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Abstract. In this work, we consider the Dirichlet problem

u′′ + f (t, u, u′) = 0,

u(a) = 0, u(b) = 0,

with f singular at t = a , t = b and for u = 0 and extend previous results concerning the case
f independent of u′ . To this aim we extend the lower and upper solution method in order to
work with solutions in W1,1(a, b)∩W2,1

loc(a, b) as well as with lower and upper solutions having
unbounded derivatives.

1. Introduction

There has been a large literature on singular boundary value problems of the type

u′′ + f (t, u) = 0,
u(a) = 0, u(b) = 0,

(1.1)

where f can be singular at t = a , t = b and also for u = 0 . This kind of singularities
appears for example in Emden-Fowler equations

u′′ + f (t)
uσ = h(t),

u(a) = 0, u(b) = 0,
(1.2)

where σ > 0 . Such equations have been used in several problems of applied mathe-
matics [3, 7, 15, 22].

As it was already noticed by A. Rosenblatt in 1933 [28], these problems can be
studied for more singular nonlinearities than Lp -Carathéodory functions. In 1953, G.
Prodi [27] used lower and upper solutions for such singular problems. For more recent
results, we can quote [5, 11, 32, 35] where the argument relies on the fact that f (t, u)
being positive, the solutions are concave, [15] where the authors study (1.2) in case
f (t) > 0 and h(t) can change sign and [13, 14, 20] for the general case (1.1). In [14],
the authors consider the case where the “slope f (t,u)

u is larger than the first eigenvalue
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λ1 when u goes to zero and smaller than λ1 when u goes to infinity”. The singularity
in t = a and t = b is of the same type as already considered in [27, 28, 32] i.e:
for any compact S ⊂ R

+
0 , there exists hS ∈ A such that, for a.e. t ∈ [a, b] and all

u ∈ S , f satisfies
|f (t, u)| � hS(t),

where A := {h ∈ L1
loc(a, b) | ∫ b

a (t− a)(b− t)h(t) dt < ∞} . In that case the solutions
are in W2,A := {u ∈ C ([a, b]) | u′′ ∈ A } .

In this work, we generalize [14] to the derivative dependent problem

u′′ + f (t, u, u′) = 0,
u(a) = 0, u(b) = 0.

(1.3)

Our results are based on the lower and upper solutions method.
Although some of the ideas can be traced back to E. Picard [26], themethod of lower

and upper solutions was grounded by G. Scorza Dragoni [30]. This paper considers
upper and lower solutions which are C 2 and, in 1938, the same author extended his
method to the L1 -Carathéodory case [31]. Upper and lower solutions with corners were
considered by M. Nagumo in 1954 [25] (we can find some trace of this idea already in
[26]). Since then a multitude of variants were introduced. Concerning a priori bounds
on the derivative of solutions, the first result goes back to S. Bernstein [4]. In 1937,
M. Nagumo [23] generalized these ideas introducing the so-called Nagumo condition
which is both simple and very general. Later, H. Epheser [9] and I.T. Kiguradze [16]
extended the Nagumo condition so as to deal with W2,1 -solutions (see also R.D. Moyer
[21]). The idea to replace the Nagumo condition by the existence of bounding function,
i.e. curves along which the vector field points one way, is due to M. Nagumo [24] (see
also [1, 2]), while the idea of diagonals goes back to F. Sadyrbaev [29] (see also [10] for
generalization and combination of these two notions in the continuous case). For a first
use of bounding functions in the Carathéodory case, we refer to [12].

Our results concerning (1.3) can be described in the following way. First we
consider the lower and upper solution method in case f is Lp -Carathéodory. In that
case, we find in the literature several proofs of the existence of a solution assuming the
lower and upper solutions have bounded derivative and using quite ingenious but not
direct proof (see for example [9, 17, 34]). Here we remove this boundedness condition
and prove the result using a simple modified problem as it is common in the lower and
upper solution method. This relies on ideas from [6] and [19]. In the third section, we
give our main results on (1.3) with f singular in t = a and t = b . The first problem
we have to solve is that, a Nagumo condition, as used in Section 2 (condition (b) of
Theorem 2.2), forces f to be Lp -Carathéodory and gives an a priori bound on ‖u′‖∞
on the solutions of (1.3). This is not natural for singular problems. For example, the
problem

t(1 − t)u′′ = 1,
u(0) = 0, u(1) = 0,

has u(t) = t ln t + (1 − t) ln(1 − t) as solution which is in W2,A (0, 1) ⊂ W1,1(0, 1) ∩
W2,1

loc (0, 1) but not in C 1([0, 1]) . Hence, a more natural idea is to look for an a priori
bound on u′ in L1(a, b) . We achieve this aim using two different approach: a Nagumo
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type condition and the use of bounding functions. A third approach can be found in [19,
Theorem 3.21 ]. In the last section, we give an application in the spirit of [14] where
f is singular in t = a , t = b and u = 0 . This result has to be compared with [19,
Theorem 4.11 ].

2. Regular problem

In this section, we consider the problem

u′′ = f (t, u, u′),
u(a) = A0, u(b) = B0,

(2.1)

where f : D ⊂ [a, b]× R
2 → R is a Lp -Carathéodory function i.e.

(a) for a.e. t ∈ [a, b] , the function f (t, ·, ·) with domain {(u, v) ∈ R
2 | (t, u, v) ∈ D}

is continuous;
(b) for all (u, v) ∈ R

2 , the function f (·, u, v) with domain {t ∈ [a, b] | (t, u, v) ∈ D}
is measurable;

(c) for all r > 0 , there exists h ∈ Lp(a, b) such that for all (t, u, v) ∈ D with
|u| + |v| � r , |f (t, u, v)| � h(t) .

A function f : D ⊂ [a, b] × R
2 → R which satisfies condition (a) and (b) is called a

Carathéodory function.

In the future, we denote by D+g , D−g , D+g and D−g the four Dini derivatives
of a given real function g : ‘+ ’ or ‘− ’ means limit from the right or from the left,
whereas the upper or lower position of the symbol means upper or lower limit.

DEFINITION 2.1. A function α ∈ C ([a, b]) is a W2,1 -lower solution of (2.1) if
(a) for any t0 ∈ ]a, b[ , either D−α(t0) < D+α(t0) ,

or there exists an open interval I0 ⊂ ]a, b[ such that t0 ∈ I0 , α ∈ W2,1(I0) and,
for a.e. t ∈ I0 ,

α′′(t) � f (t,α(t),α′(t));

(b) α(a) � A0 , α(b) � B0 .

A function β ∈ C ([a, b]) is a W2,1 -upper solution of (2.1) if
(a) for any t0 ∈ ]a, b[ , either D−β(t0) > D+β(t0) ,

or there exists an open interval I0 ⊂ ]a, b[ such that t0 ∈ I0 , β ∈ W2,1(I0) and,
for a.e. t ∈ I0 ,

β ′′(t) � f (t, β(t), β ′(t));

(b) β(a) � A0 , β(b) � B0 .

If the nonlinearity depends on u′ , the existence of a well-ordered pair of lower and
upper solutions alone does not guarantee the existence of a solution (see for example
[25]). A Nagumo condition allows us to deduce an a priori bound on the derivative
from an a priori bound on the function. This is the aim of the next proposition where
we consider a “Carathéodory version” of the Nagumo condition.
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PROPOSITION 2.1. Let α , β ∈ C ([a, b]) be such that α � β , p ∈ [1,∞] and
define q ∈ [1,∞] from 1

q + 1
p = 1 . Assume there exist r � max{β(b)− α(a), β(a)−

α(b)}/(b − a) , ϕ ∈ C (R+, R+
0 ) , ψ ∈ Lp(a, b) and R > r such that

∫ R

r

s1/q

ϕ(s)
ds > ‖ψ‖Lp(max

t
β(t) − min

t
α(t))1/q. (2.2)

Define
E := {(t, u, v) ∈ [a, b]× R

2 | α(t) � u � β(t)}. (2.3)

Then, for every Lp -Carathéodory function f : E → R such that for a.e. t ∈ [a, b]
and all (u, v) ∈ R

2 with (t, u, v) ∈ E and r � |v| � R

|f (t, u, v)| � ψ(t)ϕ(|v|),
and for every solution u of

u′′ = f (t, u, u′), (2.4)

which is such that α � u � β , we have

‖u′‖∞ < R.

Proof. Let u be a solution of (2.4) such that α � u � β . Observe first that, by
definition of r , there exists τ ∈ [a, b] with |u′(τ)| � r .

Nowconsider an interval I = [t0, t1] or [t1, t0] such that u′(t) � r on I , u′(t0) = r ,
u′(t1) = R . Then we have∫ R

r

r1/q

ϕ(r)
dr �

∫ t1

t0

u′1/q(s)u′′(s)
ϕ(u′(s))

ds =
∫ t1

t0

u′1/q(s)f (s, u(s), u′(s))
ϕ(u′(s))

ds

�
∣∣∣∣
∫ t1

t0

ψ(s)u′1/q(s) ds

∣∣∣∣ � ‖ψ‖Lp

∣∣∣∣
∫ t1

t0

u′(s) ds

∣∣∣∣
1/q

� ‖ψ‖Lp(max
t

β(t) − min
t
α(t))1/q.

This contradicts (2.2) and we deduce that u′(t) < R . In the same way we prove that
u′(t) > −R . �

After this preliminary result, we can give our main result concerning regular
problems.

THEOREM 2.2. Let A0 , B0 ∈ R . Assume α and β ∈ C ([a, b]) are W2,1 -lower
and upper solutions of problem (2.1) such that α � β . Define A ⊂ [a, b] (resp.
B ⊂ [a, b] ) to be the set of points where α (resp. β ) is derivable.

Let E be defined by (2.3) , p ∈ [1,∞] and f : E → R be a Lp -Carathéodory
function. Suppose there exists N ∈ L1(a, b) , N > 0 such that, for a.e. t ∈ A (resp.
for a.e. t ∈ B ),

f (t,α(t),α′(t)) � −N(t), (resp. f (t, β(t), β ′(t)) � N(t)). (2.5)
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Assume moreover there exist r � max{ β(a)−α(b)
b−a , β(b)−α(a)

b−a } , ϕ ∈ C (R+, R+
0 ) and

ψ ∈ Lp(a, b) satisfying

(a)
∫ ∞

r

s1/q

ϕ(s)
ds > ‖ψ‖Lp(max

t
β(t) − min

t
α(t))1/q , where q = p

p−1 ∈ [1,∞] ;

(b) for a.e. t ∈ [a, b] and all (u, v) ∈ R
2 such that (t, u, v) ∈ E and |v| � r ,

|f (t, u, v)| � ψ(t)ϕ(|v|).
Then, the problem (2.1) has at least one solution u ∈ W2,p(a, b) such that for all

t ∈ [a, b]
α(t) � u(t) � β(t).

Proof. The proof proceeds in several steps.

Step 1 – The modified problem. Let R be large enough so that∫ R

r

s1/q

ϕ(s)
ds > ‖ψ‖Lp(max

t
β(t) − min

t
α(t))1/q.

Increasing N if necessary, we can assume N(t) � ψ(t) max[0,R] ϕ(v) on [a, b] . Define
then

¯f (t, u, v) = max{min{f (t, γ (t, u), v), N(t)},−N(t)},
ω1(t, δ) = χA(t) max

|v|�δ
| ¯f (t,α(t),α′(t) + v) − ¯f (t,α(t),α′(t))|,

ω2(t, δ) = χB(t) max
|v|�δ

| ¯f (t, β(t), β ′(t) + v) − ¯f (t, β(t), β ′(t))|,
where χA and χB are the characteristic functions of the sets A and B and

γ (t, u) = max{min{u, β(t)},α(t)}. (2.6)

It is clear that ωi are L1 -Carathéodory functions, nondecreasing in δ , such that
ωi(t, 0) = 0 and |ωi(t, δ)| � 2N(t) .

We consider now the modified problem

u′′ = ¯f (t, u, u′) − ω(t, u),
u(a) = A0, u(b) = B0,

(2.7)

where
ω(t, u) = −ω2(t, u − β(t)), if u > β(t),

= 0, if α(t) � u � β(t),
= ω1(t,α(t) − u), if u < α(t).

Step 2 – Existence of a solution u of (2.7) . Let us write (2.7) as an integral equation

u(t) = A0 +
B0 − A0

b − a
(t − a) +

∫ b

a
G(t, s)[ ¯f (s, u(s), u′(s)) − ω(s, u(s))]ds,

where G(t, s) is the Green function corresponding to the problem

u′′ = f (t),
u(a) = 0, u(b) = 0.
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The operator T : C 1([a, b]) → C 1([a, b]) defined by

(Tu)(t) = A0 +
B0 − A0

b − a
(t − a) +

∫ b

a
G(t, s)[ ¯f (s, u(s), u′(s)) − ω(s, u(s))]ds,

is completely continuous and bounded. By Schauder’s Theorem, T has a fixed point
which is a solution of (2.7).

Step 3 – The solution u of (2.7) satisfies α(t) � u(t) � β(t) on [a, b] . Assume u−α
has a negative minimum at some point t∗ ∈ ]a, b[ . Let t0 = sup{t > t∗ | u(t)−α(t) =
u(t∗) − α(t∗)} . Then u(t0) − α(t0) = mint(u(t) − α(t)) < 0 , u′(t0) − D−α(t0) �
u′(t0)−D+α(t0) and, by definition of a W2,1 -lower solution, there exist an open interval
I0 and t1 ∈ I0 , t1 > t0 such that α ∈ W2,1(I0) , t0 ∈ I0 , u′(t1) − α′(t1) > 0 and for
a.e. t ∈ I0

α′′(t) � f (t,α(t),α′(t)).

Further u′(t0) − α′(t0) = 0 and for t near enough t0

|u′(t) − α′(t)| � α(t) − u(t).

As ω1 is nondecreasing and ¯f (t,α(t),α′(t)) � f (t,α(t),α′(t)) , we come to the
contradiction

0 < u′(t1) − α′(t1) =
∫ t1

t0

(u′′(s) − α′′(s))ds

�
∫ t1

t0

[ ¯f (s,α(s), u′(s)) − ¯f (s,α(s),α′(s)) − ω1(s,α(s) − u(s))]ds � 0.

Step 4 – The solution u of (2.7) is such that ‖u′‖∞ < R . Observe that condition (b) is
satisfied with f (t, u, v) replaced by ¯f (t, u, v) . Hence, we conclude by Proposition 2.1.

Conclusion. It follows from Step 3 and 4 that the solution u of (2.7) obtained in Step
2 solves (2.1). �

REMARK 2.1. Condition (2.5) is satisfied if α , β ∈ W1,∞(a, b) or if f does not
depend on v .

3. Singular Problems

Consider now the homogeneous Dirichlet problem

u′′ = f (t, u, u′),
u(a) = 0, u(b) = 0.

(3.1)

We first extend Proposition 2.1 in such a way to obtain a L1 -a priori bound on u′ instead
of a L∞ -bound.
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To state such a result we shall need the following concept. A function f : D ⊂
[a, b] × R

2 → R is said to be a L1
loc -Carathéodory function if it is a Carathéodory

function and for all r > 0 , there exists h ∈ L1
loc(a, b) such that for a.e. t ∈ [a, b] and

all (u, v) ∈ R
2 , with |u| + |v| � r and (t, u, v) ∈ D , we have

|f (t, u, v)| � h(t).

PROPOSITION 3.1. Let α and β ∈ C ([a, b]) be such that α � β and define E
from (2.3) . Assume there exist r > 0 , ψ ∈ L1

loc(a, b) and a nondecreasing function
ϕ ∈ C (R+, R+

0 ) such that

(a)
∫ ∞

r

ds
ϕ(s)

= ∞ ;

(b) Φ−1(2|
∫ t

a+b
2

ψ(s) ds|) ∈ L1(a, b) , where Φ(u) =
∫ u

r

ds
ϕ(s)

.

Then there exists h ∈ L1(a, b) ∩ C (]a, b[) such that, for every a � a1 � 2a+b
3 <

a+2b
3 � b1 � b , every L1

loc -Carathéodory function f : E → R which satisfies,
for a.e. t ∈ [a1, b1] and all (u, v) ∈ R

2 with (t, u, v) ∈ E , |v| � r ,
|f (t, u, v)| � ψ(t)ϕ(|v|) ,

and every solution u of (2.4) on [a1, b1] such that α � u � β , we have

|u′(t)| � h(t).

REMARK 3.1. Let us comment assumption (b):
(i) If ψ ∈ L1(a, b) , condition (b) is implied by condition (a);
(ii) In case ϕ(v) ≡ 1 , condition (b) becomes ψ ∈ A ;
(iii) Condition (b) is implied by Φ−1(2(b − a)ψ(t)) ∈ A . This can be seen using

Jensen inequality (see for example [8, Theorem II-2.2]). For t � a+b
2 , we obtain

Φ−1(2
∫ t

a+b
2

ψ(s) ds) = Φ−1(
1

b − a

∫ b

a
2(b − a)ψ(s)χ[ a+b

2 ,t](s) ds)

� 1
b − a

∫ t

a+b
2

Φ−1(2(b − a)ψ(s)) ds.

If Φ−1(2(b − a)ψ(t)) ∈ A , we have
∫ t

a+b
2
Φ−1(2(b − a)ψ(s)) ds ∈ L1( a+b

2 , b)

and it follows that Φ−1(2
∫ t

a+b
2
ψ(s) ds) ∈ L1( a+b

2 , b) .

In the same way, we can write Φ−1(2
∫ a+b

2
t ψ(s) ds) ∈ L1(a, a+b

2 ) .

Proof. Step 1 – Existence of a function h ∈ C (]a, b[) that satisfies the assertions
of the Proposition. Let c , d be such that 2a+b

3 � c < a+b
2 < d � a+2b

3 and

M > max{r, maxt β−mint α
d−c } . Define h1 to be the solution of

h′1 = ψ(t)ϕ(h1), t ∈ [c, b[, h1(c) = M,

h2 the solution of
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h′2 = −ψ(t)ϕ(h2), t ∈ ]a, d], h2(d) = M,

and
h(t) = h2(t), on ]a, c],

= max{h1(t), h2(t)}, on ]c, d[,
= h1(t), on [d, b[.

Let a � a1 � 2a+b
3 < a+2b

3 � b1 � b , f : E → R such that, for a.e. t ∈ [a1, b1]
and all (u, v) ∈ R

2 with (t, u, v) ∈ E , |v| � r , |f (t, u, v)| � ψ(t)ϕ(|v|) , and u
be a solution of (2.4) on [a1, b1] such that α � u � β . Observe that there exists
τ ∈ [c, d] with |u′(τ)| � M . Consider an interval I = [t0, t1] such that u′(t) � r on
I , u′(t0) = M and t0 � c . We have, for every t ∈ [t0, t1] ,∫ u′(t)

M

dσ
ϕ(σ)

=
∫ t

t0

u′′(s)
ϕ(u′(s))

ds �
∫ t

t0

ψ(s) ds

�
∫ t

c
ψ(s) ds =

∫ t

c

h′1(s)
ϕ(h1(s))

ds =
∫ h1(t)

M

dσ
ϕ(σ)

and u′(t) � h1(t) on I and hence on [τ, b1] .
In the same way, we prove that u′ � h2 on [a1, τ] and hence, u′(t) � h(t) on

[a1, b1] . The proof that, for any t ∈ [a1, b1] , u′(t) � −h(t) is similar.

Step 2 – h ∈ L1(a, b) . We compute

Φ(h1(t)) −Φ(M) =
∫ h1(t)

M

dr
ϕ(r)

=
∫ t

c
ψ(s) ds.

Hence we write

h1(t) = Φ−1

(
Φ(M) +

∫ t

c
ψ(s) ds

)

� Φ−1

(
Φ(M) +

∫ d

c
ψ(s) ds +

∫ t

a+b
2

ψ(s) ds

)

and as Φ−1 is convex

h1(t) � 1
2

{
Φ−1

(
2[Φ(M) +

∫ d

c
ψ(s) ds]

)
+ Φ−1

(
2
∫ t

a+b
2

ψ(s) ds

)}
,

from which we deduce h1 ∈ L1(c, b) . In the same way, we have

h2(t) = Φ−1(Φ(M) +
∫ d

t
ψ(s) ds)

and deduce h2 ∈ L1(a, d) . �

REMARK 3.2. The condition ϕ nondecreasing is not essential. If it is not satisfied,
we have to replace condition (b) by

Φ−1(Φ(M) +
∫ t

c
ψ(s) ds) ∈ L1(c, b), Φ−1(Φ(M) +

∫ d

t
ψ(s) ds) ∈ L1(a, d)

where M , c and d are defined in the proof of Proposition 3.1.
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THEOREM 3.2. Let α , β ∈ C ([a, b]) be W2,1 -lower and upper solutions of the
problem (3.1) such that α � β . Define A ⊂ [a, b] (resp. B ⊂ [a, b] ) to be the set of
points where α (resp. β ) is derivable.

Let E be defined by (2.3) and f : E → R be a L1
loc -Carathéodory function.

Suppose there exists N ∈ L1
loc(a, b) , N > 0 such that, for a.e. t ∈ A (resp. for a.e.

t ∈ B ),

f (t,α(t),α′(t)) � −N(t), (resp. f (t, β(t), β ′(t)) � N(t)).

Assume moreover there exist r > 0 , ψ ∈ L1
loc(a, b) and a nondecreasing function

ϕ ∈ C (R+, R+
0 ) such that

(a)
∫ ∞

r

ds
ϕ(s)

= ∞ ;

(b) Φ−1(2|
∫ t

a+b
2

ψ(s) ds|) ∈ L1(a, b) , where Φ(u) =
∫ u

r

ds
ϕ(s)

;

(c) for a.e. t ∈ [a, b] and all (u, v) such that (t, u, v) ∈ E and |v| � r ,

|f (t, u, v)| � ψ(t)ϕ(|v|).
Then the problem (3.1) has at least one solution u such that for all t ∈ [a, b]

α(t) � u(t) � β(t).

Proof. Step 1 – The modified problem. Let (an)n , (bn)n ⊂ ]a, b[ , (An)n , (Bn)n ⊂
R be such that

lim
n→∞ an = a, lim

n→∞ bn = b, lim
n→∞An = 0, lim

n→∞Bn = 0,

α(an) � An � β(an), α(bn) � Bn � β(bn).

Consider the modified problem

u′′ = f (t, u, u′),
u(an) = An, u(bn) = Bn.

(3.2)

We can assume that, for any n , an � 2a+b
3 < a+2b

3 � bn . Hence, by Theorem 2.2 and
Proposition 3.1, for every n , problem (3.2) has a solution un satisfying on [an, bn]

α(t) � un(t) � β(t), |u′n(t)| � h(t),

with h given by Proposition 3.1.

Step 2 – Existence of a solution u of (3.1) . Using Arzela-Ascoli Theorem, we can
find (u1

n)n , a subsequence of (un)n , that converges in C 1([a1, b1]) . Proceeding by
induction, for any k ∈ N , we build (uk

n)n , a subsequence of (uk−1
n )n , that converges

in C 1([ak, bk]) . It follows that the diagonal sequence (un
n)n converges pointwise to

some function u and that, for any compact K ⊂ ]a, b[ , the convergence takes place in
C 1(K) . Hence, u satisfies on ]a, b[

u′′ = f (t, u, u′)
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and
α(t) � u(t) � β(t), |u′(t)| � h(t).

Let us prove that limt→a u(t) = 0 . Fix ε > 0 and choose δ > 0 so that∫ a+δ
a h(s) ds � ε/3 . Let us fix t ∈ [a, a + δ ] and pick n large enough so that

t ∈ [an, bn] , |un(t) − u(t)| � ε/3 and |An| � ε/3 . We compute then

|u(t)| � |u(t) − un(t)| + |un(t) − un(an)| + |An|
� |u(t) − un(t)| +

∫ t

an

h(s) ds + |An| � ε.

In the same way, we prove limt→b u(t) = 0 . �

REMARK 3.3. By Remark 3.1, this result generalizes Theorem 2.2 for the homo-
geneous case as well as [14, Theorem 1].

As a first illustration consider the following example where Theorem 2.2 does not
apply.

EXAMPLE 3.1. Consider the boundary value problem

u′′ = 1
tn |u′|a + u + t,

u(0) = 0, u(1) = 0,

where 0 � a < 1 and 0 < n < 2 − a . Existence of a solution follows from Theorem
3.2 with α(t) = −1 , β(t) = 0 , ψ(t) = 1

tn + 1 , ϕ(y) = max{1, ya} .

Observe that we do not use the full power of condition (c) in Theorem 3.2 so that
we can generalize it in the following way with the same proof.

THEOREM 3.3. Under the assumptions of Theorem 3.2 with (c) replaced by
(c’) there exist a � c < a+b

2 < d � b such that, for a.e. t ∈ [a, b] and all (u, v) with
(t, u, v) ∈ E and |v| � r ,

f (t, u, v)sgn(v) � −ψ(t)ϕ(|v|), if t ∈ ]a, d[,
f (t, u, v)sgn(v) � ψ(t)ϕ(|v|), if t ∈ ]c, b[,

the problem (3.1) has at least one solution u such that, for all t ∈ [a, b] ,

α(t) � u(t) � β(t).

EXAMPLE 3.2. Consider the following example

u′′ + |u|1/2 − 1
tn u′1/3 − 1

t = 0,
u(0) = 0, u(π) = 0,

where n > 0 is not upper bounded. We can apply Theorem 3.3 to prove the existence
of a solution choosing α(t) = t ln t

π − t , β(t) = 0 , c = π/3 , d = 2π/3 , ϕ(v) =
max{1, v1/3} and

ψ(t) = 1
t + π1/2, on [0, π/3],

= 1
t + π1/2 + 1

tn , on ]π/3, π].
Hence, there is a solution u such that for all t ∈ [0, π] , t ln t

π − t � u(t) � 0 .

We can generalize the results of this section using the idea of bounding functions
and diagonals. First we consider the analogue of Proposition 3.1.
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PROPOSITION 3.4. Let A0 , B0 ∈ R , α and β ∈ C ([a, b]) be such that α � β
and define E from (2.3) . Assume there exist μ1 , μ2 ∈ C ([a, b]) , g1 , g2 , h1 ,
h2 ∈ W1,1

loc (a, b) such that
(a) μ2(a) � A0 � μ1(a) , μ1(b) � B0 � μ2(b) ,

D+μ1 � g2 , D−μ1 � g1 , D−μ2 � h1 , D+μ2 � h2 on [a, b] ;
Then for any L1

loc -Carathéodory function f : E → R which satisfies
(b) for all (t, u, v) ∈ E

f (t, u, v) � g′1(t), if u < μ1(t) and g1(t) − 1 < v < g1(t),
f (t, u, v) � g′2(t), if u > μ1(t) and g2(t) − 1 < v < g2(t),
f (t, u, v) � h′1(t), if u < μ2(t) and h1(t) + 1 > v > h1(t),
f (t, u, v) � h′2(t), if u > μ2(t) and h2(t) + 1 > v > h2(t).

and every solution u of (2.1) such that α � u � β , we have

min{g1(t), g2(t)} � u′(t) � max{h1(t), h2(t)} .

Proof. Let u be a solution of (2.1) such that α � u � β .

Claim 1 – The function u is such that

∀t ∈ [a, b] , either u(t) � μ2(t) or u′(t) � h2(t) ,

Assume on the contrary that for some t1 ∈ [a, b[ , u(t1) > μ2(t1) and u′(t1) > h2(t1) .
Observe that since u(b) = B0 , we can find t2 ∈ ]t1, b] such that ∀t ∈ [t1, t2[ , u(t) >
μ2(t) , u′(t) > h2(t) and either u(t2) = μ2(t2) or u′(t2) = h2(t2) . In the first case, we
obtain a contradictionwith the fact that u−μ2 is nondecreasing as, for every t ∈ ]t1, t2[ ,

D+(u − μ2)(t) = u′(t) − D+μ2(t) > h2(t) − D+μ2(t) � 0 .
In the second case, changing t1 if necessary, we can assume that ∀t ∈ [t1, t2[ , u′(t) �
h2(t)+1 and we obtain again a contradiction with the fact that u′−h2 is nondecreasing
as, for every t ∈ ]t1, t2[ ,

u′′(t) − h′2(t) = f (t, u(t), u′(t)) − h′2(t) � 0 .

As a conclusion, for every t ∈ [a, b] , either u(t) � μ2(t) or u′(t) � h2(t) .

Claim 2 – The function u is such that

∀t ∈ [a, b[ , either u(t) < μ2(t) or u′(t) � h2(t) .

Let us suppose that for some t0 ∈ [a, b[ , u(t0) � μ2(t0) and u′(t0) > h2(t0) . Hence,
for t1 ∈ ]t0, b] near enough t0 , u(t1) > μ2(t1) and u′(t1) > h2(t1) . A contradiction
follows from Claim 1.

Claim 3 – The function u is such that

∀t ∈ [a, b] , either u(t) � μ2(t) or u′(t) � h1(t) ,
and

∀t ∈ ]a, b] , either u(t) > μ2(t) or u′(t) � h1(t) .

This claim is proved reversing the time and using the argument of Claim 1 and 2.

Conclusion –For t ∈ [a, b] , we deduce from the above claims that u′(t) � max{h1(t), h2(t)} .
We prove in a similar way that u′(t) � min{g1(t), g2(t)} . �
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THEOREM 3.5. Let α , β ∈ C ([a, b]) be W2,1 -lower and upper solutions of the
problem (3.1) such that α � β . Define A ⊂ [a, b] (resp. B ⊂ [a, b] ) to be the set of
points where α (resp. β ) is derivable.

Let E be defined by (2.3) and f : E → R be a L1
loc -Carathéodory function.

Suppose there exists N ∈ L1
loc(a, b) , N > 0 such that, for a.e. t ∈ A (resp. for a.e.

t ∈ B ),

f (t,α(t),α′(t)) � −N(t), (resp. f (t, β(t), β ′(t)) � N(t)).

Assume moreover there exist μ1 , μ2 ∈ C ([a, b]) , g1 , g2 , h1 , h2 ∈ W1,1
loc (a, b) ∩

L1(a, b) such that
(a) μ2(a) � 0 � μ1(a) , μ1(b) � 0 � μ2(b) ,

max(α,μ2) � min(β ,μ1) on a neighbourhood of a ,
max(α,μ1) � min(β ,μ2) on a neighbourhood of b ,
D+μ1 � g2 , D−μ1 � g1 , D−μ2 � h1 , D+μ2 � h2 on [a, b] ;

(b) for all (t, u, v) ∈ E
f (t, u, v) � g′1(t), if u < μ1(t) and g1(t) − 1 < v < g1(t),
f (t, u, v) � g′2(t), if u > μ1(t) and g2(t) − 1 < v < g2(t),
f (t, u, v) � h′1(t), if u < μ2(t) and h1(t) < v < h1(t) + 1,
f (t, u, v) � h′2(t), if u > μ2(t) and h2(t) < v < h2(t) + 1.

Then the problem (3.1) has at least one solution u such that, for all t ∈ [a, b] ,

α(t) � u(t) � β(t), min{g1(t), g2(t)} � u′(t) � max{h1(t), h2(t)}. (3.3)

Proof. Step 1 – The modified problem. Let (an)n , (bn)n ⊂ ]a, b[ , (An)n , (Bn)n ⊂
R be such that

lim
n→∞ an = a, lim

n→∞ bn = b, lim
n→∞An = 0, lim

n→∞Bn = 0,

max(α,μ2)(an) � An � min(β ,μ1)(an),
max(α,μ1)(bn) � Bn � min(β ,μ2)(bn).

Consider the modified problem

u′′ = f (t, u, u′),
u(an) = An, u(bn) = Bn.

(3.4)

Adapting the arguments of Theorem 2.2 and using Proposition 3.4, we prove that (3.4)
has a solution un satisfying for all t ∈ [an, bn]

α(t) � un(t) � β(t), min{g1(t), g2(t)} � u′n(t) � max{h1(t), h2(t)}.
Step 2 – Existence of a solution u of (3.1) . We argue as in Step 2 of the proof of
Theorem 3.2. �

REMARK 3.5. We can generalize the conditions of Theorem 3.5 in the spirit of
[10] or [12] and improve those results but we choose to concentrate in this paper on
the new ideas and not to give the maximal generality. Of course, we can state also the
equivalent of Theorem 2.2 using bounding functions and diagonals as in Theorem 3.5.
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Using Theorem 3.5, we can allow a stronger dependence in u′ than previously as
in the following example.

EXAMPLE 3.3. Consider the following modification of Example 3.2

u′′ + |u|1/2 + πn−1

tn u′4 − 1
t = 0,

u(0) = 0, u(π) = 0,

where n > 0 . It is easy to see that α(t) = t ln t
π − t and β(t) = 0 are still lower and

upper solutions. Further, we can apply Theorem 3.5 with μ1 = μ2 = 0 , h1 = h2 = 1 ,
g1 = g2 = −1 . Notice that as β(t) = 0 , the application of the theorem to this
example imposes the vector field points downward along the segments u′ = k and
u′ = −k when k � 1 . Hence, there is a solution u such that for all t ∈ [0, π] ,
t ln t

π − t � u(t) � 0 .

We can replace the condition (b) of Theorem 3.5 by asking a control on f only for
v = gi(t) (resp. v = hi(t) ) if we control α′ and β ′ by gi and hi as in the next result.

COROLLARY 3.6. Under the assumptions of Theorem 3.5 with (b) replaced by
(b’) for a.e. t ∈ [a, b] and all u ∈ R with α(t) � u � β(t)

f (t, u, g1(t)) � g′1(t), if u < μ1(t),
f (t, u, g2(t)) � g′2(t), if u > μ1(t),
f (t, u, h1(t)) � h′1(t), if u < μ2(t),
f (t, u, h2(t)) � h′2(t), if u > μ2(t);

(c) for a.e. t ∈ A , (resp. for a.e. t ∈ B )
α′(t) > g1(t) if α(t) < μ1(t), (resp. β ′(t) > g1(t) if β(t) < μ1(t)),
α′(t) > g2(t) if α(t) � μ1(t), (resp. β ′(t) > g2(t) if β(t) � μ1(t)),
α′(t) < h1(t) if α(t) < μ2(t), (resp. β ′(t) < h1(t) if β(t) < μ2(t)),
α′(t) < h2(t) if α(t) � μ2(t), (resp. β ′(t) < h2(t) if β(t) � μ2(t)),

the problem (3.1) has at least one solution u such that, for all t ∈ [a, b] ,

α(t) � u(t) � β(t), min{g1(t), g2(t)} � u′(t) � max{h1(t), h2(t)}.

Proof. We define

ϕ(t, u) = g1(t), if u < μ1(t),
= g2(t), if u � μ1(t),

ψ(t, u) = h1(t), if u < μ2(t),
= h2(t), if u � μ2(t),

and consider the modified problem

u′′ = ˜f (t, u, u′),
u(a) = 0, u(b) = 0,

where
˜f (t, u, v) = f (t, u,ϕ(t, u)), if v < ϕ(t, u),

= f (t, u, v), if ϕ(t, u) � v � ψ(t, u),
= f (t, u,ψ(t, u)), if v > ψ(t, u).
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The result follows by application of Theorem 3.5. �

We can obtain Theorem 3.3 as a Corollary of Theorem 3.5. For example, we define
μ2 and h1 in the following way. We set

μ2(t) = mint α(t), if t ∈ [a, c[,
= maxt β−mint α

d−c (t − c) + mint α(t), if t ∈ [c, d],
= maxt β(t), if t ∈ ]d, b],

and we define h1 on [c, b[ as the solution of

h′1(t) = ψ(t)ϕ(h1(t) + 1),
h1(c) = M

and h1(t) = M on [a, c[ where M � max{r, maxt β−mint α
d−c } . It is easy to verify that these

functions verify the required assumptions and to define similarly the other functions.

4. Application

In this section we extend [14, Theorem 2] to the boundary value problem

u′′ + f (t, u, u′) = 0,
u(0) = 0, u(π) = 0.

(4.1)

To extend the assumption “the slope f (t,u)
u is larger than the first eigenvalue λ1 when

u goes to zero and smaller than λ1 when u goes to infinity” used in [14], we consider
the piecewise linear problem

u′′ + B|u′| + Cu = 0,
u(0) = 1, u′(0) = 0,

where B , C > 0 . The solution of this problem is positive on ] − Γ(B,C)
2 , Γ(B,C)

2 [ where

Γ(B, C) = 4√
B2−4C

tanh−1

(√
B2−4C

B

)
, if B2 − 4C > 0,

= 4√
4C−B2

tan−1

(√
4C−B2

B

)
, if B2 − 4C < 0,

= 4
B , if B2 − 4C = 0.

Hence, if we use Theorem 3.2, [14, Theorem 2] extends in the following way with a
quite similar proof. Other results are obtained using Theorems 3.3 or 3.5.

THEOREM 4.1. Assume
(i) the function f : ]0, π[×R

+
0 × R → R satisfies a Carathéodory condition and for

each compact set L ⊂ ]0,∞[×R there exists kL ∈ A such that, for a.e. t ∈ ]0, π[
and all (u, v) ∈ L ,

|f (t, u, v)| � kL(t);
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(ii) there exists B1, C1 � 0 with π > Γ(B1, C1) and, for any compact set K ⊂ ]0, π[,
there is ε > 0 such that, for a.e. t ∈ K , all u ∈ ]0, ε] and v ∈ R ,

f (t, u, v) � B1|v| + C1u;

(iii) there exists B2, C2 � 0 with π < Γ(B2, C2) , M > 0 and k ∈ A such that, for
a.e. t ∈ ]0, π[ and all (u, v) ∈ [M,∞[×R ,

f (t, u, v) � B2|v| + C2u + k(t);

(iv) for any compact set L ⊂ ]0,∞[ , there exist ψ ∈ L1
loc(0, π) , ϕ ∈ C (R+, R+

0 )
nondecreasing and r > 0 such that, for a.e. t ∈ ]0, π[ , all u ∈ L and |v| � r we
have

|f (t, u, v)| � ψ(t)ϕ(|v|)
and, for some C > 2 , ∫ ∞

r

ds
ϕ(s)

= ∞,

Φ−1(C|
∫ t

π
2

ψ(s) ds|) ∈ L1(0, π),

where Φ(u) =
∫ u

r
ds
ϕ(s) .

Then the problem (4.1) has at least one solution.

REMARK 4.1. Assumption (ii) is equivalent to assume there exist B1, C1 � 0 and
a function a1 ∈ C 2

0 ([0, π], R+) such that:
(a) t ∈ ]0, π[ implies a1(t) > 0 ;
(b) f (t, u, v) � B1|v| + C1u, for all t ∈ ]0, π[, 0 < u � a1(t), v ∈ R ;
(c) a′′1 (t) > 0, for all t ∈ [0, π/3] ∪ [2π/3, π] .

Proof of Theorem 4.1. Step 1 – Construction of lower solutions. Decreasing B1

and C1 if necessary, we can assume that Γ(B1, C1) > π/3 . Let a2 be the solution of

u′′ + B1|u′| + C1u = 0,
u(π/2) = 1, u′(π/2) = 0.

Observe that a2( π2 − Γ(B1,C1)
2 ) = a2( π2 + Γ(B1,C1)

2 ) = 0 and a2(t) > 0 for all t ∈
] π2 − Γ(B1,C1)

2 , π
2 + Γ(B1,C1)

2 [ . Consider the function α2(t) = A2a2(t) , where A2 is chosen

small enough so that, for a.e. t ∈ ] π2 − Γ(B1,C1)
2 , π

2 + Γ(B1,C1)
2 [ , all 0 < u � α2(t) and

v ∈ R , we have
f (t, u, v) � B1|v| + C1u.

Next, we choose a1 from Remark 4.1 and let α1(t) = A1a1(t) , where A1 ∈ ]0, 1] is
small enough so that for some points t1 ∈ ]0, π3 [ , t2 ∈ ] 2π

3 , π[ , one has :

α1(t) � α2(t), for all t ∈ [0, t1] ∪ [t2, π];
α2(t) � α1(t), for all t ∈ [t1, t2].
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Step 2 – Approximation problems. We define for each n ∈ N, n � 1,

ηn(t) = max{ π
2n+1

, min(t, π − π
2n+1

)}, t ∈ ]0, π[

and set
˜f n(t, u, v) = max{f (ηn(t), u, v), f (t, u, v)}.

We have that, for each index n, ˜f n : ]0, π[×R
+
0 × R → R is measurable in the first

variable, continuous in the two other ones and

˜f n(t, u, v) = f (t, u, v), for all (t, u, v) ∈ Kn × R
+
0 × R,

where
Kn = [

π
2n+1

, π − π
2n+1

].

Hence the sequence of functions ( ˜f n)n converges to f uniformlyon any set K×R
+
0 ×R ,

where K is an arbitrary compact subset of ]0, π[ .
Next we define

f n(t, u, v) = min{ ˜f 1(t, u, v), · · · , ˜f n(t, u, v)}.
Each of the functions f i are defined on ]0, π[×R

+
0 × R and moreover

f 1(t, u, v) � f 2(t, u, v) � · · · � f n(t, u, v) � f n+1(t, u, v) � · · · � f (t, u, v).

The sequence (f n)n converges to f uniformly on compact subsets of ]0, π[×R
+
0 × R

since
f n(t, u, v) = f (t, u, v), for all t ∈ Kn, u ∈ R

+
0 , v ∈ R.

Define now a decreasing sequence (εn)n ⊂ R
+
0 such that

lim
n→∞ εn = 0,

f (t, u, v) � B1|v| + C1u, for all t ∈ Kn, u ∈ ]0, εn], v ∈ R,

and consider the sequence of approximation problems

u′′ + f n(t, u, u′) = 0,
u(0) = εn, u(π) = εn.

(Pn)

Step 3 – A lower solution of (Pn) . It is clear that for any c ∈ ]0, εn]

˜f n(t, c, 0) � f (ηn(t), c, 0) � 0.

As the sequence (εn)n is decreasing, we also have

f n(t, εn, 0) = min
1�k�n

˜f k(t, εn, 0) � 0.

It follows that α3(t) := εn is such that

α′′
3 (t) + f n(t,α3(t),α′

3(t)) = f n(t, εn, 0) � 0.
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Step 4 – Existence of a solution u1 of (P1) such that max(α1(t),α2(t), ε1) � u1(t) .
From assumption (iii), we can find M � max(α1(t),α2(t), ε1) and k ∈ A such that,
for all t ∈ ]0, π[ , u ∈ [M,∞[ and v ∈ R ,

f (t, u, v) � B2|v| + C2u + k(t).

Also, one has
f (η1(t), u, v) � B2|v| + C2u + k(η1(t)).

Hence, we can write

f 1(t, u, v) = max{f (η1(t), u, v), f (t, u, v)} � B2|v| + C2u + k̃(t),

where k̃(t) = max{k(t), k(max{ π
4 , min(t, 3π

4 )}} . Choose β such that

β ′′ + B2|β ′| + C2β + k̃(t) = 0,
β(0) = M, β(π) = M,

and observe that β is well defined and bounded since k ∈ A (see for example [19]).
It is easy to see now that

β ′′ + f 1(t, β , β ′) � β ′′ + B2|β ′| + C2β + k̃(t) = 0.

By Theorem 3.2, we know that there is a solution u1 of (P1) such that

max(α1(t),α2(t), ε1) � u1(t) � β(t).

In fact, max(α1(t),α2(t), ε1) is a W2,1 -lower solution of (P1) ,

|f 1(t, u, v)| � ϕ(|v|)(ψ(t) + ψ(η1(t)))

and for ε such that 2
1−ε � C ,

Φ−1(2|
∫ t

π
2

(ψ(s) + ψ(η1(s))) ds|) � Φ−1(2|
∫ t

π
2

ψ(s) ds| + 2|
∫ t

π
2

ψ(η1(s)) ds|)

� (1 − ε)Φ−1(
2

1 − ε
|
∫ t

π
2

ψ(s) ds|) + εΦ−1(
2
ε
|
∫ t

π
2

ψ(η1(s)) ds|)

� (1 − ε)Φ−1(C|
∫ t

π
2

ψ(s) ds|) + εΦ−1(
2
ε
|
∫ t

π
2

ψ(η1(s)) ds|).

Hence, Φ−1(2| ∫ t
π
2
(ψ(s) + ψ(η1(s))) ds|) ∈ L1(a, b) .

Step 5 – The problem (Pn) has at least one solution un such that

max(α1(t),α2(t), εn) � un(t) � un−1(t).

Let us notice that un−1 is an upper solution of (Pn) . The claim follows by Theorem
3.2.
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Step 6 – Existence of a solution of (4.1) . Consider now the pointwise limit

ũ(t) = lim
n→∞ un(t).

It is clear that, for any n � 1 and all t ∈ ]0, π[ ,

max(α1(t),α2(t)) � ũ(t) � un(t).

Let now K ⊂ ]0, π[ be a compact interval. There is an index n∗ = n∗(K) such that
K ⊂ Kn for all n � n∗ and therefore for these n � n∗ and t ∈ K ,

0 = u′′n (t) + f n(t, un(t), u′n(t)) = u′′n (t) + f (t, un(t), u′n(t)).

Hence the function un is a solution of the equation in (4.1) for all t ∈ K and
n � n∗. Define α(t) = maxt{α1(t),α2(t)} . Let ϕ and ψ be given by assumption
(iv) corresponding to L = [mint∈K α(t), maxt∈K β(t)] . By Proposition 3.1, there exists
h ∈ L1(0, π) ∩ C (]0, π[) such that, for all t ∈ K , and n � n∗ , |u′n(t)| � h(t) .

Observe now that, for some k ∈ L1(K) , for a.e. t ∈ K , all u ∈ [α(t), un∗(t)] and
|v| � h(t) , we have

|f (t, u, v)| � k(t).

Then by Arzelá-Ascoli theorem it is standard to conclude that ũ is a solution of (4.1)
on the interval K . Since K was arbitrary, we find that ũ ∈ W2,1

loc (]0, π[, R+
0 ) and, for

all t ∈ ]0, π[ ,
ũ′′(t) + f (t, ũ(t), ũ′(t)) = 0.

Since

ũ(0) = ũ(π) = lim
n→+∞ εn = 0,

it remains only to check the continuity of ũ at t = 0 and t = π .
Let ε > 0 be give. Take nε such that unε(0) < ε. By the continuity of unε(t) in

t = 0 , we can find a constant δ = δε > 0 such that

0 < unε(t) < ε, for any 0 < t < δ.

Hence, we obtain

0 � ũ(t) � unε(t) < ε, for any 0 < t < δ.

The same argument works in proving the continuity of ũ(t) at t = π . �

REMARK 4.2. Using the results of [18] or [19], we can generalize Theorem 4.1,
assuming Bi , Ci are functions respectively in L1(0, π) and in A but the condition
Γ(B1, C1) < π < Γ(B2, C2) becomes less transparent. In that way we extend [33].



LOWER AND UPPER SOLUTIONS FOR SINGULAR DERIVATIVE DEPENDENT DIRICHLET PROBLEM 395

RE F ER EN C ES

[1] K. AKO, Subfunctions for ordinary differential equations II, Funkcialaj Ekvacioj 10(1967), 145–162.
[2] K. AKO, Subfunctions for ordinary differential equations V, Funkcialaj Ekvacioj 12(1969), 239–249.
[3] J. V. BAXLEY, A singular nonlinear boundary value problem: membrane response of a spherical cap,

SIAM J. Appl. Math. 48(1988), 497–505.
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différentielles ordinaires, J. de Math. 9(1893), 217–271.
[27] G. PRODI, Teoremi di esistenza per equazioni alle derivate parziali non lineari di tipo parabolico, Nota

I e II, Rend. Ist. Lombardo 86(1953), 1–47.
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boundary value problem with Carathéodory functions, Ann. Pol. Math. 58(1993), 221–235.

[35] ZONGMING GUO, Solvability of some singular nonlinear boundary value problems and existence of
positive radial solutions of some singular elliptic problems, Nonlinear Anal. T.M.A. 16(1991), 781–
790.

(Received July 8, 2000) C. De Coster
LMPA Joseph Liouville, EA 2597,
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