψ is continuously differentiable on K ,

thus the equation
1
n

n∑
i=1

ψ(xi) = ψ(A∗
ϕ(x1, x2, . . . , xn))

can be differentiated with respect to xk (k ∈ {1, 2, . . . , n}) , which implies

1
n
ψ ′(xk) = ψ ′(A∗

ϕ(x1, x2, . . . , xn))
ϕ′(xk) − ϕ′( x1+x2+···+xn

n ) 1
n

ϕ′(A∗
ϕ(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ K . From this, by the symmetry, we have

ψ ′(xk)
(
ϕ′(xl) − ϕ′

(
x1 + x2 + · · · + xn

n

)
1
n

)
=

ψ ′(xl)
(
ϕ′(xk) − ϕ′

(
x1 + x2 + · · · + xn

n

)
1
n

)
for any xk and xl (k �= l) . Now, for arbitrary x, y, z ∈ K , let x1 := x, x2 := y , and
x3 = x4 = · · · = xn = z (it is possible because n � 3 ). Then, in the case k = 1, l = 2 ,
the previous equation implies,

1
n
ϕ′
(

x + y + (n − 2)z
n

)
(ψ ′(y) − ψ ′(x)) = ϕ′(x)ψ ′(y) − ϕ′(y)ψ ′(x) (4.6)
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for all x, y, z ∈ K . We show that ϕ′ and ψ ′ are nonzero constant functions on K ,
which would imply, by the continuity of ϕ′ , ϕ′(β) �= 0 , therefore necessarily K = I .

Assume that (4.6) is valid. There are two possible cases: (i) ψ ′ is constant (clearly
nonzero) on K ; (ii) ψ ′ is not constant on K , that is, there exist a < b (a, b ∈ K) such
that ψ ′(a) �= ψ ′(b) .

In the case (i), by (4.6), ϕ′ is constant (nonzero) on K .
Now we show that the case (ii) is impossible. Since ψ ′ is continuous, in this case

there exist numbers a∗, b∗ ∈ K (a∗ < b∗) for which ψ ′(a∗) �= ψ ′(b∗) , furthermore
a∗ − (b∗ − a∗) ∈ K and b∗ + (b∗ − a∗) ∈ K hold at the same time. Thus, by n � 3 ,

a∗, b∗ ∈ a∗ + b∗ + (n − 2)K
n

follows, that is, substituting x = a∗ and y = b∗ into (4.6), we have

ϕ′
(

a∗ + b∗ + (n − 2)z
n

)
= n

ϕ′(a∗)ψ ′(b∗) − ϕ′(b∗)ψ ′(a∗)
ψ ′(b∗) − ψ ′(a∗)

=: c �= 0

for all z ∈ K . Thus ϕ′ is constant on [a∗, b∗] , which implies, by (4.6), that ψ ′ is a
nonzero constant on [a∗, b∗] , which is a contradiction.

Therefore ϕ′ and ψ ′ are nonzero constant functions on I , which yields that
ϕ(x) = αx + β (x ∈ I) for some α �= 0 , β ∈ R . Hence, M = A∗

ϕ = A on the set In .
�

Notice that the functional equation (4.4) has further solutions in the case when
n = 2 (see [3], [4]). The regularity assumptions in [3], [4] are similar to those of this
paper. It is a natural problem to solve equation (4.4) without any further regularity
condition for a fixed n � 3 , however this problem is left open in this paper. In the next
result, we weaken the regularity assumptions, but we assume (4.4) to be valid not only
for fixed n ∈ N .

THEOREM 5. Let ϕ ∈ CM(I) . The A–conjugatemean of n variables A∗
ϕ : In → I

equals the quasi–arithmeticmean of n variables A∗
ψ : In → I generated by ψ ∈ CM(I)

for all n ∈ N if and only if ϕ ∼ x (x ∈ I) , that is, A∗
ϕ = A on the set In for all n ∈ N .

Proof. In this case for all n and x1, x2, . . . , xn ∈ I (n � 2)

ϕ−1

(
ϕ(x1) + ϕ(x2) + · · · + ϕ(xn) − ϕ( x1+x2+···+xn

n )
n − 1

)
=

ψ−1

(
ψ(x1) + ψ(x2) + · · · + ψ(xn)

n

)
. (4.7)

Let n = 2N (N ∈ N) and x1 = x2 = · · · = xN =: x, xN+1 = xN+2 = · · · = x2N =: y .
Then from (4.7)

ϕ−1

(
Nϕ(x) + Nϕ(y) − ϕ( x+y

2 )
2N − 1

)
= ψ−1

(
ψ(x) + ψ(y)

2

)
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follows for all x, y ∈ I and N ∈ N . This implies, taking the limit N → ∞ ,

ϕ−1

(
ϕ(x) + ϕ(y)

2

)
= ψ−1

(
ψ(x) + ψ(y)

2

)
for all x, y ∈ I . Thus

ψ(x) = αϕ(x) + β (α �= 0, x ∈ I).

Hence (4.7) can be rewritten as

ϕ−1

(
ϕ(x1) + ϕ(x2) + · · · + ϕ(xn) − ϕ( x1+x2+···+xn

n )
n − 1

)
=

ϕ−1

(
ϕ(x1) + ϕ(x2) + · · · + ϕ(xn)

n

)
.

Thus

ϕ
(

x1 + x2 + · · · + xn

n

)
=

ϕ(x1) + ϕ(x2) + · · · + ϕ(xn)
n

,

fromwhich we obtain that ϕ(x) = γ x+δ (γ �= 0) , that is, ϕ(x) ∼ x (x ∈ I) . Therefore
A∗
ϕ = A , and in this case (4.7) holds. �
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