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A NOTE ON GENERALIZED HERONIAN MEANS

WALTHER JANOUS

(communicated by A. M. Fink)

Abstract. In this note several inqualities for generalized Heronian Means of two numbers are
proved. These means are defined for the first time in this paper and they are compared with some
well-known means. All inequalities are best possible.

0. Introduction

In [3] the special case w = 4 of the generalized Heronian mean Hw(a, b) now
defined as

Hw(a, b) :=

⎧⎨
⎩

a + w
√

ab + b
w + 2

, 0 � w < ∞
√

ab, w = ∞
is dealt with. (a and b are non-negative real numbers.)

H4(a, b) is denoted by H̃(a, b) in [3]. Among other things the double-inequality
M1/3(a, b) � H4(a, b) � M1/2(a, b) is shown in [3], where as usual

Mp(a, b) :=

⎧⎨
⎩

(ap + bp

2

)1/p
, p �= 0

√
ab, p = 0

denotes the p -th power-mean of a and b . (It is also proven there that “ 1/3 ” cannot
be increased without letting the inequality be true no longer in general.)

Furthermore, for the “classical” Heronian mean He(a, b) = H1(a, b) is known
that the sharpest double-inequality ot type

Mα(a, b) � He(a, b) � Mβ(a, b) (1)

is given by α = ln 2/ ln 3 and β = 2/3 . (See [1] and [2], p. 350.)
It is one of the aims of this note to establish the best inequality of type (1) for

He(a, b) replaced by Hw(a, b) , w > 0 . We thereby answer one of the open questions
posed in [1] by the present author.
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We also determine the optimum values α and β for two comparison double-
inequalities of type

Hα(a, b) � F(a, b) � Hβ(a, b) (2)

where F(a, b) stands for the logarithmic mean L(a, b) and the identric mean I(a, b)

defined as L(a, b) :=
a − b

ln a − ln b
and I(a, b) :=

1
e

(aa

bb

)1/(b−a)
, resp.

1. Elementary properties of Hw(a, b)

• H0(a, b) , H2(a, b) and H∞(a, b) equal the arithmetic mean A(a, b) , the
power-mean M1/2(a, b) and the geometric mean G(a, b) , resp., of a and b .

• Hw(a, b) is a non-increasing function of the variable w , i.e. we have Hα(a, b) �
Hβ(a, b) whenever 0 � α � β � ∞ .

• G(a, b) � Hw(a, b) � A(a, b) whenever 0 � w � ∞ .

• Hw(a, b) =
w

w + 2
G(a, b) +

2
w + 2

A(a, b) , i.e. Hw(a, b) is a convex combina-

tion of G(a, b) and A(a, b) .
• For all w � 0 the mean Hw(a, b) is concave.
(This follows from Hw being the sum of a linear function and the square-root, both

of which are concave.)

2. A preliminary lemma

In one of the subsequent proofs we shall use the following auxiliary result stated
as

LEMMA.
(i) For w ∈ (0, 2) there holds (w + 2)4 > 4w+2 .
(ii) For w > 2 the reversed inequality holds true.

Proof. Upon taking logarithm of f (w) := (w + 2)4/4w+2 , w > 0 , and differenti-
ating twice the log-concavity of f (w) follows. This yields both inequalities. �

3. Generalized Heronian means and power means

In this section we shall prove the following

THEOREM 1. Let w > 0 be given. Then the optimum values α and β such that

Mα(a, b) � Hw(a, b) � Mβ (a, b) (3)

holds true in general, are

1.) in case of w ∈ (0, 2] : αmax =
ln 2

ln(w + 2)
and βmin =

2
w + 2
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2.) in case of w ∈ [2,∞) : αmax =
2

w + 2
and βmin =

ln 2
ln(w + 2)

Proof.
• For w = 2 we are done due to H2(a, b) = M1/2(a, b) . Thus let further on be

w �= 2 .

• Letting a = 1 and b = 0 in (3) we obtain 2−1/α � 1
w + 2

� 2−1/β i.e.

α � ln 2/ ln(w + 2) � β . This shows that neither αmax for w ∈ (0, 2) nor βmin for
w ∈ (2,∞) can be improved.

• Let us compare now Hw(a, b) and Mln 2/ ln(w+2)(a, b) by considering the differ-
ence ln Hw(a, b)− ln Mln 2/ ln(w+2)(a, b) , i.e. upon putting b = 1 (due to homogeneity)
and a = s2 ln(w+2) , s � 1 (due to symmetry), and using the abbreviation p := ln(w+2)
we have to look at the function

A(s) := ln 2 · ln(1 + w · sp + s2p) − p · ln(1 + s2 ln 2), s � 1.

But

A′(s) = p · ln 2 · s−1 ·
[ w · sp + 2s2p

1 + w · sp + s2p
− 2s2 ln 2

1 + s2 ln 2

]
i.e. (as a short simplification shows)

A′(s) =
p · ln 2 · s2 ln 2−1 · K(s)

(1 + wsp + s2p)(1 + s2 ln 2)
,

where
K(s) := 2s2p−2 ln 2 − w · sp + w · sp−2 ln 2 − 2.

But K′(s) = sp−2 ln 2−1 · L(s) , with

L(s) := 2(2p − 2 ln 2)sp − p · w · s2 ln 2 + w(p − 2 ln 2),

whence finally

L′(s) = p · s2 ln 2−1 · [(4p − ln 16)sp−2 ln 2 − 2w ln 2].

We now distinguish two cases.

(i) w ∈ (0, 2) . Then (via Lemma) L′(1) > 0 . Because of p − 2 ln 2 < 0
it follows L′(s) > 0 for s ∈ (1, s0) and L′(s) < 0 as s ∈ (s0,∞) where s0 =( 2w ln 2

4p − 16

)1/(p−2 ln 2)
. Thus, L(1) > 0 (once more via Lemma) and L(s) → −∞

as s → ∞ (note p < 2 ln 2 ) yield the existence of precisely one s1 ∈ (s0,∞) such
that K(s) increases as s ∈ (1, s1) and K(s) decreases as s ∈ (s1,∞) . Because of
A′(1) = 0 and lim

s→∞A′(s) = 0 we finally arrive at A(s) � 0 , s � 1 .

But this means αmax =
ln 2

ln(w + 2)
, as claimed.

(ii) w ∈ (2,∞) . Reasoning in a similar fashion as before we have L′(s) < 0 as
s ∈ (1, s0) and L′(s) > 0 for s ∈ (s0,∞) . As in i) there follows the existence of



372 WALTHER JANOUS

two intervals (1, s2) and (s2,∞) on which K(s) decreases and increases, resp., finally

leading to A(s) � 0 , s � 1 . This in turn means βmin =
ln 2

ln(w + 2)
.

• Next we consider M2/(w+2)(a, b) and Hw(a, b) . Proceding as before (i.e. taking
logarithm and putting now a = s2(w+2) ) for lnM2/(w+2)(a, b)− lnHw(a, b) we have to
discuss the function

B(s) := (w+2) ln(1+s4)−2 ln(1+w·sw+2+s2(w+2))−(w+2) ln 2+2 ln(w+2), s � 1.

Now

B′(s) =
(−2)(w + 2)s3 · F(s)

(1 + w · sw+2 + s2(w+2))(1 + s4)
,

where F(s) := 2s2w − w · sw+2 + w · sw−2 − 2 . But F′(s) = wsw−3 · G(s) with
G(s) := 4sw+2 − (w + 2)s4 + w− 2 . Finally G′(s) = 4(w + 2)s3 · (sw−2 − 1) , s � 1 ,
showing G′(s) � 0 as w ∈ (0, 2) and G′(s) � 0 for w ∈ (2,∞) . Therefore, due to
G(1) = F′(1) = 0 there follows for s � 1 : F′(s) � 0 for w ∈ (0, 2) and F′(s) � 0
as w ∈ (2,∞) . This and F(1) = 0 imply for s � 1 : F(s) � 0 if w ∈ (0, 2)
and F(s) � 0 if w ∈ (2,∞) , whence finally B(s) � 0 , w ∈ (0, 2) and B(s) � 0 ,
w ∈ (2,∞) , as s � 1 .

These inequalities mean βmin � 2
w + 2

as w ∈ (0, 2) and αmax � 2
w + 2

as

w ∈ (2,∞) .

• We finally have to show that neither one of these values can be improved. Indeed,
the Taylor series expansion of the difference

dp(s) := ln Mp(s2, 1) − lnHw(s2, 1)

at s = 1 starts

dp(s) =
p(w + 2) − 2

2(w + 2)
· [(s − 1)2 − (s − 1)3] + . . .

Therefore in case of w ∈ (0, 2) we have to have (via dp(s) � 0 ) p(w + 2) − 2 � 0 ,
i.e. p � 2/(w + 2) and βmin = 2/(w + 2) follows. In a similar way the claim
αmax = 2/(w + 2) for w ∈ (2,∞) is settled. �

Remark. Theorem 1 in different notation
(
w =

2λ
1 − λ

, 0 < λ < 1
)

answers one

of the open questions in [1].

4. Generalized Heronian means and the logarithmic mean

In this section we deal with inequality (2) where F(a, b) ≡ L(a, b) and we shall
prove
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THEOREM 2. The optimum numbers α and β such that

Hα(a, b) � L(a, b) � Hβ(a, b) (4)

is true in general, are αmin = ∞ and βmax = 4 .

Proof.
• For the left-hand-inequality let b = 1 and a → 0 . Because of L(a, 1) =

a − 1
ln a

→ 0 as a → 0 we infer
1

α + 2
� 0 , i.e. α = ∞ . Due to [2], p.347 the

inequality G(a, b) � L(a, b) is valid and we are done.

• For the right-hand-inequality we put a = s2 (s > 1) and b = 1 and get
s2 − 1
2 ln s

� 1 + βs + s2

β + 2
i.e. f (s) � 0 where

f (s) := ln s − β + 2
2

· s2 − 1
1 + βs + s2

, s > 1.

Now the Taylor – series expansion of f (s) at s = 1 starts f (s) =
(4 − β)(s − 1)3

6(β + 2)
+. . .

immediately showing β � 4 . But in [3] the inequality L(a, b) � H4(a, b) is proven
and we are done for this case, too. �

5. Generalized Heronian means and the identric mean

Now we deal with inequality (2) for F(a, b) ≡ I(a, b) and we shall show

THEOREM 3. The optimum numbers α and β such that

Hα(a, b) � I(a, b) � Hβ(a, b) (5)

is valid in general, are αmin = 1 and βmax = e − 2 .

Proof.
• For the right hand inequality we firstly note upon letting b = 1 and a = t :

1
e
· tt/(t−1) � 1 + β

√
t + t

β + 2
.

Therefore t → 0 leads to
1
e

� 1
β + 2

, i.e. β � e − 2 . We now show the claimed

validity for β = e− 2 . Taking logarithm and collecting terms we get g(t) � 0 , where

g(t) := (t − 1) ln(1 + (e − 2)
√

t + t) − t ln t, t � 1

(due to symmetry). Now

g′(t) = ln(1 + (e − 2)
√

t + t) − ln t − (e − 2)t + 4
√

t + e − 2

2
√

t(1 + (e − 2)
√

t + t)
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and

g′′(t) =
(1 − t)((e − 2)t + 2(e2 − 4e + 2)

√
t + e − 2)

4t
√

t(1 + (e − 2)
√

t + t)2
.

From these expressions we deduce g′′(t) > 0 for t ∈ (1, t0) and g′′(t) < 0 for
t ∈ (t0,∞) . Here t0 denotes the only solution of g′′(t) = 0 lying in (1,∞) . Because
of g′(1) = 0 and limt→∞ g′(t) = 0 there follows g′(t) � 0 as t � 1 . This and
g(1) = 0 finally yield the claimed inequality.

• Proceeding similarly for the left-hand-inequality we firstly get upon putting
a = t and b = 1 (t � 1) and taking logarithm: kα(t) � 0 , where

kα(t) := t ln t + (t − 1)(ln(α + 2) − 1) − (t − 1) ln(1 + α
√

t + t).

Developing this function about t = 1 gives kα(t) =
α − 1

12(α + 2)
(t − 1)3 + . . . whence

α � 1 . In order to prove the validity of k1(t) � 0 , t � 1 , we note

k′1(t) = ln t − ln(1 +
√

t + t) +
(1 − t)(2

√
t + 1)

2
√

t(1 +
√

t + t)

and

k
′′
1 (t) =

(
√

t + 1)(
√

t − 1)3

4t
√

t(1 +
√

t + t)2
.

Therefore k1(t) is convex on (1,∞) and k′1(1) = k1(1) = 0 immediately yields
k1(t) � 0 , as claimed. �

In [4] the following identities are stated

A(a, b) = G(a, b) · exp
( ∞∑

k=1

1
2k

(a − b
a + b

)2k)

and

I(a, b) = G(a, b) · exp
( ∞∑

k=1

1
2k + 1

(a − b
a + b

)2k)
.

Therefore theorem 3 allows the curious.

COROLLARY 1. Let x ∈ (−1, 1) .

(i) Then α + 2 exp
( ∞∑

k=1

1
2k

x2k
)

� (α + 2) exp
( ∞∑

k=1

1
2k + 1

x2k
)

whenever α ∈
[1,∞) .

(ii) The reversed inequality holds true whenever α ∈ [0, e − 2] . �
Using familiar series – expansions this can also be summarized as

COROLLARY 2. Let x ∈ (−1, 1) .

(i) Then α +
2√

1 − x2
� α + 2

e

(1 + x
1 − x

) 1
2x

whenever α � 1 .

(ii) The reversed inequality is valid whenever α ∈ [0, e − 2] . �
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